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Base Quantity  
S I  Un its  

Nam e  Sym bol D efinition  
Length m eter  m  The m eter  is  the length of  the path traveled by light  in  

vacuum  during  a  tim e  in te rva l  o f  1/(299,  792,  458 )  o f  a  
second  (1983 )  

M ass kilogra
m  

kg The kilogram is equal to the m ass o f the in ternational 
proto type o f  the  k ilogram (a  platinum -irid ium a lloy  
cy linder)  kept  a t  In ternational  B ureau of  W eights  and 
M easures, a t Sevres, near Paris, France. (1889) 

T im e second s The  second  is  the  dura tion  of  9 ,  192,  631,  770  periods  
of  the rad iation corresponding to  the transition between 
the  two  hyperfine  leve ls  o f  the  ground  sta te  of  the  
cesium -133 a tom (1967 )  

E lectric Current am pere A  The am pere is  that  constant  current  w hich,  if  m ainta ined 
in  two straight  paralle l  conductors  of  infin ite  length,  of  
negligible circular cross-section, and p laced 1 m etre apart 
in vacuum , would produce be tween these conductors a 
force  equal  to  2  x  10 -7 New ton per  m etre  of  length.  
(1948 )  

Therm odynam ic 
Tem pera ture 

kelvin K  The  kelvin,  is  the  fraction  1/273.16  of  the  
therm odynam ic tem perature of the triple point  of water. 
(1967 ) 

Am ount of 
Substance  

m ole  m ol The  m ole  is  the  am ount  of  substance  of  a  system ,  which  
conta ins  as  m any elem entary  entitie s  as  there  are  a toms 
in 0.012 k ilogram of carbon -12.  (1971 ) 

Lum inous  
Intensity 

cande la  Cd The candela is the lum inous in tensity, in a given direction, 
o f  a  source that  em its   m onochrom atic  rad iation of  
frequency  540 x  1012 hertz  and  that  has  a  radiant  
intensity  in  that  direction of  1/683 watt  per  sterad ian 
(1979 ). 

SI Base Quantities and Units

Systems of Units

Units, Dimension, Measurements and
Practical Physics

Fundamental or base quantities
The quantities which do not depend upon other
quantities for their complete definition are known
as fundamental or base quantities.

e.g. : length, mass, time, etc.

Derived quantities
The quantities which can be expressed in terms
of the fundamental quantities are known as derived
quantities.

e.g. Speed (=distance/time), volume,

acceleration, force, pressure, etc.

Units of physical quantities

The chosen reference standard of measurement
in multiples of which, a physical quantity is
expressed is called the unit of that quantity.

e.g. Physical Quantity = Numerical Value × Unit

 MKS CGS FPS MKSQ MKSA 
(i) Length  

(m) 
Length 

(cm) 
Length 

( ft) 
Length 

(m) 
Length 

(m) 
(ii) Mass  

(kg) 
Mass  
(g) 

Mass 
(pound) 

Mass 
(kg) 

Mass  
(kg) 

(iii) Time  
(s) 

Time  
(s) 

Time  
(s) 

Time  
(s) 

Time  
(s) 

(iv) – – – Charge 
(Q) 

Current 
(A) 

   Fundamental Quantities in
S.I. System and their units

S.N. Physical Qty. Name of Unit Symbol 
1 Mass kilogram kg 
2 Length meter m 
3 Time second s 
4 Temperature kelvin K 
5 Luminous intensity candela Cd 
6 Electric current ampere A 
7 Amount of substance mole mol 
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Power of 
10 

Prefix Symbol 
Power of 

10 
Prefix Symbol 

1018 exa E 10-1 deci d 

1015 peta P 10-2 centi c 

1012 tera T 10-3 milli m 

109 giga G 10-6 micro m 
106 mega M 10-9 nano n 

103 kilo k 10-12 pico p 

102 hecto h 10-15 femto f 

101 deca da 10-18 atto a 

Physical quantity Unit Physical quantity  Unit 

Angular acceleration rad s-2 Frequency hertz 

Moment of inertia kg – m2  Resistance kg m2 A-2 s-3  

Self inductance henry Surface tension newton/m 

Magnetic flux weber Universal gas constant joule K-1 mol-1 

Pole strength A–m Dipole moment coulomb–meter 
V iscosity poise Stefan constant watt m-2 K -4 

Reactance ohm Permittivity of free space (e0) coulomb2/N–m2 

Specific heat J/kg°C 
Permeabil ity of free space 

(m0) 
weber/A-m 

Strength of magnetic 
field newton A-1 m-1 P lanck's constant joule–sec 

Astronomical dis tance Parsec Entropy J/K 

PREFIXES
USED FOR
DIFFERENT
POWERS

OF 10

Limitations of dimensional analysis

• In Mechanics the formula for a physical quantity
depending on more than three other physical
quantities cannot be derived. It can only be checked.

• This method can be used only if the dependency is
of multiplication type. The formulae containing
exponential, trigonometrical and logarithmic
functions can't be derived using this method.
Formulae containing more than one term which
are added or subtracted like s = ut +½    at2  also
can't be derived.

• The relation derived from this method gives no
information about the dimensionless constants.

• If dimensions are given, physical quantity may not
be unique as many physical quantities have the same
dimensions.

• It gives no information whether a physical quantity
is a scalar or a vector.

Supplementary Units

• Radian (rad) - for measurement of plane angle
• Steradian (sr) - for measurement of solid angle

Dimensional Formula

Relation which express physical quantities in terms of
appropriate powers of fundamental units.

Use of dimensional analysis

• To check the dimensional correctness of a given
physical relation

• To derive relationship between different physical
quantities

• To convert units of a physical quantity from one
system to another

n1u1= n2u2 Þ n2=n1

a b c

1 1 1

2 2 2

M L T
M L T

æ ö æ ö æ ö
ç ÷ ç ÷ ç ÷è ø è ø è ø

where  u  =  MaLbTc

SI PREFIXES

The magnitudes of physical quantities vary over a wide range. The CGPM recommended standard prefixes for
magnitude too large or too small to be expressed more compactly for certain powers of 10.

UNITS
OF

IMPORTANT
PHYSICAL

QUANTITIES
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Physical quantity Dimensions Physical quantity Dimensions  

Momentum M1 L1 T–1 Capacitance M–1 L–2 T4 A2 

Calorie M1 L2 T–2 Modulus of rigidity M1 L– 1 T–2 

Latent heat capacity M0 L2 T–2 Magnetic permeability M1 L1 T–2A–2 

Self inductance M1 L2 T–2A–2 Pressure M1 L– 1 T–2 

Coefficient of thermal conductivity M1 L1 T–3K–1 Planck's constant M1 L2 T–1 

Power M1 L2 T–3 Solar constant M1 L0 T–3 

Impulse M1 L1 T–1 Magnetic flux M1 L2 T–2 A–1 

Hole mobility in a semi conductor M–1 L0 T2 A1 Current density M0L–2 T0 A1 

Bulk modulus of elasticity M1L–1 T–2 Young modulus M1 L– 1 T–2 

Potential energy M1 L2 T–2 Magnetic field intensity M0L–1 T0A1 

Gravitational constant M–1 L3 T–2 Magnetic Induction M1T–2A–1 

Light year M0 L1 T0 Electric Permittivity M–1 L–3T4A2 

Thermal resistance M–1 L–2 T3 K Electric Field M1L1T–3A-1 

Coeff icient of viscosity M1 L–1 T–1 Resistance ML2T–3 A–2 

 

S.N. Quantities Dimensions 
1. Strain, refractive index, relative density, angle, solid angle, phase, distance 

gradient, relative permeability, relative permittivity, angle of contact, Reynolds  
number, coefficient of friction, mechanical equivalent of heat, electric susceptibility, 
etc. 

[M0 L0 T0] 

2. Mass or inertial mass [M1 L0 T0 ] 
3. Momentum and impulse. [M1 L1 T–1] 
4. Thrust, force, weight, tension, energy gradient. [M1 L1 T–2] 
5. Pressure, stress, Young's modulus, bulk modulus, shear modulus, modulus of 

rigidity, energy density. [M1 L–1 T–2] 

6. Angular momentum and Planck's constant (h). [ M1 L2 T–1] 
7. Acceleration, g and gravitational field intensity. [ M0 L1 T–2] 
8. Surface tension,  free surface energy (energy per unit area), force gradient,  spring 

constant. [ M1 L0 T–2] 

9. Latent heat capacity and gravitational potential. [ M0 L2 T–2] 
10. Thermal capacity, Boltzmann constant, entropy. [ ML2T–2K–1] 
11. Work, torque, internal energy, potential energy, kinetic energy, moment of  force, 

(q2/C), (LI2), (qV), (V2C), (I2Rt), 
2V

t
R

, (VIt), (PV), (RT), (mL), (mc DT) [M1 L2 T–2] 

12. Frequency, angular frequency, angular velocity, velocity gradient, radioactivity 
R 1 1

, ,
L RC LC

 [M0 L0 T–1] 

13. æ ö æ ö æ ö
ç ÷ ç ÷ ç ÷

è ø è øè ø

l
1 2 1 2m L

, , , (RC), ( LC )
g k R

, time [ M0 L0 T1] 

14. (VI), (I2R), (V2/R), Power [ M L2 T–3] 

DIMENSIONS OF IMPORTANT PHYSICAL QUANTITIES

SETS OF QUANTITIES HAVING SAME DIMENSIONS
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PRACTICAL PHYSICS

KEY POINTS

• Trigonometric functions
sinq, cosq, tanq etc and their
arrangements q are
dimensionless.

• Dimensions of differential

coefficients 
n

n n

d y y
dx x

é ù é ù=ê ú ê úë ûë û

• Dimensions of integrals

[ ]ydx yxé ù =ê úë ûò

• We can't add or subtract two
physical quantities of
different dimensions.

• Independent quantities may
be taken as fundamental
quantities in a new system of
units.

 

Gravitational constant (G) 6.67 × 10–11 N m2 kg–2 
Speed of light in vacuum (c) 3 ×  108 ms–1 
Permeability of vacuum (m0) 4p ×  10–7 H m–1 
Permittivity of vacuum (e0) 8.85 ×  10–12 F m–1 
Planck constant (h) 6.63 × 10–34 Js 
Atomic mass unit (amu) 1.66 × 10–27 kg 
Energy equivalent of 1 amu 931.5 MeV 

Electron rest mass (me) 
9.1 × 10–31 kg º 0.511 

MeV 
Avogadro constant (NA) 6.02 × 1023 mol–1 
Faraday constant (F) 9.648 × 104 C mol–1 
Stefan–Boltzmann constant (s) 5.67× 10–8 W m–2 K–4 
Wien constant (b) 2.89× 10–3 mK 
Rydberg constant (R¥) 1.097× 107 m–1 
Triple point for water 273.16 K (0.01°C) 

Molar volume of ideal gas (NTP) 
22.4 L = 22.4× 10–3 m3 

mol–1 

Rules for Counting Significant Figures
For a number greater than 1
• All non-zero digits are significant.
• All zeros between two non-zero digits are

significant. Location of decimal does not matter.
• If the numbe is without decimal part, then the

terminal or trailing zeros are not significant.
• Trailing zeros in the decimal part are significant.

For a Number Less than 1
Any zero to the right of a non-zero digit is significant.
All zeros between decimal point and first non-zero
digit are not significant.

Significant Figures
All accurately known digits in measurement plus
the first uncertain digit together form significant
figure.
Ex.  0.108 ® 3SF, 40.000 ® 5SF,

1.23 × 10-19 ® 3SF, 0.0018 ® 2SF
Significant Digits

The product or quotient will be reported as having
as many significant digits as the number involved
in the operation with the least number of significant
digits.
For example : 0.000170 ×  100.40 = 0.017068
Another example : 2.000 × 104 / 6.0 × 10–3 =
0.33 × 107

For example : 3.0 × 800.0 = 2.4 × 103

The sum or difference can be no more precise than
the least precise number involved in the mathematical
operation. Precision has to do with the number of
positions to the RIGHT of the decimal. The more
position to the right of the decimal, the more precise
the number. So a sum or difference can have no
more indicated positions to the right of the decimal
as the number involved in the operation with the
LEAST indicated positions to the right of its decimal.
For example : 160.45 + 6.732 = 167.18 (after
rounding off)
Another example : 45.621 + 4.3 – 6.41 = 43.5
(after rounding off)

Rules for rounding off digits :
1. If the digit to the right of the last reported digit is

less than 5 round it and all digits to its right off.
2. If  the digit to the right of the last reported digit is

greater than 5 round it and all digits to its right off
and increased the last reported digit by one.

3. If the digit to the right of the last reported digit is a
5 followed by either no other digits or all zeros,
round it and all digits to its right off and if the last
reported digit is odd round up to the next even
digit. If the last reported digit is even then leave it
as is.
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For example if we wish to round off the following
number to 3 significant digits : 18.3682

The answer is : 18.4. Another example : Round
off 4.565 to three significant digits.

The answer would be 4.56.

Rounding off
6.87® 6.9, 6.84 ® 6.8, 6.85 ® 6.8,

6.75 ® 6.8, 6.65 ® 6.6, 6.95 ® 7.0

Order of magnitude
Power of 10 required to represent a quantity

49 = 4.9 × 101 » 101 Þ  order of magnitude =1

51 = 5.1 × 101 »  102 Þ  order of magnitude = 2

0.051 =5.1 × 10-2 » 10-1order of magnitude = -1

Errors
Whenever an experiment is performed, two kinds
of errors can appear in the measured quantity.

(1) random and (2) systematic errors.

1. Random errors appear randomly because of
operator, fluctuations in external conditions and
variability of measuring instruments. The effect of
random error can be some what reduced by taking
the average of measured values. Random errors
have no fixed sign or size.

2. Systematic errors occur due to error in the
procedure, or miscalibration of the instrument etc.
Such errors have same size and sign for all the
measurements. Such errors can be determined.

A measurement with relatively small random error
is said to have high precision. A measurement with
small random error and small systematic error is
said to have high accuracy.

Least Count Error :– If the instrument has known
least count, the absolute error is taken to be equal
to the least count unless otherwise stated.

Relative error = 
absolute error in a measurement

size of the measurement

 A. Systematic errors :
They have a known sign. The systematic error is
removed before beginning calculations. Bench error
and zero error are examples of systematic error.

Propagation of combination of errors
Error in Summation and Difference :

x = a + b  then Dx = ± (Da+Db)

Error in Product and Division
A physical quantity X depend upon Y & Z as X = Ya Zb

then maximum possible fractional error in X.

X
X
D

 = a
Y
Y
D

 + b
Z
Z
D

Error in Power of a Quantity

m

n

a
x

b
=  then 

x a b
m n

x a b

é ùD D Dæ ö æ ö
= ± +ç ÷ ç ÷ê úè ø è øë û

The quotient rule is not applicable if the numerator
and denominator are dependent on each other.

e.g  if R = 
YX

XY
+

. We cannot apply quotient rule

to find the error in R. Instead we write the equation

as follows    Y
1

X
1

R
1

+= . Differentiating both

the sides, we get 222 Y
dY

X
dX

R
dR

--=- .

Thus 222 Y
y

X
x

R
r

+=

Least count
The smallest value of a physical quantity which can
be measured accurately with an instrument is called
the least count of the measuring instrument.

Vernier Callipers
Least count = 1MSD – 1 VSD
(MSD ® main  scale  division,  VSD ® Vernier scale division)

0 1 2 3 4 5 6 14 15

Ex. A vernier scale has 10 parts, which are equal to 9
parts of main scale having each path equal to 1

mm then  least count = 1 mm –
9

10
 mm = 0.1 mm

[Q9 MSD = 10 VSD]
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Zero Error

0 001 11

0 005 5510 1010
Vernier scale Vernier scaleVernier scale

Main scale Main scaleMain scale

(ii)(i)
without zero error with positive zero error with negative zero error

The zero error is always subtracted from the reading to get the corrected value.
If the zero error is positive, its value is calculated as we take any normal reading.
Negative zero error = – [Total no. of vsd – vsd coinciding] × L.C.

Screw Gauge

 Least count = pitch
total no. of divisions 

   on circular scale

R
at

ch
et

Sleeve

Linear (Pitch) 
Scale

Circular (Head) scale

0
5

10

Spindle

Thimble

Ex. The distance moved by spindle of a screw gauge for each turn of head is 1mm. The  edge of the humble is

provided with a angular scale carrying 100 equal divisions. The least count = 
1mm
100

= 0.01 mm

Zero Error
If there is no object between the jaws (i.e. jaws are in
contact), the screwgauge should give zero reading. But
due to extra material on jaws, even if there is no object, it
gives some excess reading. This excess reading is called
Zero error.

Negative Zero Error
(3 division error) i.e., –0.003 cm

zero of the circular
scale is above the
zero of main scale

Circular scale

10
5
00
95
90
85

Main scale
reference line

Positive Zero Error
(2 division error) i.e., +0.002 cm

Circular scale

Zero of the circular
scale is below the
zero of main scale

Main scale
reference line

15
10
5
0
95
90

0
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Basic Mathematics used in Physics
Quadratic Equation

Roots of ax2 + bx + c=0 are 
2b b 4ac

x
2a

- ± -
=

Sum of  roots  x1 +  x2 =  –
b
a

;

Product of roots x1x2 =
c
a

For real roots, b2 – 4ac ³ 0
For imaginary roots, b2 – 4ac < 0

Binomial Theorem

(1+x)n = 1 + nx +
n(n 1)

2
-

x2 +
n(n 1)(n 2)

6
- -

x3 + ....

(1–x)n = 1 – nx +
( ) 2n n 1 n(n 1)(n 2)

x
2 6
- - -

- x3 + .....

If x<<1 then (1+x)n » 1 + nx & (1–x)n » 1–nx

Componendo and dividendo theorem

If 
p a
q b

=  then 
p q a b
p q a b

+ +
=

- -

Geometrical progression-GP

a, ar, ar2, ar3, ...... here, r = common ratio

nth term, an =  a.rn–1

Sum of n terms 
n

n

a(1 r )
S

1 r
-

=
-

Sum of ¥ terms S¥ =
a

1 r-
   [where 1r < ]

Logarithm

log10N = x Þ10x =  N
logbN = logba * logaN
logb1 = 0, logaa = 1

log mn = log m + log n log
m
n

=log m–log n

log  mn =  n  log  m logem = 2.303 log10m
log2 = 0.3010 log 3 = 0.4771

Arithmetic progression-AP

a, a+d, a+2d, a+3d, .....a+(n – 1)d
here d = common difference

Sum of n terms n

n
S

2
= [2a+(n–1)d]

nth term,  an =  a  +  (n  –  1)d

Note: (i) 1+2+3+4+5....+ n =
n(n 1)

2
+

 (ii) 12+22+32+...+ n2=
( ) ( )n n 1 2n 1

6

+ +

 (iii) 13+22+32+...+ n3=
( ) 2

n n 1

2

é ù+
ê ú
ê úë û
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q 0° 
(0) 

30° 
(p/6) 

45° 
(p/4) 

60° 
(p/3) 

90° 
(p/2) 

120° 
(2p/3) 

135° 
(3p/4) 

150° 
(5p/6) 

180°  
(p) 

270° 
(3p/2) 

360° 
(2p) 

sinq 0 
1
2

 
1

2
 3

2
 1 3

2
 

1

2
 1

2
 0 -1 0 

cosq 1 
3

2
 

1

2
 1

2
 0 

1
2

-  
1

2
-  3

2
-  –1 0 1 

tanq 0 
1

3
 1 3  ¥ 3-  –1 

1

3
-  0 ¥ 0 

sin (– = –sin sin (90°– ) = cos

cos (– ) = cos c s 90°– ) = sin

tan (– ) = – tan tan(90°– )= cot

q) q q q

q q o ( q q

q q q q

sin (270°+ ) = – cos sin (360°– )= – sin

cos (270°+ ) = sin cos (360°– ) = cos

tan (270°+ ) = – cot tan (360°– ) = – tan

q q q q

q q q q

q q q q

sin (90°+ ) = c s sin (180°– ) = sin

cos  (90 +° ) = –sin cos (180°– ) =– cos

tan (90°+ ) =– cot tan(180°– ) =– tan

q q q q

q q q q

q q q q

o 

sin (180°+ ) = – sin sin (270°– )= – cos

cos (180°+ ) = – cos cos(270°– )= – sin

tan (180°+ ) = tan tan (270°– ) = cot

q q q q

q q q q

q q q q 

sine law

   cosine law
2 2 2b +c -a

cos A
2bc

= ,
2 2 2c + a - b

cosB
2ca

= ,
2 2 2a + b - c

cosC
2ab

=

B C

A
c b

B a

A

C

sinA sinB sinC
a b c

= =

For small q
   sinq » q     cosq » 1       tanq » q sinq » tanq

TRIGONOMETRY

90°

270°

180° 360°

Sin All

CosTan

II

III

I

IV

0°

2p radian = 360° Þ 1 rad = 57.3°

perpendicular
sin

hypotenuse
q = cos q = 

base
hypotenuse tan q =

perpendicular
base

cot q = 
base

perpendicular sec q= 
hypotenuse

base
cosec q =

hypotenuse
perpendicular

sinq = 2 2

a

a b+
cosq =

2 2

b

a b+
tanq = 

a
b

cosecq =
1

sinq secq =
1

cosq cotq =
1

tanq
sin2q + cos2q = 1 1 + tan2q = sec2q 1 + cot2q = cosec2q
sin(A±B)  = sinAcosB ± cosAsinB      cos(A±B) = cosAcosB m sinAsinB

( ) tan A tanB
tan A B

1 tan A tanB
±

± =
m

                    sin2A = 2sinAcosA

cos2A = cos2A–sin2A = 1–2sin2A = 2cos2A–1

2

2 tan A
tan2A

1 tan A
=

-
      sin3a = 3sina – 4sin3a

cos3a = 4cos3a – 3cosa       2sinAsinB = cos(A–B) – cos(A+B)
2cosAcosB = cos(A–B) + cos(A+B)       2sinAcosB = sin(A+B) + sin(A–B)

a

b
q

a +b22
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Differentiation

• n n 1dy
y x nx

dx
-= ® =  •

dy 1
y nx

dx x
= ® =l

• 
dy

y sin x cos x
dx

= ® =  • 
dy

y cos x sin x
dx

= ® = -

• x xdy
y e e

dx
a +b a +b= ® = a •

dy dv du
y uv u v

dx dx dx
= ® = +

• ( )( ) ( )( )
( )

( )( )df g x d g xdy
y f g x

dx dg x dx
= Þ = ´

• y=k(constant) 
dy

0
dx

Þ =

• 
2

du dv
v uu dy dx dxy

v dx v

-
= Þ =

Integration
C = Arbitrary constant, k = constant

• f(x)dx g(x) C= +ò

•
d

(g(x)) f(x)
dx

=

• kf(x)dx k f(x)dx=ò ò

• (u v w)dx udx vdx wdx+ + = + +ò ò ò ò

• x xe dx e C= +ò

•
n 1

n x
x dx C,n 1

n 1

+

= + ¹ -
+ò

•
1

dx nx C
x

= +ò l

• sin xdx cos x C= - +ò

• cos xdx sin x C= +ò

• x x1
e dx e Ca +b a +b= +

aò

• ( ) ( )
( )

n 1
n x

x dx C
n 1

+a + b
a + b = +

a +ò
Definite integration

b
b

a
a

f(x)dx g(x) g(b) g(a)= = -ò
Area under the curve y = f(x) from x =a to a = b is

b

a

A f(x)dx= ò

Maxima & Minima of a function y=f(x)

• For maximum value 
2

2

dy d y
0 & ve

dx dx
= = -

• For minimum value 
2

2

dy d y
0 & ve

dx dx
= = +

Average of a varying quantity

If y = f(x) then 

2 2

1 1

2

1

x x

x x

x
2 1

x

ydx ydx

y y
x x

dx

< >= = =
-

ò ò

ò



E

no
de

06
\B

0A
I-B

0\
Ko

ta
\J

EE
(A

dv
an

ce
d)

\L
ea

de
r\

Ph
y\

Sh
ee

t\
Ha

nd
 b

oo
k 

(E
+L

)\
En

g\
02

_B
as

ic 
M

at
hs

 &
 V

ec
to

r.p
65

10

Physics HandBook ALLEN
C H A P T E R

FORMULAE FOR DETERMINATION OF AREA

• Area of a square = (side)2

• Area of rectangle = length × breadth

• Area of a triangle = 
1
2

× base × height

• Area of a trapezoid

=
1
2

×  (distance between parallel sides) ×  (sum of parallel sides)

• Area enclosed by a circle = p r2 (r = radius)
• Surface area of a sphere = 4p r2 (r = radius)
• Area of a parallelogram = base ×  height
• Area of curved surface of cylinder = 2p rl

where r = radius and l = length
• Area of whole surface of cylinder = 2pr (r + l)  where l = length
• Area of ellipse = p ab

(a & b are semi major and semi minor axis respectively)
• Surface area of a cube = 6(side)2

• Total surface area of a cone = pr2+prl

where prl = pr 2 2r h+ = lateral area

• Arc length s = r.q

• Area of sector = 
2r
2
q

r

r

q s

• Plane angle, 
s
r

q =  radian

• Solid angle, 2

A
r

W =  steradian

FORMULAE FOR
DETERMINATION OF

VOLUME

b

a

t

• Volume of a rectangular
slab

= length ×  breadth ×  height

= abt

• Volume of a cube = (side)3

• Volume of a sphere = 
4
3 pr3

(r = radius)

• Volume of a cylinder = p r2l

(r = radius and l = length)

• Volume of a cone = 
1
3 p r2h

(r = radius and h = height)

• To convert an angle from degree to radian, we have to multiply it by
180

p
°

 and to convert an angle

from radian to degree, we have to multiply it  by 
180°

p
.

• By help of differentiation, if y is given, we can find 
dy
dx

 and by help of integration, if 
dy
dx

 is given,

we can find y.

• The maximum and minimum values of function

A cos B sinq + q  are 2 2A B+  and 2 2A B- +  respectively.

• (a+b)2 = a2 + b2 + 2ab (a–b)2 = a2 + b2 – 2ab

(a+b) (a–b) = a2 – b2 (a+b)3 = a3 + b3 + 3ab (a+b)

(a–b)3 = a3 – b3 – 3ab (a–b)

K
E
Y

 P
O

IN
T

S
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IMPORTANT NOTES
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VECTORS
Vector Quantities

A physical quantity which requires magnitude and a
particular direction, when it is expressed.
Parallel vectors – two vectors having same direction.

antiparallel vectors – vectors in opposite direction.

Equal vectors – Vectors which have equal magnitude and
same direction
Negative or opposite vectors – Vectors having equal
magnitude but opposite direction.
Null vector or Zero vector
A vector having zero magnitude. The direction of a zero vector
is indeterminate.

A ( A) 0+ - =
r r r

Unit vector
A vector having unit magnitude. It is used to speciafy direction.

Unit vector in direction of A
r

, A
Â

|A|
=

r

r

Triangle law of Vector addition

R A B= +
rr r

2 2R A B 2AB cos= + + q

Bsin
tan

A Bcos
q

a =
+ q

R

A

a q

Bcosq

BsinqB

If  A  =  B  then  R 2Acos
2
q

=  & 
2
q

a =

Rmax = A+B for q=0°  ; Rmin = A ~ B for q=180°

Parallelogram Law of Addition
of Two Vectors

If two vectors are represented by two adjacent sides of a
parallelogram which are directed away from their common
point then their sum (i.e. resultant vector) is given by the
diagonal of the parallelogram passing away through that
common point.

A

B
R=A+B

A B

CD

a
b

q

2 2AB AD AC R or A B R R A B 2AB cos+ = = + = Þ = + + q
uuur uuur uuur ur r r r

B sin
tan

A B cos
q

a =
+ q  and  

A sin
tan

B A cos
q

b =
+ q

Vector subtraction

Bcosq

Bsinq
a q

q

R

B

B

( )R A B R A B= - Þ = + -
r rr r r r

2 2R A B 2ABcos= + - q , 
Bsin

tan
A Bcos

q
a =

- q

If  A = B then R 2Asin
2
q

=

Addition of More than Two Vectors
(Law of Polygon)

If some vectors are represented by sides of a polygon in
same order, then their resultant vector is represented by
the closing side of polygon in the opposite order.

B
A

R

D

C

A
B

C

D

R A B C D= + + +
r rr r r

In a polygon if head of the last vector coincide with the tail
of the first vectors, in other words vectors are forming closed
polygon, then their resultant is null vector.

B
A

E

D

C

  A B C D E 0+ + + + =
r rr r r

Rectangular component of a 3–D vector
r x y z

ˆˆ ˆA A i A j A k= + +
r

Angle made with x-axis

x x

2 2 2
x y z

A A
cos

A A A A
a = = =

+ +
l

Angle made with y-axis

y y

2 2 2
x y z

A A
cos m

A A A A
b = = =

+ +
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r Component of b
r

 perpendicular to a
r ,

( )
||

ˆ ˆb b b b b a a^ = - = - ×
r r r r r

Cross Product (Vector product)
r ˆA B ABsin n´ = q

r r

 where n̂  is a vector

perpendicular to A
r

 & B
r

 or their plane and its
direction given by right hand thumb rule.

A ×  B

BB

AA

r 
´ =
r r

x y z

x y z

ˆˆ ˆi j k
A B A A A

B B B

( )-= -y z z y
ˆ ˆA B A Bi j (AxBz–BxAz) + k̂ (AxBy–BxAy)

r A B B A´ = - ´
r rr r

r (A B).A (A B).B 0´ = ´ =
r r rr r r j

i

k

positive

negative

r ˆ ˆi i 0´ =
r

, ˆ ˆj j 0´ =
r

, ˆ ˆk k 0´ =
r

r ˆˆ ˆi j k´ = ; ˆˆ ˆj k i´ = ,

ˆ ˆ ˆk i j´ = ; ˆˆ ˆj i k´ = -

ˆ ˆ ˆk j i´ = - , ˆˆ ˆi k j´ = -

Differentiation

r 
d dA dB

(A.B) .B A.
dt dt dt

= +

r r
r rr r

r 
d dA dB

(A B) B A
dt dt dt

´ = ´ + ´

r r
r rr r

When a particle moved from
(x1,  y1,  z1) to (x2,  y2,  z2) then its

displacement vector

(x ,y ,z )1 1 1 r

r2

r1

(x ,y ,z )2 2 2

2 1 2 2 2 1 1 1
ˆ ˆˆ ˆ ˆ ˆr r r (x i y j z k) (x i y j z k)= - = + + - + +

r r r

=
2 1 2 1 2 1

ˆˆ ˆ(x x )i (y y ) j (z z )k- + - + -

 Magnitude: 2 2 2
2 1 2 1 2 1r r (x x ) (y y ) (z z )= = - + - + -

r

Angle made with z-axis

z z

2 2 2
x y z

A A
cos n

A A A A
g = = =

+ +
r l, m, n are called direction cosines

l2+m2+n2=cos2a+cos2b+cos2g

=
( )

2 2 2
x y z

2
2 2 2
x y z

A A A
1

A A A

+ +
=

+ +
 or sin2a + sin2b + sin2g =2

General Vector in x-y plane
y

r

q
x

( )ˆ ˆ ˆ ˆr xi yj r cos i sin j= + = q + q
r

EXAMPLES :
1. Construct a vector of magnitude 6 units making

an angle of 60° with x-axis.

Sol. 
1 3ˆ ˆ ˆ ˆˆ ˆr r(cos60i sin60j) 6 3i 3 3ji j
2 2

æ ö
= + = = ++ç ÷è ø
r

2. Construct an unit vector making an angle of 135°
with x axis.

Sol. 
1ˆ ˆ ˆ ˆr̂ 1(cos135 i sin135 j) ( i j)
2

= ° + ° = - +

Multiplication of a vector by a number

If xb k a=
r r

 then magnitude of b
r

 is k times |a|
r ,

and direction of b
r

 is same as a
r

Scalar product (Dot Product)

r 1
Angle between A BA.B ABcos cos  
two vectors AB

-
æ ö×= q Þ q = ç ÷è ø

r r
r r

r If x y z
ˆˆ ˆA A i A j A k= + +

r

 & x y z
ˆˆ ˆB B i B j B k= + +

r

then

= + +
r r

x x y y z zA.B A B A B A B  and angle between

A
r

 & B
r

 is  given by

x x y y z z

2 2 2 2 2 2
x y z x y z

A B A B A BA.B
cos

AB A A A B B B

+ +
q = =

+ + + +

r r

r ˆ ˆi.i 1= , ˆˆj.j 1= , ˆ ˆk.k 1= , ˆˆi.j 0= , ˆî.k 0= , ˆĵ.k 0=

r Component of vector b
r

 along vector a
r ,

( )|| ˆ ˆb b . a a=
r r

b

ab||
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Lami's theorem

A

bc

B Ca
B C

A

 

F1
F2

F3

q1q2

q3

  
sin A sinB sinC

a b c
= =      

31 2

1 2 3

FF F
sin sin sin

= =
q q q

Area of triangle

1A BArea ABsin
2 2
´= = q

r r

   

B

q
Bsinq

A

Area of parallelogram

Bsinq
B

q

A

 Area = A B´
r r

= ABsinq

For parallel vectors

A B 0´ =
r rr

For perpendicular vectors

A.B 0=
r r

For coplanar vectors

A.(B C) 0´ =
r rr

If A,B,C points are collinear

AB BC= l
uuur uuur
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• Tensor : A quantity that has different values in different directions is called tensor.

Example : Moment of Inertia

In fact tensors are merely a generalisation of scalars and vectors; a scalar is a zero rank tensor, and a vector
is a first rank tensor.

• Electric current is not a vector as it does not obey the law of vector addition.

• A unit vector has no unit.

• To a vector only a vector of same type can be added and the resultant is a vector of the same type.

• A scalar or a vector can never be divided by a vector.

Examples

of

cross

products

w Torque r Ft = ´
rr r        where r ® position vector, F ® force

w Angular momentum J r p= ´
r r r   where r ® position vector, p ® linear momentum

w Linear velocity v r= w ´
r rr   where r ® position vector, w ® angular velocity

w Torque on dipole placed in electric field p Et = ´
rr r

 where p ® dipole moment, E ® electric field

KEY POINTS

IMPORTANT NOTES

w Work, W = F.d
rr

 = Fdcosq where F ® force, d ® displacement

w Power, P = F.v
r r

= Fvcosq where F ® force, v ® velocity

w Electric flux, fE = E.A
rr

 = EAcosq where E ® electric field, A ® Area

w Magnetic flux,  fB = B.A
rr

= BAcosq where B ® magnetic field, A ® Area

w Potential energy of dipole in where p ® dipole moment,

uniform field, U = – p.E
rr

where E ® Electric field

Examples

of

dot

products
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t1 t2

t

a

shaded area = change in velocity

KINEMATICS
w Distance and Displacement

A B

C
Total length of path (ACB) covered by the particle, in definite time interval is
called distance. Displacement vector or displacement is the minimum distance
(AB) and directed from initial position to final position.

w Displacement in terms of position vector

From DOAB B Ar r rD = -
r r r

B 2 2 2
ˆˆ ˆr x i y j z k= + +

r   and  
A 1 1 1

ˆˆ ˆr x i y j z k= + +
r

Dr

B

A

rA

O
rB

rD
rr x x i y y j z z k= - + - + -( )$ ( )$ ( )$2 1 2 1 2 1

w Average velocity av

Displacement r
v

Time interval t
D

= =
D

r
r

w Average speed
Distance travelled

Time interval

w For uniform motion Average speed =|average velocity|=|instataneous velocity|

w Velocity ( ) x y z

dr d dx dy dzˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆv xi yj zk i j k v i v j v k
dt dt dt dt dt

= = + + = + + = + +
r

r

w Average Acceleration av

change in velocity v
a

total time taken t
D

= =
D

r
r

w Acceleration ( ) yx z
x y z x y z

dvdv dvdv d ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆa v i v j v k i j k a i a j a k
dt dt dt dt dt

= = + + = + + = + +
r

r

Important points about
1D motion

w Distance ³|displacement| and Average
speed ³ |average velocity|

w If distance >|displacement| this
implies

(a) atleast at one point in path,
velocity is zero.

(b) The body must have retarded
during the motion

w Speed increase if acceleration and
velocity both are positive or negative

(i.e. both have same sign)

w In 1-D motion 
dv dv

a v
dt dx

= =

w Graphical integration in Motion
analysis

 If a = f(t)

    
2 2 2

1 1 1

v t t

2 1
v t t

dv
a dv adt v v adt

dt
= Þ = Þ - =ò ò ò

Þ Change in velocity =  Area
between acceleration curve and
time axis, from t1 to t2

 If v = f(t)

   
2 2 2

1 1 1

x t t

2 1
x t t

dx
v dx vdt x x vdt

dt
= Þ = Þ - =ò ò ò

t1 t2

t

v

shaded area = displacement
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w Instantaneous velocity is the slope of position time curve
dx

v
dt

æ ö
=ç ÷è ø

w Slope of velocity-time curve = instantaneous acceleration
dv

a
dt

æ ö
=ç ÷è ø

w v-t curve area gives displacement. x vdté ùD =ë ûò

w a-t curve area gives change in velocity. v adté ùD =ë ûò

Important
point about
graphical

analysis of
motion

Displacement Velocity Acceleration

Differentiation Differentiation

Integration Integration

Different Cases v–t graph s–t graph

1. Uniform motion
v v=constant

t

s
s=

vt

t

2. Uniformly accelerated motion with  u = 0 at t = 0
v

v=
at

t t

s s =½   at2

3. Uniformly accelerated with u ¹ 0  at t = 0
v

u v=u+at

t t

s
s = ut+½   at2

4. Uniformly accelerated motion with u¹ 0 and  s = s
0  

at t = 0

v

u v=u+at

t t

s
s =s +ut+½   at0

2

5. Uniformly retarded motion till velocity becomes zero

v
u v=u–at

tt0

s

t0

t

s=ut – ½   at2

6. Uniformly retarded then accelerated in opposite direction

v

u

tt0

t0

s

t

Þ Change in position = displacement
= area between velocity curve and time axis, from

t1 to  t2.
If   a  =  f(x)

Þ ò ò
f f

i i

v x

v x

vdv
a = vdv = adx

dx

-2 2
f iv v

2
 = Area under a-x curve

x1 x2

x

a

shaded area = 
v – v

2
2 1

2 2
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Motion with constant acceleration : Equations of motion

r In vector form : v u at= +
r rr

2 1

2 2u v 1 1
r r r s t ut at vt at

2 2 2
+æ öD = - = = = + = -ç ÷è ø

r r
r r r r r r rr

2 2v u 2a.s= +
r r

thn

a
s u (2n 1)

2
= + -

r
r r

[Snth ® displacement  in  nth second]

r In scalar form v  =  u  +  at
2 2u v 1 1

s t ut at vt at
2 2 2
+æ ö= = + = -ç ÷è ø

(for one dimensional motion) : v2 =  u2+2as thn

a
s u (2n 1)

2
= + -

There is no meaning of motion without reference or observer. If reference is not mentioned then we take the
ground as a reference of motion. Generally velocity or displacement of the particle w.r.t. ground is called actual
velocity or actual displacement of the body. If we describe the motion of a particle w.r.t. and object which is

also moving w.r.t. ground then velocity of particle w.r.t. ground is its actual velocity ( )actv
r

and velocity of

particle w.r.t. moving object is its relative velocity ( )rel.v
r

and the velocity of moving object (w.r.t. ground) is the

reference velocity ( )ref.v
r

 then rel act refv v v= -
r r r

actual relative referencev v v= +
r r r

 Differentiation = +
r r r

actual relative referencea a a

If =
r

rela 0

Þ =
r

relv constant

then Þ = ´
r r

rel relS v time

If 
r

rela  = constant

then we can we equation of metion in relative form

= +
r rr

rel rel relv u a t ... (i)

= +
r r r 2

rel rel rel
1

s u t a t
2

... (ii)

( )× = × + ×
r r r rr r

rel rel rel rel rel relv v u u 2 a s

R
EL

AT
IV

E
M

O
TI

O
N
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Swimming into the River :
A man can swim with velocity v

r , i.e. it is the velocity of man w.r.t. still water. If water is also flowing with

velocity Rv
r

 then velocity of man relative to ground  
m Rv v v= +

r r r

• If the swimming is in the direction of flow of water or
along the downstream then vm = v + vR

v
vR

• If the swimming is in the direction opposite to the
flow of water or along the upstream then vm = v– vR

v
vR

Relative velocity of Rain w.r.t. the Moving Man :

A man walking west with velocity mv
r

, represented by OA
uuuur

.

Let the rain be falling vertically downwards with velocity

rv
r

,represented by OB
uuur

 as shown in figure.

The relative velocity of rain w.r.t. man rm r mv v v= -
r r r

 will be

represented by diagonal OD
uuuur

 of rectangle OBDC.

2 2 2 2
rm r m r m r mv v v 2v v cos90 v v\ = + + ° = +

If q is the angle which rmv
r  makes with the vertical direction then 1m m

r r

v vBD
tan tan

OB v v
- æ ö

q = = Þ q = ç ÷è ø

• If man is crossing the river as shown in the figure

i.e. v
r and Rv

r
 not collinear then use the vector algebra

m Rv v v= +
r r r  (assuming v > vR)

v

vR

vm

q
E

q

vm
–vmO CA

B D

vrmvr

W

Vertically up

For minimum time

d

v

A

B

(for minimum time)

C

vmq

vR

 then min

d
t

v
=

For shortest path

d

A

B

v

vm

For minimum displacement

vR

q

To reach at B:
R

R

v
v sin v sin

v
q = Þ q =

Time of crossing

d

d
vcosq

q

v

t=

Note : If vR > v then for minimum

drifting 
R

v
sin

v
q =
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If a body is thrown vertically up   with a velocity u in the uniform gravitational field
(neglecting air resistance) then

(i) Maximum height attained 
2u

H
2g

=

(ii) Time of ascent = time of descent =
u
g

(iii) Total time of flight =
2u
g

(iv) Velocity of fall at the point of projection = u (downwards)
(v) Gallileo's law of odd numbers : For a freely falling body ratio of

successive distance covered in equal time internval 't'
S1 :  S2 :  S3 : ....Sn = 1: 3: 5 : ....: 2n–1

At any point on its path the body will  have same speed for upward journey
and downward journey. If a body thrown upwards crosses a point in time
t1 &  t2 respectively then height of point h =½ gt1t2

Maximum height  H =
1
8

g(t1 +  t2)
2 

A body is thrown upward, downward & horizontally  with same speed takes

time t1, t2  & t3 respectively to reach the ground then 3 1 2t t t=  & height

from where the particle was throw is 1 2

1
H gt t

2
=

MOTION UNDER GRAVITY

H

u

h

t1 t2H

v

v

v
1

3

2

Horizontal Motion
u cosq = ux ; ax = 0; x = uxt = (u cosq)t

y
u ucosq

H
q

R

u

x

Vertical Motion
vy = uy – gt where uy = u sinq;

y = uyt –
1
2

gt2= usinqt –
1
2

gt2

Net acceleration = x y
ˆ ˆ ˆa a i a j gj= + = -

r

At any instant :
vx =  ucosq,    vy =  usinq – gt

Velocity of particle at time t :

x y x y
ˆ ˆ ˆ ˆ ˆ ˆv v i v j u i (u gt) j u cos i (u sin gt) j= + = + - = q + q -

r

If angle of velocity v
r  from horizontal is a, then

y y

x x

u gt usin gt gt
tan

v u ucos ucos

v
tan

- q -
a = = = = q -

q q

r At highest point : vy=0, vx=ucosq

r Time of flight : y2u 2usin
T

g g
q

= =

r Horizontal range :

( )
2 2

x y2u u2u sin cos u sin2
R ucos T

g g g
q q q

= q = = =

It is same for q and (90°–q) and maximum for q =
45°

r Maximum height :
2 2 2
y 2

u u sin 1
H gT

2g 2g 8
q

= = =

r
H 1

tan
R 4

= q

r Equation of trajectory

2

2 2

gx x
y x tan x tan 1

R2u cos
æ ö= q - = q -ç ÷è øq

PROJECTILE MOTION
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KEY POINTS :
• A positive acceleration can be associated with a "slowing

down" of the body because the origin and the positive
direction of motion are a matter of choice.

• The x-t graph for a particle undergoing rectilinear motion,
cannot be as shown in figure because infinitesimal
changes in velocity are physically possible only in
infinitesimal time.

t

x

• In oblique projection of a projectile the speed gradually
decreases up to the highest point and then increases
because the tangential acceleration opposes the motion
till the particle reaches the highest point, and then it
favours the motion of the particle.

• In free fall, the initial velocity of a body may not be
zero.

• A body can have acceleration even if its velocity is zero
at an instant.

• Average velocity of a body may be equal to its
instantaneous velocity.

• The trajectory of an object moving under constant
acceleration can be straight line or parabola.

• The path of one projectile as seen from another
projectile is a straight line as relative acceleration
of one projectile w.r.t. another projectile is zero.

For projectile motion :
A body crosses two points at same height in time
t1 and t2 the points are at distance x and y from
starting point then

(a)  x  +  y  =  R       (b)  t1 +  t2 =  T

(c)  h  =  ½    gt1t2

(d)  Average  velocity  from A to  B  is  ucosq

q

BA
u

x
y

h

Note :- If a person can throw a ball to a maximum
distance 'x' then the maximum height to which he
can  throw the  ball  will  be  (x/2)

Horizontal projection from some height
u

h

R

r Time of flight 2h
T

g
=

r Horizontal range
2h

R uT u
g

= =

r Angle of velocity at any instant with horizontal

1 gt
tan

u
- æ ö

q = ç ÷è ø

Projectile motion on inclined plane- up
motion

ucos(
)q-a

a =gcos^ a

t=T

A

B

u =usin
^

(q-a) u

t=0

O

q

q-
a

a

Hmax

gsina

gcosaag

(ucos Tq)

r Time of flight:
( )2usin2u

T
g gcos

^

^

q - a
= =

a

r Maximum height  : 
( )2 22

max

u sinu
H

2g 2gcos
^

^

q - a
= =

a

r Range on inclined plane :

( )2

2

2u sin cos
R OA

gcos

q - a q
= =

a

r Max. range : 
( )

2

max

u
R

g 1 sin
=

+ a
 at angle 

4 2
p a

q = +

Projectile motion on inclined plane – down
motion (put a = –a in above)

A
a

O -a
H

gcosa g

gsina

u

us
in

(
)=

u

q+a
^

q

ucos(
)=u

q+a
II

r Time of flight :   
( )

H

2u 2usin
T 2t

a gcos
^

^

q + a
= = =

a

r Maximum height :
( )2 2 2u u sin

H
2a 2gcos

^

^

q + a
= =

a

r Range on inclined plane :

( )2

2

2u cos sin
R OA

gcos
q q + a

= =
a

r Max. range:
( )

2

max

u
R

g 1 sin
=

- a
 at angle 

4 2
p a

q = -
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IMPORTANT NOTES
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LAWS OF MOTION & FRICTION
FORCE

A push or pull that one object exerts on another.

Forces in nature
There are four fundamental forces in nature :
• Gravitational force
• Electromagnetic force
• Strong nuclear force
• Weak force

Types of forces on macroscopic objects
(a) Field Forces or Range Forces :

These are the forces in which contact between
two objects is not necessary.
Ex. (i) Gravitational force between two bodies.
    (ii) Electrostatic force  between two charges.

(b) Contact Forces :
Contact forces exist only as long as the objects
are touching each other.
Ex. (i) Normal force. (ii) Frictional force

(c) Attachment to Another Body :
Tension (T) in a string and spring force (F = kx)
comes in this  group.

NEWTON'S FIRST LAW OF MOTION
(or Galileo's law of Inertia)

Every body continues in its state of rest or uniform
motion in a straight line unless compelled by an external
unbalanced force to change that state.
Inertia : Inertia is the property of the body due to
which body opposes the change of it's state. Inertia of
a body is measured by mass of the body.

inertia massµ

Newton's second law

dp d dv dm
F (mv) m v

dt dt dt dt
= = = +

r r
r r r

(Linear momentum p mv=
r r

)

For constant mass system F ma=
r r

Momentum
It is the product of the mass and velocity of a body

i.e. momentum p mv=
r r

• SI Unit : kg m s–1

•  Dimensions : [M L T–1]

Newton's third law of motion :
Whenever a particle A exerts a force on another particle
B, B simultaneously exerts a force on A with the same
magnitude in the opposite direction.

i.e. A / B B/ AF F= -
r r

Spring Force (According to Hooke's law)
In equilibrium F=kx (k is spring constant)

F
x

Natural length

Note : Spring force is non impulsive in nature.

Ex. If the lower spring is cut, find
accelerat ion of the blocks,
immediately after cutting the spring.

Sol. Initial stretches upper

3mg
x

k
=

2m

m

k

2k

and lower

mg
x

k
=

On cutting the lower spring, by virtue of non–
impulsive nature of spring the stretch in upper
spring remains same immediately after cutting the
spring. Thus,

Lower block : 2m

2mg

a 2mg= 2ma Þ a = g

Upper block : m

mg

k(x )upper

a  3mg
k

k
æ ö
ç ÷è ø

– mg

  =  ma Þ a  =  2g

Motion of bodies in contact
When two bodies of masses m1 and m2 are kept on
the frictionless surface and a force F is applied on one
body, then the force with which one body presses the
other at the point of contact is called force of contact.
These two bodies will move with same acceleration
a.

(i) When the force F acts on the body with mass m1 as
shown in figure (i)  : F = (m1 + m2)a

m1 m2

F

Fig.(1) : When the force F acts on mass m1

a
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If the force exerted by m2 on m1 is f1 (force of contact)
then for body m1:  (F – f1) = m1a

m1 m2

F f1 f1

a
a

Fig. 1(a) : F.B.D. representation of  action and reaction forces.
              

For body m2 :

f1=m2a Þ action of m1 on m2: 
2

1
1 2

m F
f

m m
=

+

Pulley system
A single fixed pulley changes the direction of force
only and in general, assumed to be massless and
frictionless.

SOME CASES OF PULLEY

Case – I :        

T

T

a m1

m2 a

FRAME OF REFERENCE
• Inertial frames of reference : A reference frame which is either at rest or in uniform motion along the straight

line. A non–accelerating frame of reference is called an inertial frame of reference.

All the fundamental laws of physics have been formulated in respect of inertial frame of reference.

• Non–inertial frame of reference : An accelerating frame of reference is called a non–inertial frame of reference.
Newton's laws of motion are not directly applicable in such frames, before application we must  add pseudo force.

Pseudo force:

The force on a body due to acceleration  of non–inertial frame is called fictitious or apparent or pseudo force and

is given by 
0F ma= -

r r
, where 0a

r
 is acceleration of non–inertial frame with respect to an inertial frame and m

is mass of the particle or body. The direction of pseudo force must be opposite to the direction of acceleration
of the non–inertial frame.

When we draw the free body diagram of a mass, with respect to an inertial frame of reference we apply only
the real forces (forces which are actually acting on the mass). But when the free body diagram is drawn from a non–

inertial frame of reference a pseudo force (in addition to all real forces) has to be applied to make the equation F ma=
r r

to be valid in this frame also.

real pseudoF F ma+ =å
r r r

 (where ar  is acceleration of object in non inertial reference frame) & pseudo aF ma= -
r r

(where 0ar  is acceleration of non inertial reference frame).

Let m1 > m2  now for mass m1, m1 g – T = m1a
for mass m2,T – m2 g = m2 a

1 2

1 2

net pulling force
Acceleration

total mass to be pulled

(m m )
a g

(m m )
=

-
= =

+

1 2

1 2

2 Pr oduct of masses
Tension g

Sumof twomasses

2m m
T g

(m m )
´

= = =
+

Reaction at the suspension of pulley  :

1 2

1 2

4m m g
R 2T

(m m )
= =

+

Case – II
For mass m1 : T

a

am2

m
1

T = m1 a

For mass m2 :  m2g – T = m2 a

Acceleration:

2

1 2

m g
a

(m m )
=

+
 and 1 2

1 2

m m
T g

(m m )
=

+
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Graph between applied force and force of
friction

Limiting friction

Kinetic friction

St
ati

c f
ric

tio
n

45° Applied force F

Friction force (f)

f=fL

F=f  =  µ NL S

block
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
f applied 

force

• Static friction coefficient

( )s max
s

f

N
m = , s s0 f N£ £ m , s appliedf F= -

r r

( )s smax
f N limiting friction= m =

• Kinetic friction coefficient

k
k

f

N
m = , ( )= - m

r

k k relˆf N v

w Angle of Friction (l)

N

l

Resultant  

of f and N

W

f
Applied 
force

S s
S

f N
tan

N N

m
l = = = m

w Angle of repose : The maximum angle of an
inclined plane for which a block remains
stationary on the plane.

fs

N

Mgsin
q Mgcosq

Mg

tan =q mR s

qR

Man in a Lift
(a) If the lift moving with constant velocity v upwards

or downwards. In this case there is no accelerated
motion hence no pseudo force experienced by observer
inside the lift.

So apparent weight W´=Mg=Actual weight.

(b) If the lift is accelerated upward with constant
acceleration a. Then forces acting on the man
w.r.t. observed inside the lift are

(i) Weight W=Mg downward
(ii) Fictitious force F0=Ma downward.

So apparent weight  W´=W+F0=Mg+Ma=M(g+a)

(c) If the lift is accelerated downward with acceleration
a<g.

Then w.r.t. observer inside the lift fictitious force F0=Ma
acts upward while weight of man W = Mg always
acts downward.

So apparent weight

W´ = W – F0 = Mg – Ma = M(g–a)

Special Case :
If a=g then W´=0 (condition of weightlessness).
Thus, in a freely falling lift the man will experience
weightlessness.

(d) If lift accelerates downward with acceleration
a  >  g  .   Then  as  in  Case  (c).

Apparent weight W´ =M(g–a) is negative, i.e., the
man will be accelerated upward and will stay at
the ceiling of the lift.

FRICTION
Friction is the force of two surfaces in contact, or
the force of a medium acting on a moving object.
(i.e. air on aircraft.)

Fr ict ional forces ar ise due to molecular
interactions. In some cases friction acts as a
supporting  force  and  in  some  cases  it  acts  as
opposing force.

w Cause of Friction: Friction arises on account of
strong atomic or molecular forces of attraction between
the two surfaces at the point of actual contact.

w Types of friction

Static friction
(No relative motion 
between objects)

Kinetic friction
(There is relative motion 

between objects)

Friction
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Dependent Motion of Connected Bodies
Method I : Method of constraint equations

2
i i

i 2

dx d x
x constant 0 0

dt dt
= ÞÞ = =å å å

r For n moving bodies we have x1, x2,...xn

r No. of constraint equations = no. of strings

Method II : Method of virtual work :

The sum of scalar products of tension forces applied
by connecting links of constant length and displacement
of corresponding contact points equal to zero.

× = Þ × = Þ × =å å å
r r r rr r
T x 0 T v 0 T a 0

a21 2a1

2T

x2

T

T
T

x1   Here 2a2 = a1

Normal constraint : displacements, velocities &
accelerations of both objects should be same along C.N.

q

v1

a1

v2

a2

e.g. a2 = a1 tan q & v2 = v1 tan q

KEY POINTS
• Aeroplanes always fly at low altitudes because

according to Newton's III law of motion as aeroplane
displaces air & at low altitude density of air is high.

• Rockets move by pushing the exhaust gases out so
they can fly at low & high altitude.

• Pulling (figure I) is easier than pushing (figure II) on
a rough horizontal surface because normal reaction
is less in pulling than in pushing.

qm mm m

F
F

Fig. I Fig. II

q

• While walking on ice, one should take small steps
to  avoid  slipping.  This  is  because  smaller  step
increases the normal reaction and that ensure smaller
friction.

IMPORTANT NOTES
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Definition of Circular Motion

When a particle moves in a plane such that its
distance from a fixed (or moving) point remains
constant then its motion is called as circular motion
with respect to that fixed point. That fixed point is
called centre and the distance is called radius of
circular path.

Radius Vector :

The vector joining the centre of the circle and the
center of the particle performing circular motion is
called radius vector. It has constant magnitude and
variable direction. It is directed outwards.

× =
r r
k v 0  &  r r

r & v  always in same plane.

Frequency (n) :

No. of revolutions described by particle per sec. is
its frequency. Its unit is revolutions per second (r.p.s.)
or revolutions per minute (r.p.m.)

Time Period (T) :

It is time taken by particle to complete one revolution.

1
T

n
=

w Angle 
arc length s

radius r
q = =

r

r
q s

w Average angular velocity 
t

Dq
w =

D
 (a scalar quantity)

w Instantaneous angular velocity

d
dt
q

w = (a vector quantity)

w For uniform angular velocity 
2
T
p

w = =2pf or 2pn

w Angular displacement q = wt

w ® Angular frequency n or f = frequency

w Relation between w and v
v
r

w =

In vector form velocity v r= w ´
r rr

w Acceleration ( )

t C

dv d d dr
a r r

dt dt dt dt
  r v a a

w
= = w ´ = ´ + w ´

= a ´ + w ´ = +

r rr
r rr r r

r rr r rr

w Tangential acceleration: t

dv
a r

dt
= = a

( )t

dv
ˆ ˆ ˆa component of a along v= a v v v

dt
é ùæ ö= × = ç ÷ê úè øë û

r r rr

w Centripetal acceleration :

( )
2

2 2
C C

v ˆa v r  or  a r r
r

= w = = w = w -
r

× =
r r

Ca v 0

w Magnitude of net acceleration :

2 22
2 2
C t

v dv
a a a

r dt

æ ö æ ö
= + = +ç ÷ ç ÷è ø è ø

For uniform circular motion t

d|v|
0 a

dt
= =

r

w If a is contant, then following equations hold

(i) Dq = qf – qi

(ii) wf = wi + at

(iii) q = wit + a 21
t

2

(iv) w = w + aq2 2
f i 2

(v) q = w - a 2
f

1
t t

2

(vi) 
w + w

q = i f( )t
2

(vii) 
w - wæ öa = ç ÷

è ø
f i

t

CIRCULAR MOTION
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Curvilinear Motion :

q
aNet

aN

®v
®at

P

=
r

r

Net

dv
a

dt
;

components of 
r

Neta  along =
rr

tv a

components of 
r

Neta  perpendicular to =
rr

Nv a

=
r

r

T

d|v|
a

dt
;  aN is responsible for change of direction

Radius of Curvature :

= Þ =
2 2

N
N

v v
a R

R a

aN 1

aN2 

R1

R2

®v1

®v2

R1 >R2; Radius of curvature doesn't remains constant

R is a property of curves, not of the particle

(If a bee follows this path instead of the particle then
its radius of curvature will be the same)

Maximum speed of in circular motion :

• On unbanked road : max sv Rg= m

• On banked road :

( )s
max

s

tan
v Rg tan Rg

1 tan
m + qæ ö

= = q + fç ÷- m qè ø

( )minv Rg tan= q - f ; min car maxv v v£ £

where f = angle of friction = tan–1µs; q = angle of banking

w Bending of cyclist : 
2v

tan
rg

q =

q

mg

N
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• Average angular velocity is a
scalar physical quanity
whereas instantaneous angular
velocity  is  a  vector  physical
quanity.

• Small Angular displacement

dq
r

 is a vector quantity, but
large angular displacement q is
scalar quantity.

1 2 2 1d d d dq + q = q + q
r r r r

But   
1 2 2 1q + q ¹ q + q

r r r r

Circular motion in vertical plane C

B

R

A
u

V

mgcosq

T
q

u mg

mgsinq
q

A

B

R

C

V

mgcosq

Tq

B
mg

mgsinqq

C

R

A

T=0,v 0¹

vC

B
q

R

A. Condition to complete vertical circle u 5gR³

If u 5gR=  then Tension at C is equal to 0 and tension at A is
equal to 6mg

Velocity at B: 
Bv 3gR=

Velocity at C: 
Cv gR=

From A to B : 
2mv

T mgcos
R

= q +

From B to C : 
2mv

T mgcos
R

= - q

B. Condition for pendulum motion (oscillating condition)

u 2gR£  (in between A to B)

Velocity can be zero but T never be zero between A & B.

Because T is given by 
2mv

T mgcos
R

= q +

C. Condition for leaving path  : 2gR u 5gR< <

Particle crosses the point B but not complete the vertical circle.

Tension will be zero in between B to C & the angle where T = 0

2u 2gR
cos

3gR
-

q = ; q is from vertical line

Note : After leaving the circle, the particle will follow a parabolic path.

* T is maximum at the bottom & minimum at the top.

• Relative Angular Velocity
Relative angular velocity of a particle 'A'
w.r.t. other  moving particle B is the
angular velocity of the position vector of
A w.r.t. B.

That means it is the rate at which position
vector of 'A' w.r.t. B rotates at that instant

KEY POINTS

vB

v sinB 2q
q2

r
v sinA 1q

q1
vA

A

B

AB
AB

AB

 Relative velocity of A w.r.t.
(v ) B perpendicular to line AB

r seperation between A and B
^w = =

here (vAB)^ = vA sinq1 + vBsinq2  
A 1 B 2

AB

v sin v sin
r

q + q
\ w =
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WORK, ENERGY & POWER
WORK DONE

W dW F.dr Fdr cos= = = qò ò ò
r r

[where q is the angle between F & dr
rr

]

w For constant force W F.d Fdcos= = q
rr

w For Unidirectional force

W dW Fdx= =ò ò = Area between

F–x curve and x-axis.

NATURE OF WORK DONE
Although work done is a scalar quantity, yet its value may be positive, negative or even zero

S

F

q
(  >90°)q

Work done by friction force 
( =180°)q

mg

S

Work done by gravity 
( =180°)q

S

F

q

(  = 90°)q

F S

Motion of particle on circular path 
(uniform) ( =90°)q

N

F=2.5 N

mg = 100 N

As f = F, hence S = 0

S

F

q

(  < 90°)q

Motion under gravity ( =0°)q

mg

mg

S

B

A

F
f

Work done by friction 
force on block A ( =0°)q

Negative work Zero work Positive work

f

S

fmax=10N
f=friction force

WORK DONE BY VARIABLE FORCE
A force varying with position or time is known
as the variable force

ˆˆ ˆF Fxi Fyj Fzk= + +
r

   q

A

B

®
F

®
dS

ˆˆ ˆdS dxi dyj dzk= + +
r

B

AB
A

W F dS= ×ò
rr

   = 
B B B

A A A

x y z

x y z

Fxdx Fydy Fzdz+ +ò ò ò

Calculation of work done from force–
displacement graph :

Total work done,       

dx

P1

M
O

F

P2

N x
x2

x1

= å
2

1

x

x

W Fdx

    = Area of P1P2NM
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POTENTIAL ENERGY
l The energy possessed by a body by virtue of its

position or configuration in a conservative force
field.

l Potential energy is a relative quantity.

l Potential energy is defined only for conservative
force field.

l Potential energy of a body at any position in a
conservative force field is defined as the external
work done   against the action of conservative
force in order to shift it from a certain reference
point (PE = 0) to the present position.

l Potential energy of a body in a conservative force
field is equal to the work done by the conservative
force in moving the body from its present position
to reference position.

l At a certain reference position, the potential
energy of the body is assumed to be zero or the
body is assumed to have lost the capacity of doing
work.

l Relationship between conservative force field and
potential energy :

F
r

= U grad(U)-Ñ = -  =  –
U U U ˆˆ ˆi j k
x y z

¶ ¶ ¶
- -

¶ ¶ ¶

l If force varies with only one dimension (say along
x-axis) then

F=–
dU
dx

Þ dU = –Fdx Þ 
2 2

1 1

U x

U x

dU Fdx= -ò ò

Þ CU –WD =

l Potential energy may be positive or negative or
even zero

Attraction forces

Repulsion forces

rU-ve
U+ve

i) Potential energy is positive, if force field is
repulsive in nature

ii) Potential energy is negative, if force field is
attractive in nature

l If r ­ (separation between body and force centre),
U ­, force field is attractive or vice–versa.

l If r ­, U ¯, force field is repulsive in nature.

Kinetic energy

• The energy possessed by a body by virtue of
its motion is called kinetic energy.

    21 1
K mv m(v.v)

2 2
= =

r r

• Kinetic energy is a frame dependent
quantity.

Work energy theorem (W = DKE )

Change in kinetic energy  = work done by all force

For conservative force  ( ) dU
F x

dx
= -

Change in potential energy U F(x)dxD = - ò

Conservative Forces

• Work done does not depend upon path.

• Work  done  in  a  round  trip  is  zero.

• Central forces, spring forces etc. are conser-
vative forces

• When only a conservative force acts within a
system, the kinetic energy and potential energy
can change into each other. However, their sum,
the mechanical energy of the system, doesn't
change.

• Work done is completely recoverable.

• If F
r

 is a conservative force then F 0Ñ ´ =
rrr

(i.e. curl of F
r

 is zero)

Non–conservative Forces

• Work done depends upon path.

• Work  done  in  a  round  trip  is  not  zero.

• Forces are velocity–dependent & retarding in
nature e.g. friction, viscous force etc.

• Work done against a non–conservative force may
be dissipated as heat energy.

• Work done is not recoverable.
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Potential energy curve and equilibrium
It is a curve which shows the change in potential
energy with the position of a particle.

position of particle

F F F F
x

B

A C

D
E

G

H

p
ot

en
tia

l e
n

er
gy

 (U
)

Stable Equilibrium :
After a particle is slightly displaced from its
equilibrium position if it tends to come back
towards equilibrium
then it is said to be in stable equilibrium.

At point A : slope 
dU
dx

 is negative  so F is positive

At point C : slope 
dU
dx

 is positive. so F is negative

dU
At equilibrium F 0

dx
= - =

At point B : it is the point of stable equilibrium.

At point B : U = Umin , 
2

2

dU d U
0 &

dx dx
=  = positive

Unstable equilibrium :
After a particle is slightly displaced from its
equilibrium position, if it tends to move away
from equilibrium  position then it is said to be
in unstable equilibrium.

At point D : slope 
dU
dx

 is  positive  so  F  is

negative ; At point G : slope 
dU
dx

 is negative

so F is positive

At point E : it is the point of unstable equilibrium;

At point E   U=Umax,
dU
dx

= 0 and 
2

2

d U
dx

=

negative

Neutral equilibrium
After a particle is slightly displaced from its equilibrium position
if no force acts on it then the equilibrium is said to be neutral
equilibrium.
Point H corresponds to neutral equilibrium  Þ U = constant

;
dU
dx

=0, 
2

2

d U
dx

=0.

Law of conservation of Mechanical energy
Total mechanical (kinetic + potential) energy of a system
remains constant if only conservative forces are acting
on the system of particles or the work done by all other
forces is zero. From work energy theorem W = DKE
Proof :  For internal conservative forces Wint = –DU

  So  W=Wext +Wint =  0  +  Wint =–DUÞ–DU=DKE
ÞD(KE+U) =0 ÞKE+U=constant

w Spring force F=–kx,  Elastic potential energy stored

in spring ( ) 21
U x kx

2
=

w Mass and energy are equivalent and are related by E
= mc2

Power
• Power is a scalar quantity with dimension M1L2T–3

• SI unit of power is J/s or watt
• 1 horsepower = 746 watt = 550 ft–lb/sec.

Average power : Pav= W/t
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KEY POINTS

• A body may gain

kinetic energy

and potentia l

e n e r g y

simultaneously

because principle

of conservation of

m e c h a n i c a l

energy may not

be val id every

time.

• Comets move

around the sun in

elliptical orbits.

The gravitational

force on the

comet due to sun

is not normal to

the comet' s

velocity but the

work done by the

gravitational force

is zero in

complete round

tr ip because

gravitational force

is a conservative

force.

• Work done by

static friction may

be pos it ive

because stat ic

friction may acts

along the

direct ion of

motion of  an

object.

Instantaneous power  : dW F.dr
P F.v

dt dt
= = =

r r
r r

fig.(a)

p
ow

er

dt
W= Pdt

time

w
or

k

time
q

instantaneous power

P= dW
dt =tanq

time

average power

P=P =av

W W
t t

2 1

2 1

-
-

=
D
D
W
t

w2

work

w1

t1 t2

fig.(b) fig.(c)

• For a system of varying mass     ( )d dv dm
F mv m v

dt dt dt
= = +

r
r r r

• If r
v  = constant then      

dm
F v

dt
=

r r
 then  2 dm

P F.v v
dt

= =
r r

• In rotatory motion :      
d

P
dt
q

= t = tw

• Efficiency      
Output Energy
Input Energy

h =
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Centre of mass :
Centre of mass of system is the point associated with
the system which have same acceleration as the
acceleration of point mass (of same mass as that of
system) would have under the application of same
external force.

Centre of mass of system of discrete particles

x

y

z (0,0,0)

m (x ,y ,z )1 1 1 1 m (x ,y ,z )2 2 2 2

m (x ,y ,z )3 3 3 3

m (x ,y ,z )n n n n

r1

rn

r2 r3

Total mass of the body :
M = m1 + m2 + ..... + mn  then

1 1 2 2 3 3
CM i i

1 2 3

m r m r m r ... 1
R m r

m m m ... M
+ + +

= = S
+ + +

r r r
r r

co-ordinates of centre of mass :

cm i i

1
x m x

M
= S , cm i i

1
y m y

M
= S  & cm i i

1
z m z

M
= S

Centre of mass of continuous distribution of
particles

CM

1
R rdm

M
= ò

r r
 

x

y

z

(0,0,0)

dm

r

cm

1
x x dm

M
= ò , cm

1
y y dm

M
= ò and cm

1
z z dm

M
= ò

x, y, z are the co-ordinate of the COM of the dm mass.

The centre of mass after removal of a part
of a body
Original mass (M) – mass of the removed part (m)
= {original mass (M)}+{–mass of the removed part (m)}
The formula changes to:

   CM

Mx mx
x

M m
- ¢

=
-

; CM

My my
y

M m
- ¢

=
-

; CM

Mz mz
y

M m
- ¢

=
-

COLLISIONS & CENTRE OF MASS
CENTRE OF MASS OF SOME

COMMON OBJECTS

CM

Body Shape of body Position of 
centre of mass

Uniform Ring Centre of ring

Uniform Disc Centre of disc

Uniform Rod Centre of rod

Solid sphere/ 
hollow sphere

Centre of 
sphere

Triangular 
plane lamina

Point of intersection 
of the medians
of the triangle 
i.e. centroid

Plane lamina in 
the form of a 
square or 
rectangle 
or parallelogram

Point of 
intersection 
of diagonals

Hollow/solid 
cylinder

Middle point 
of the axis of 

cylinder

CM

CM

CM

CM

CM

CM
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MOTION OF CENTRE OF MASS

For a system of particles,
velocity of centre of mass

CM 1 1 2 2
CM

1 2

dR m v m v ...
v

dt m m ....
+ +

= =
+ +

r r r
r

Similarly acceleration

( ) 1 1 2 2
CM CM

1 2

m a m a ...d
a v

dt m m ....
+ +

= =
+ +

r r
r r

Law of conservation of linear momentum
Linear momentum of a system of particles is equal
to the product of mass of the system with velocity
of its centre of mass.

From Newton's second law 
( )CM

ext.

d Mv
F

dt
=

r
r

If 
ext.F 0=

rr

 then CMMv
r

= constant

If no external force acts on a system the velocity
of its centre of mass remains constant, i.e., velocity
of centre of mass is unaffected by internal forces.

Impulse – Momentum theorem
Impulse  of  a  force  is  equal  to  the  change  of
momentum

2

1

t

t

Fdt p= Dò
r r

Force time graph area  gives change in
momentum.

Collision of bodies
The event or the process, in which two bodies
either coming in contact with each other or due
to mutual interaction at distance apart, affect each
others motion (velocity, momentum, energy or
direction of motion) is defined as a collision.

In collision
• The particles come closer before collision and af-

ter collision they either stick together or move
away from each other.

• The particles need not come in contact with each
other for a collision.

• The law of conservation of linear momentum is
necessarily applicable in a collision, whereas the
law of conservation of mechanical energy is not.

Body Shape of body
Position of 
centre of 

mass

Half ring

Segement 
of a ring  

CM
Rycm

x

y

CM

R
ycm

x

y

CM
ycm

x

y

CM
ycm

x

y

R

CM
ycm

x

y

R

CM
ycm

x

y

R

CM

y

ycm

x

h

Half disc 
(plate) 

Sector of a 
disc (plate) 

Hollow 
hemisphere

Solid 
hemisphere 

 Solid cone 

=
pcm

2Ry

=
qcm

Rsinqy

=
pcm

4Ry
3

=cm
2Rsinqy

3q

=cm
Ry
2

=cm
3Ry
8

CM

y

ycm

x

hHollow 
cone

=cm
hy
3

=cm
hy
4

q

q
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Coefficient of restitution (Newton's law)

2 1

1 2

v vvelocity of separation along line of impact
e

velocity of approach along line of impact u u
-

= - =
-

Value of e is 1 for elastic collision, 0 for perfectly inelastic collision and 0 < e < 1 for inelastic collision.

Head on collision

m1

u1

A

m2

u2

B A B

m1

v1
A

m2

v2
B

Before collision After collisionCollision

Head on elastic collision
(i) Linear momentum is conserved

m1u1 + m2u2 = m1v1 + m2v2

(ii) KE is not conserved but initial KE is equal to final KE

+2 2
1 1 2 2

1 1
m u m u

2 2
 = +2 2

1 1 2 2

1 1
m v m v

2 2

(iii) Rate of separation = Rate of approach
i.e. e = 1

Þ u1 – u2 = v2 – v1

Head on inelastic collision of two particles
Let the coefficient of restitution for collision is e

(i) Momentum is conserved + = +1 1 2 2 1 1 2 2m u m u m v m v ...(i)      (ii)  Kinetic energy is not conserved.

(iii)  According to Newton's law 
-

=
-

2 1

1 2

v v
e

u u  ...(ii)

By solving eq. (i) and (ii)  :
( )æ ö- +æ ö= + ç ÷ç ÷+ +è ø è ø

1 2 2
1 1 2

1 2 1 2

m em 1 e m
v u u

m m m m

( )+ - -
=

+
1 1 2 2 2 1 2

1 2

m u m u m e u u

m m

( ) ( )+ - -æ ö- +æ ö= + =ç ÷ç ÷+ + +è ø è ø
1 1 2 2 1 2 12 1 1

2 2 1
1 2 1 2 1 2

m u m u m e u um em 1 e m
v u u

m m m m m m

Elastic Collision (e=1)
 • If the two bodies are of equal masses :   m1 = m2 = m, v1 = u2 and v2 = u1

Thus, if two bodies of equal masses undergo elastic collision in one dimension, then after the collision, the bodies will
exchange their velocities.

The collision, in which 
the particles move along 

the same straight line 
before and after the 

collision, is defined as 
one dimensional collision.

The collision, in which 
the particles move along 

the same plane at 
different angles before 
and after collision, is 
defined as oblique 

collision.

A collision is said 
to be elastic, if 
the total kinetic 
energy before 

and after 
collision remains 

the same

A collision is 
said to be 

inelastic, if the 
total kinetic 

energy does not 
remains 
constant

The collision, in which 
particles have no tendancy 
to regain its shape is called 
perfectly inelastic collision. 
In this collision, velocity of 
particles along the line of 
collision becomes equal 

after collsion.

On the basis of kinetic energyOn the basis of direction

TYPES OF COLLISION

one-dimensional 
collision or

Head on collision

Two dimensional 
collision or

Oblique collision

Elastic
collision

In-elastic
collision

Perfectly In-elastic
collision
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 • If the mass of a body is negligible as compared to other.  If m1>> m2 and =2u 0   then =1 1v u  ,

=2 1v 2u

when a heavy body A collides  against a light body B at rest, the body A should keep on moving with
same velocity and the body B will move with velocity double that of A. If  m2 >> m1  and  u2 = 0 then

=2v 0 , = -1 1v u

When light body A collides against a heavy body B at rest, the body A should start moving with same
speed just in opposite direction while the body B should practically remains at rest.

w Loss in kinetic energy in inelastic collision   D = - -
+

2 21 2
1 2

1 2

m m
K (1 e )|u u |

2(m m )

Oblique Collision
Conserving the momentum of system in directions along normal (x axis in our case) and tangential (y axis in
our case) m1u1cosa1 + m2u2cosa2 = m1v1cosb1 + m2v2cosb2

u1

a1

a2

m1

u2m2

b2

v1

b1

m1

v2m2

a2

y

After
collision

Before 
collision

x

Since no force is acting on m1 and m2 along the tangent (i.e. y–axis) the individual momentum of m1 and m2

remains conserved. m1u1sina1 = m1v1sinb1 & m2u2sina2 = m2v2sinb2

By using Newton's experimental law along the line of impact  
2 2 1 1

1 1 2 2

v cos v cos
e

u cos u cos
b - b

=
a - a

KEY POINTS

• Sum of mass moments about centre of mass is zero. i.e. i i / cmm r 0=å
rr

• A quick collision between two bodies is more violent then slow collision, even when initial and final velocities
are equal because the rate of change of momentum determines that the impulsive force small or large.

• Heavy water is used as moderator in nuclear reactors as energy transfer is maximum if m1; m2

• Impulse-momentum theorem is equivalent to Newton's second law of motion.

• For a system, conservation of linear momentum is equivalent to Newton's third law of motion.

At t=0
v=u
m=m0

u

At t=t
m=m
v=v

v

exhaust velocity =vr

Rocket propulsion :

Thrust force on the rocket= r

dm
v

dt
æ ö-ç ÷è ø

Velocity of rocket at any instant  v=u–gt+vrln
0m

m
æ ö
ç ÷è ø
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ROTATIONAL  MOTION
Rigid  body is defined as a system of particles in which distance between each pair of
particles remains constant (with respect to time) that means the shape and size do not
change, during the motion.

Eg : Fan, Pen, Table, stone and so on.

Pure Translational
         Motion

Pure Rotational 
Motion

Type of Motion of rigid body

Combined Translational 
and Rotational Motion

Moment of Inertia
The virtue by which a body revolving about an axis
opposes the change in rotational motion is known
as moment of inertia.

m

axis

r

· The moment of inertia of a particles with respect
to an axis of  rotation is equal to the product of
mass of the particle and square of distance from
rotational axis. I = mr2

r = perpendicular distance from axis of rotation

· Moment of inertia of system of particle

axis discrete 
body

m2

r2

r1 m1

r3

m3

axis

r

continuous  
bodydm

I =  r dm2

2 2 2
1 1 2 2 3 3I m r m r m r .....= + + +

For Rigid Bodies :
Moment of inertia of a rigid body about any axis of

rotation.    2I dm r= ò
Radius of Gyration (K)

K has no meaning without axis of rotation.

I = MK2 K is a scalar quantity

Radius of gyaration : I
K

M
=

Perpendicular axis Theorems :  Iz = Ix + Iy
(body lies on the x-y plane)

x

y

z

o

(Valid only for 2-dimensional body)

Parallel axis Theorem  : I = ICM  + Md2

I 2=ICM
ICM

CM

+Md

d

(for all type of bodies)

ICM = moment of inertia about the axis

Passing through the centre of mass

RIGID BODY

ROTATIONAL

MOTION
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MOMENT OF INERTIA OF SOME REGULAR BODIES
Shape of Position of the axis Figure Moment of Radius of
the body of rotation Inertia (I) gyration (K)

(1) Circular (a) About an axis

CM

B

d

z
A

Ring perpendicular to the
plane and passes MR2 R
through the centre

Mass = M
Radius = R

(b) About the diametric axis

x

IZ
x'y

y'

21
MR

2

R

2

(c) About an axis
tangential to the rim

M

I 1

RCM
2MR2 2 R

and perpendicular to
the plane of the ring

(d) About an axis
tangential to the rim O

R

23
MR

2

3
R

2and lying in the plane
of ring

(2) Circular Disc (a) About an axis
passing through the

R

21
MR

2
R

2
centre and perpendicular

M = Mass to the plane of disc
R = Radius

(b) About a diametric

x

x'y

y'

2MR
4

R
2axis

(c) About an axis
tangential to the rim

ICMO
CM

R

25
MR

4
5

R
2and lying in the plane

of the disc
(d) About an axis

tangential to the rim
I z

M

R
CM

R

23
MR

2
3

R
2

& perpendicular to the
plane of disc

(3) Annular disc (a) About an axis

R1
R2

M

R1
R2

passing through the 2 2
1 2

M
R R

2
é ù+ë û

2 2
1 2R R

2
+

centre and
perpendicular to the
plane of disc

M = Mass
R1= Internal Radius
R2 = Outer Radius
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(b) About a diameteric axis R1
R2

M
2 2
1 2

M
R R

4
é ù+ë û

2 2
1 2R R

2

+

(4) Solid Sphere (a) About its diametric
     axis which passes

R

I

M

22
MR

5
2

R
5

through its centre
of mass

M = Mass
R = Radius

(b) About a tangent to
the Sphere

R

I

R

M 27
MR

5
7

R
5

(5) Hollow (a) About diametric axis
Sphere passing through centre

R

I
M

table tennis ball

22
MR

3
2

R
3

(Thin spherical of mass
Shell)

M = Mass (b) About a tangent to

R

I M

table tennis ball

25
MR

3

5
R

3R = Radius the surface
Thickness
negligible

(6) Hollow (a) About its geometrical MR2 R
Cylinder axis which is parallel to

its length

M = Mass (b) About an axis which

L

2 2MR ML
2 12

+
2 2R L

2 12
+R = Radius is perpendicular to its

L = Length length and passes
through its centre of
mass

Shape of Position of the axis Figure Moment of Radius of
the body of rotation Inertia (I) gyration (K)
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(c) About an axis
perpendicular to its

L

2 2MR ML
2 3

+
2 2R L

2 3
+

length and passing
through one end of the
cylinder

(7) Solid (a) About its geometrical
Cylinder axis, which is along

R M

I 2MR
2

R

2
M = Mass its length
R = Radius
L = Length

(b) About an axis
tangential to the

R M

I
23

MR
2

3
R

2
cylinderical surface and
parallel to its
geometrical axis

(c) About an axis
passing  through the

L

2 2ML MR
12 4

+
2 2L R

12 4
+

centre of mass and
perpendicular to its
length

(8) Thin Rod (a) About an axis
passing through centre

L

2ML
12

L

12
of mass and

Thickness is perpendicular to its
negligible length
w.r.t. length

Mass = M (b) About an axis
Length = L passing through one

L

2ML
3

L

3
end and perpendicular
to length of the rod

(9) Rectangular (a) About an axis passing
Plate through centre of mass

a

b

2Mb
12

b

2 3
and perpendicular to
side b in its plane

M = Mass (b) About an axis
a = Length passing through centre

a

b

2Ma
12

a

2 3
b = Breadth of mass and

perpendicular to side
a in its plane.

Shape of Position of the axis Figure Moment of Radius of
the body of rotation Inertia (I) gyration (K)
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(c) About an axis
passing throught centre

a

b

( )2 2M a b

12

+ 2 2a b
12
+

of mass and
perpendicular to plane

(10) Cube About an axis passes
through centre of mass

a

2Ma
6

a

6and perpendicular to
face

Mass = M
Side a
(11) About an axis
Uniform thin rod Passing through

C
 

r
 

2
CI mr= r

bent into shape of center and
an arc of mass m perpendicular to the

plane containing
the arc

(12) About an axis
Sector of a Passing through  

C
 

r
 

2

2C

mr
I = r/ 2

uniform disk center and
of mass m perpendicular to the

plane containing

the sector.

Shape of Position of the axis Figure Moment of Radius of
the body of rotation Inertia (I) gyration (K)

TORQUE
Torque about point : r Ft = ´

rr r

O

Line of action
of force

rsinq
q

P F

r

Magnitude of torque =  Force × perpendicular

    distance of line of action

    of force from the axis of

    rotation.

             t=rFsinq
Direction of torque can be determined by using right hand thumb rule.

ROTATIONAL EQUILIBRIUM
If a rigid body is in rotational equilibrium under the action of several coplanar forces, the
resultant torque of all the forces about any axis perpendicular to the plane containing the
forces must be zero.
In the figure a body is shown under the action of several external

F1 

F2 

Fi 

Fn 

coplanar forces F1, F2, …… Fi, and Fn.

0Pt =å v

Here P is a point in the plane of the forces about which we calculate

 

A B 

l /4 

400 
200 

C D 

l/2 

T1 
T2 

y

x

y

xx

torque of all the external forces acting on the body. The flexibility available
in selection of the point P provides us with advantages that we can select
such a point about which torques of several unknown forces will become
zero  or we can make as many number of equations as desired by selecting
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several different points. The first situation yields to a simpler equation to be solved and second situation though does not give
independent equation, which can be used to determine additional unknowns yet may be used to check the solution.
The above condition reveals that a body cannot be in rotational equilibrium under the action of a single force unless
the line of action passes through the mass center of the body.
A case of particular interest arises where only three coplanar forces are involved and the body is in rotational
equilibrium. It can be shown that if a body is in rotational equilibrium under the action of three forces, the lines
of action of the three forces must be either concurrent or parallel. This condition provides us with a graphical
technique to analyze rotational equilibrium.

Equilibrium of Rigid Bodies
A rigid body is said to be in equilibrium, if it is in translational as well as rotational equilibrium both. To analyze
such problems conditions for both the equilibriums must be applied.

Rotation about fixed axis not passing through mass center
In this kind of rotation the axis of rotation remains fixed and does not passes through the mass center.
Rotation of door is a common example of this category. Doors are hinged about their edges; therefore their
axis of rotation does not pass through the mass center. In this kind of rotation motion the mass center
executes circular motion about the axis of rotation.
In the figure, free body diagram and kinetic diagram of a body R

r

 

1F
r

 
nF

r

 

iF
r

 

C 

P 

pI a
r

 

C 

P 
Cma

r
 rotating about a fixed axis through point P is shown. It is easy to conceive

that as the body rotates its mass center moves on a circular path of radius

/P Cr
r

. The mass center of the body is in translation motion with acceleration

Car on circular path of radius /P Cr . To deal with this kind of motion, we have
to make use of both the force and the torque equations.

Translation of mass center  2
/ /i C C P C PF Ma M r M ra wS = = ´ -

r rr r r

Centroidal Rotation C CIt aS =
r r

Making use of parallel axis theorem ( )2
/P P C CI Mr I= +  and 2

/ / /C P C P C Pa r ra w= ´ -
rr r r

we can write the following equation also.

Pure Rotation about P P PIt aS =
r r

Angular momentum of a particle about a given axis is the
product of its linear momentum and perpendicular distance
of line of action of linear momentum vector from the axis

of rotation, L r p= ´
r r r

qp=
m

v

b=rs inq

r
q

Magnitude of Angular momentum
= Linear momentum  ×  Perpendicular distance

of line of action of  momentum  from the
axis of rotation

L  =  mv × r sinq
Direction of angular momentum can be used by using
right hand thumb rule.

l According to Newtons Second Law’s for rotatory

motion 
dL

I
dt

t = = a

r

r r
.

l Angular Impulse = Change in angular momentum.

l If a large torque acts on a body for a small time

then, angular impulse= dtt
r

Conservation of Angular Momentum

Angular momentum of a particle or a system
remains constant if t ext  = 0 about that point or axis
of rotation.

If t = 0 then
L

0
t

D
=

D
Þ L= constant

Þ Lf = Li    or I1w1 = I2w2

ANGULAR MOMENTUM  (MOMENT OF LINEAR MOMENTUM)
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l If a person skating on ice folds his arms then his M.I.
decreases and 'w' increases.

l A diver jumping from a height folds his arms and legs
(I decrease) in order to increase no. of rotation in air
by increasing 'w'.

I>Ii f

w wi f<

w f

If

Iiw i

l If a person moves towards the centre of rotating platform then 'I' decrease and 'w' increase.

Examples of Conservation of Angular Momentum

ROTATIONAL KINETIC ENERGY

Kinetic Energy of Rotation 2
R

1
KE I

2
= w

l Other forms
2

21 L 1
K I L

2 2I 2
= w = = w

l If  external  torque acting on a body is  equal  to zero (t = 0), L=constant  
1

K , K
I

µ µ w

l Rotational Work : Wr = tq (If torque is constant)    
2

1

rW d
q

q
= t qò  (If torque is variable)

l The work done by torque  =  Change in kinetic energy of rotation. 2 2 2 2
2 1 2 1

1 1 1
W I I ( )

2 2 2
= w - w = I w - w

l    Instantaneous power 
dW d
dt dt

q
= = t = tw       Average power 

D
=

Dav

W
P

t

Contact point

Pure rolling
v =RCM wCM

vCMR
wCM

COMBINED TRANSLATIONAL AND ROTATIONAL MOTION OF A RIGID BODY

When a body perform translatory motion as well as rotatory
motion then it is known as rolling.

In Pure Rolling

(i) If the velocity of point of contact with respect to the surface
is zero then it is known as pure rolling.
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(ii) If a body is performing rolling then the velocity of any point of the body with respect to the surface

is given by  
CM CMv v R= + w ´

rrr r

A A AVCM wR V + R=2VCM CMw

VCM

VCM

VCM

VCM

VCM

VCM

V =0CM VCMVCMF C

C

E

VCM

VCMB B P

wR V =CM wR

F VCMC C

wR

wR

E

Only R.M. Pure rolling motion

2VCM

VCM

2VCM

F

VCM-wR=0

V =CM wR

Only T.M.

Only Translatory motion  +  Only Rotatory Motion = Rolling motion. For pure rolling above body

VA = 2VCM VE = 2  VCM VF = 2  VCM      VB = 0

Velocity at a point on rim of sphere Rolling  Kinetic Energy under pure rolling

VCM

surface

Rolling body

Rolling  Kinetic Energy

2 21 1
E mv I

2 2
= + w =  

2
2 2

2

1 1 v
mv mK

2 2 R

æ ö
+ ç ÷

è ø

Rolling  Kinetic Energy  
2

2
2

1 K
E mv 1

2 R

æ ö
= +ç ÷

è ø

Etranslation :  Erotation : ETotal = 
2 2

2 2

K K
1 : : 1

R R
+

2 2 2
netv v R 2vR cos= + w + w q

q
q

Rw

v

For pure rolling v = Rw

netv 2v cos
2
q

=

Body
2

2

K
R

2

2

trans

K
rotation R

E 1
E

=
2

2

trans
K

total R

E 1
E 1

=
+

2

2

2

2

K
rotation R

K
total R

E
E 1

=
+

Ring 1 1 1/2 1/2

Disc 1/2 2 2/3 1/3

Solid sphere 2/5 5/2 5/7 2/7

Spherical shell 2/3 3/2 3/5 2/5

Solid cylinder 1/2 2 2/3 1/3

Hollow cylinder 1 1 1/2 1/2
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Rolling Motion on an inclined plane

Applying Conservation of energy

mgh = 2 21 1
mv I

2 2
+ w

mgh = 
2

2 2
2

1 1 v
mv mK

2 2 R

æ ö
+ ç ÷

è ø

mgh = 
2

2
2

1 K
mv 1

2 R

æ ö
+ç ÷

è ø
 ...(1)

h = s sinq            ...(2)

from (1) & (2)

Rolling 2

2

2gh
V

K
1

R

2gssin
2K

1
2R

= =
+

q

+

l Linear accleration on reaching the lowest point a

2 2

gsin
1 K /R

q
=

+

l Time taken to reach the lowest point of the plane is

             
2 22s(1 K / R )

t
g sin
+

=
q

l
2

2

K
R

Least, will reach first

2

2

K
R

Maximum, will reach last

2

2

K
R

equal, will reach together

l When ring, disc, hollows sphere, solid sphere rolls
on same inclined plane then

vS >  vD >  vH >  vR         aS >  aD >  aH >  aR

tS <  tD <  tH <  tR

S

Inclined plane q

he
ig

ht

Rolling body

m

VCM

w

General Plane Motion: Rotation about axis in translation motion

Rotation of bodies about an axis in translation motion can be dealt with either     

CMa
r

 
CI a

r
 

1F
r

 

2F
r

 
nF

r

 

iF
r

 

C 

as superposition of translation of mass center and centroidal rotation or
assuming pure rotation about the instantaneous axis of rotation. In the
figure is shown the free body diagram and kinetic diagram of a body in
general plane motion.

Translation of mass center
0

n

i C
i

F Ma
=

=å
r r

Centroidal Rotation
1

n

C C
i

It a
-

=å r r

This kind of situation can also be dealt with considering it rotation about IAR. It gives sometimes quick solutions,
especially when IAR is known and forces if acting at the IAR are not required to be found.
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For a pure rolling body after one full rotation

A5

A4

A3A2

A1

2 Rp

displacement of lowermost point =2pR

distance = 8R

Angular Momentum in general plane motion
Angular momentum of a body in plane motion can also be written similar         

C 

Cv
r

 

x 

y 

O 
Cr
r

 

w 
to torque equation or kinetic energy as sum of angular momentum about the
axis due to translation of mass center and angular momentum of centroidal
rotation about centroidal axis parallel to the original axis.
Consider a rigid body of mass M in plane motion. At the instant shown its mass
center has velocity v

r and it is rotating with angular velocity w
r about an axis

perpendicular to the plane of the figure. It angular momentum 
oL

r
 about an axis passing though the origin

and parallel to the original is expressed by the following equation.

( )o C C CL r Mv I w= ´ +
r rr r

The first term of the above equation represent angular momentum due to translation of the mass center and
the second term represents angular momentum in centroidal rotation.

Angular momentum in rotation about fixed axis

x 

y 

O 

C 

/C Pr
r

 Cv
r

 P 

w 

Consider a body of mass M rotating with angular velocity w about a
fixed axis perpendicular to plane of the figure passing through point

P. Making use of the parallel axis theorem 2
/P C P CI Mr I= + and

equation /C C Pv rw= ´
r r r

we can express the angular momentum 
PL

r
 of

the body about the fixed rotational axis.

P PL I w=
r r

The above equation reveals that the angular momentum of a rigid body in plane motion can also be expressed
in a single term due to rotation about the instantaneous axis of rotation.

Angular momentum in pure centroidal rotation

C 

w 
In pure centroidal rotation, mass center remains at rest, therefore
angular momentum due to translation of the  mass center vanishes.

C CL I w=
r r

Eccentric Impact
In eccentric impact the line of impact which is the common normal drawn at the point of impact does not
passes through mass center of at least one of the colliding bodies. It involves change in state of rotation
motion of either or both the bodies.
Consider impact of two A and B such that the mass center CB of B does 

B 
A 

C
B 

Line of 
Impact 

C
A 

not lie on the line of impact as shown in figure. If we assume bodies to
be frictionless their mutual forces must act along the line of impact.
The reaction force of A on B does not passes through the mass center
of B as a result state of rotation motion of B changes during the impact.
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Problems of Eccentric Impact
Problems of eccentric impact can be divided into two categories. In one category both the bodies under going
eccentric impact are free to move. No external force act on either of them. There mutual forces are responsible
for change in their momentum and angular momentum. In another category either or both of the bodies are
hinged.

Eccentric Impact of bodies free to move
Since no external force acts on the two body system, we can use principle of conservation of linear momentum,
principle of conservation of angular momentum about any point and concept of coefficient of restitution.
The coefficient of restitution is defined for components of velocities of points of contacts of the bodies along
the line of impact.
While applying principle of conservation of angular momentum care must be taken in selecting the point about
which we write the equation. The point about which we write angular momentum must be at rest relative to the
selected inertial reference frame and as far as possible its location should be selected on line of velocity of the
mass center in order to make zero the first term involving moment of momentum of mass center.

 Eccentric Impact of hinged bodies
When either or both of the bodies are hinged the reaction of the hinge during the impact act as
external force on the two body system, therefore linear momentum no longer remain conserved and
we cannot apply principle of conservation of linear momentum. When both the bodies are hinged we
cannot also apply conservation of angular momentum, and we have to use impulse momentum principle
on both the bodies separately in addition to making use of coefficient of restitution. But when one of
the bodies is hinged and other one is free to move, we can apply conservation of angular momentum
about the hinge.

Ex. A uniform rod of mass m and length l is suspended from a fixed support and can

vo 

O 

rotate freely in the vertical plane. A small ball of mass m moving horizontally with velocity
vo strikes elastically the lower end of the rod as shown in the figure. Find the angular
velocity of the rod and velocity of the ball immediately after the impact.

Sol. The rod is hinged and the ball is free to move. External forces acting on

Before the impact Immediately after 
the impact 

vo 

O 

v' 

w' O the rod ball system are their weights and reaction from the hinge. Weight of
the ball as well as the rod are finite and contribute negligible impulse during
the impact, but impulse of reaction of the hinge during impact is considerable
and cannot be neglected. Obviously linear momentum of the system is not
conserved. The angular impulse of the reaction of hinge about the hinge is
zero. Therefore angular momentum of the system about the hinge is
conserved. Let velocity of the ball after the impact becomes v'B and angular
velocity of the rod becomes w'.
We denote angular momentum of the ball and the rod about the hinge before the impact by L

B1
 and L

R1
 and

after the impact by L
B2

 and L
R2

.
Applying conservation of angular momentum about the hinge, we have

1 1 2 2B R B RL L L L+ = +
r r r r

® 0o B omv mv I w+ = +¢ ¢l l

Substituting 21
3 Ml  for I

o
, we have

3 3B omv M mvw+ =¢ ¢l (1)
The velocity of the lower end of the rod before the impact was zero and immediately after the impact it
becomes lw' towards right. Employing these facts we can express the coefficient of restitution according to eq.

Qn Pn

pn Qn

v v
e

v v
-¢ ¢

=
- ® B ov evw - =¢ ¢l (2)

From eq. (1) and (2), we have

Velocity of the ball immediately after the impact
( )3

3
o

B

m eM v
v

m M
-

=¢
+

Ans.

Angular velocity of the rod immediately after the impact
( )

( )
3 1

3
oe mv

m M
w

+
=¢

+ l
Ans.
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IMPORTANT NOTES
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• Mean Position
The point at which the restoring force on the particle
is zero and potential energy is minimum, is known
as its mean position.

• Restoring Force
The force acting on the particle which tends to bring
the particle towards its mean position, is known as
restoring force.
Restoring force always acts in a direction opposite
to that of displacement. Displacement is measured
from the mean position.

• Amplitude
The maximum (positive or negative) value of
displacement of particle from mean position is
defined as amplitude.

• Time period (T)
The minimum time after which the particle keeps
on repeating its motion is known as time period.
The smallest time taken to complete one oscillation
or vibration is also defined as time period.

It  is  given  by  2 1
T

n
p

= =
w

 where w is angular

frequency and n is frequency.
• Frequency (n or f)
 The number of oscillations per second is defined as

frequency.  It is given by  
1

n
T 2

w
= =

p
• Phase

Phase of a vibrating particle at any instant is the
state of the vibrating particle regarding its
displacement and direction of vibration at that
particular instant.

In the equation x = A sin (wt + f), (wt+f) is the
phase of the particle.

SIMPLE HARMONIC MOTION
Periodic Motion

Any motion which repeats itself
after regular interval of time (i.e.
time period) is called periodic
motion or harmonic motion.
Example:
(i) Motion of planets around
the sun.
(ii) Motion of the pendulum
of wall clock.

The phase angle at time t = 0 is known as initial phase
or epoch.

The difference of total phase angles of two particles
executing SHM with respect to the mean position
is known as phase difference.

Two vibrating particles are said to be in same phase
if the phase difference between them is an even
multiple of p, i.e. Df = 2np where n = 0, 1, 2, 3,....

Two vibrating particle are said to be in opposite
phase if the phase difference between them is an
odd multiple of p i.e., Df = (2n + 1)p where n = 0,
1, 2, 3,....

• Angular frequency (w) :The rate of change of
phase angle of a particle with respect to time is
defined as its angular frequency.

k
m

w =

w For linear SHM

(F µ – x) :
2

2

d x
F m

dt
= = –kx = –mw2x where 

k
m

w =

w For angular SHM ( t µ -q ) :

t = I 
2

2

d
dt

q
= Ia = – kq = – mw2q where 

k
m

w =

w Displacement x = A sin (wt + f),

w Angular displacement q =q0 sin(wt+ f)

Simple Harmonic
Motion (SHM)

Simple harmonic motion is
the  simplest  form  of
vibratory or oscillatory
motion.  In which
restoring force is directly
proporiontal to distance
from mean.

Oscillatory Motion
The motion of body is said to be oscillatory or vibratory
motion if it moves back and forth (to and fro) about a
fixed point after regular interval of time.

The fixed point about which the body oscillates is
called mean position or equilibrium position.

Example:
(i) Vibration of the wire of 'Sitar'.

(ii) Oscillation of the mass suspended from spring.

Some Basic Terms in SHM
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w Velocity 
dx

v
dt

= = Aw cos(wt  + f) 2 2A x= w -

w Angular velocity 
d
dt
q

= q0wcos(wt+f)

w Acceleration
2

2

d x
a

dt
= =– Aw2 sin(wt + f) = –w2 x

w Angular acceleration

2

2

d
dt

q
= – q0w

2sin(wt+f)=–w2q

w Kinetic energy K =
1
2

mv2 =
1
2

mw2A2cos2(wt+ f)

w Potential energyU=
1
2

kx2 =
1
2

mw2A2sin2 (wt + f)

w Total energy E = K+U=
1
2

mw2A2 = constant

TE
1
2

k A 2

displacement

TE
1
2

k A 2

time

K
 ,

 U
 

P.E.

K.E.

orKmax Umax or ET

Note :

(i) Total energy of a particle in S.H.M. is same

at all instant and at all displacement.

(ii) Total energy depends upon mass,

amplitude and frequency of vibration of the

particle executing S.H.M.

Average energy in SHM
(i) The time average of P.E. and K.E. over one cycle

is

  (a) <K>t =
21

kA
4

     (b) <PE>t = 21
kA

4

(c) < TE>t = 2
0

1
kA U

2
+

(ii) The position average of P.E. and K.E. between
x = – A to x=A

(a) <K>x = 21
kA

3
    (b) < PE>x = 0

1
U

6
+ kA2

(c) <TE>x = 2
0

1
kA U

2
+

w Spring block system

  

m

k m
T 2

k
= p  

k
m

m
T 2

k
= p

w m1 m2   T=2p
k
m

where  µ=reduced mass =
1 2

1 2

m m
m m+

w Series combination of springs k1

k2

k3

m

eff

m
T 2

k
= p  where 

eff 1 2 3

1 1 1 1
k k k k

= + +

w Parallel combination of springs

k1 k2 k3

m

   
eff

m
T 2

k
= p

where  keff =  k1 +  k2 +  k3

w Time period of simple pendulum

L
  Time  period  

L
T 2

g
= p

w Second pendulum
Time  period  =  2  seconds,  Length  » 1 meter
(on earth's surface)
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w Time period of Physical pendulum

cm

l

2k

T 2 2
mg g

+I
= p = p

l
l

l

where Icm = mk2

w Time period of Conical pendulum

cos h
T 2 2

g g
q

= p = p
l

  
l

q

h

m

w Time period of Torsional pendulum

T=2p
I
k

 where k = torsional constant of the wire

I=moment of inertia of the body about the vertical
axis

In accelerating cage

a a

a

geff =  g  +  a geff =  g–a geff = 2 2g a+

T 2
g a

= p
+
l

 T 2
g a

= p
-
l

 ( )1
2 2 2

T 2
g a

= p
+

l

• SHM is the projection of uniform circular motion along one of the diameters of the circle.

• The periodic time of a hard spring is less as compared to that of a soft spring because the spring constant
is large for hard spring.

• For a system executing SHM, the mechanical energy remains constant.

• Maximum kinetic energy of a particle in SHM may be greater than mechanical energy as potential energy
of a system may be negative.

• The frequency of oscillation of potential energy and kinetic energy is twice as that of displacement or
velocity or acceleration of a particle executing S.H.M.

w Spring cut into two parts :

k k1 k2l l1 l2

Here 
1

2

m
n

=
l

l
 1

m
m n

æ ö= ç ÷è ø+
l l , 2

n
m n

æ ö= ç ÷è ø+
l l    But  kl=k1l1=  k2l2 1 2

(m n) (m n)
k k;   k k

m n
+ +

Þ = =

KEY POINTS

IMPORTANT NOTES
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IMPORTANT NOTES
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WAVE MOTION & DOPPLER'S EFFECT
A wave is a disturbance that propagates in space, transports energy and momentum from one point to another without
the transport of matter.

CLASSIFICATION OF WAVES

Mechanical (Elastic) waves

Non-mechanical waves (EM waves)

Medium
Necessity

Progressive waves

Stationary (standing) waves

Propagation
of energy

Transverse waves

Longitudinal waves

Vibration of 
medium particle

1-D (Waves on strings)

2-D (Surface waves or ripples on water)

3-D (Sound or light waves)

Dimension

• If particle vibrates in pependiuclar direction to the wave motion then its called transverse wave.

• In strings, mechanical waves are always transverse.

• In gases and liquids, mechanical waves are always longitudinal because fluids cannot sustain shear.

• Partially transverse waves are possible on a liquid surface because surface tension provide some rigidity on
a liquid surface. These waves are called as ripples as they are combination of transverse & longitudinal.

• In solids mechanical waves (may be sound) can be either transverse or longitudinal depending on the mode
of excitation.

• In longitudinal wave motion, oscillatory motion of the medium particles produce regions of compression
(high pressure) and rarefaction (low pressure).

PLANE PROGRESSIVE WAVES

• Wave equation : ( )= w -y Asin t kx where 
2

k
p

=
l

= wave propagation constant

(Wave is moving along x-axis and paticle is moving along y axis)
• If coefficient of x & t are of opposite sign than wave move in +ve x-direction

Ex. ( )= w -y Asin t kx wave is moving in +x direction and particle is moving in y direction

Simillarly Ex. ( )z A sin t ky= w -  here wave move in +y direction and particle move in z direction

• Differential equation : 
2 2

2 2 2

y 1 y
x v t

¶ ¶
=

¶ ¶

Wave velocity (phase velocity)  w

dx dx
v t kx constant 

dt k dt k
w w

= = w - = Þ =Q

• Particle velocity ( )
p

dy
v A cos t kx

dt
= = w w - p w w

dy
v v slope v

dx
æ ö= - ´ = - ç ÷
è ø

• Particle acceleration : ( )
2

2 2
p 2

y
a Asin t kx y

t
¶

= = -w w - = -w
¶

For particle 1 : vp ¯ and ap ̄

t

1

4
3

2

y

For particle 2 : vp ­ and ap ̄
For particle 3 : vp ­ and ap ­
For particle 4 : vp ¯ and ap ­

• Relation between phase difference, path difference & time difference

0 p 2p
TT/2

l

   
Df Dl D

= =
p l

T
2 T
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WAVE FRONT
• Spherical wave front (source ®point source)

• Cylindrical wave front (source ®linear source)

• Plane wave front (source ® point / linear
source at very large distance)

INTENSITY OF WAVE

• Due to point source 2

1
I

r
µ

( ) ( )A
y r,t sin t k r

r
= w - ×

r r

• Due to cylindrical source 
1

I
r

µ

( ) ( )A
y r, t sin t k r

r
= w - ×

r r

• Due to plane source I = constant

( ) ( )y r,t A sin t k r= w - ×
r r

INTERFERENCE OF WAVES
y1 =  A1sin(wt–kx), y2 =  A2sin(wt–kx+f0)

y  =  y1 +  y2 =  A  sin  (wt – kx + f)

A

f0 f
A1

A2

where 2 2
1 2 1 2 0A A A 2A A cos= + + f

and
2 0

1 2 0

A sin
tan

A A cos
f

f =
+ f

As µ 2I A

So 1 2 1 2 0I I I 2 I I cos= + + f

ENERGY IN WAVE MOTION

•

( )

2
p

2 2 2 2
p

KE 1 m
v

volume 2 volume
1 1

v A cos t kx
2 2

Dæ ö
= ç ÷è ø

= r = rw w -

• ( )
2

2 2 2 2PE 1 dy 1
v A cos t kx

volume 2 dx 2
æ ö= r = rw w -ç ÷è ø

• ( )2 2 2TE
A cos t kx

volume
= rw w -

• Pressure energy density 
2 21

u A
2

= rw

[i.e. Average total energy / volume]

• Power : P = (energy density) (volume/ time)

P = ( )2 21
A Sv

2
æ ö

rwç ÷è ø

[where S = Area of cross-section]

• Intensity : 2 2Power 1
I A v

area of cross-section 2
= = rw

Speed of transverse wave on string :

T
v =

m  where m = mass/length and

T = tension in the string.

KEY POINTS

• A wave can be represented by function
y=f(kx ± wt) because it satisfy the differential

equation 
2 2

2 2 2

y 1 y
x v t

æ ö¶ ¶
= ç ÷è ø¶ ¶

 where v
k
w

= .

• A  pulse  whose  wave  function  is  given  by
y=4 / [(2x +5t)2+2] propagates in –x direction as
this wave function is of the form y=f (kx + wt)
which represent a wave travelling in –x direction.

• Longitudinal waves can be produced in solids,
liquids and gases because bulk modulus of elasticity
is present in all three.
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• For constructive interference [Maximum intensity]

f0 = 2np or path difference = nl where n = 0, 1, 2,

3, .... ( )2

max 1 2I I I= +

• For destructive interference [Minimum Intensity]

f0 = (2n+1)p or path difference = (2n+1)
2
l

where n = 0, 1, 2, 3, .... ( )2

min 1 2I I I= -

• Degree of hearing=
max min

max min

I I
100

I I
-

´
+

REFLECTION AND REFRACTION
(TRANSMISSION) OF WAVES

v2v1

t
i

r

Ar

y=Asin( t-k x)i i 1w

Incident
wave

transmitted
wave

Reflected
wave

Ð
i=

Ð
r

Ai

At

M
ed

iu
m

-1

M
ed

iu
m

-2

• The frequency of the wave remain unchanged.

• Amplitude of reflected wave® 
2 1

r i
1 2

v v
A A

v v
-æ ö

= ç ÷+è ø

• Amplitude of transmitted wave ®
2

t i
1 2

2v
A A

v v
æ ö

= ç ÷+è ø

• If v2 > v1 i.e. medium-2 is rarer
Ar > 0 Þ no phase change in reflected wave

• If v2 < v1 i.e. medium-1 is rarer

Ar < 0 Þ There is a phase change of p in reflected wave

• As At is always positive whatever be v1 & v2 the phase
of transmitted wave always remains unchanged.

• In case of reflection from a denser medium or rigid
support or fixed end, there is inversion of reflected
wave i.e. phase difference of p between reflected and
incident wave.

• The transmitted wave is never inverted.

•

y =Asin( t-k x)i i 1w

y = A sin( t+k x)r r 1- w

y =A sin( t-k x)t t 2w

DenserRarer

•

y=Asin( t-k x)i i 1w

y =A sin( t+k x)r r 1w

y =A sin( t-k x)t t 2w

RarerDenser

BEATS

When two sound waves of nearly equal (but not exactly
equal) frequencies travel in same direction, at a given point
due to their super position, intensity alternatively increases
and decreases periodically. This periodic waxing and
waning of sound at a given position is called beats.
Beat frequency = difference of frequencies of two
interfering waves
Beat frequency = |f1 – f2|

STATIONARY WAVES OR STANDING WAVES

When two waves of same frequency  and amplitude travel
in opposite direction at same speed, their superstition
gives rise to a new type of wave, called stationary waves
or standing waves. Formation of standing wave is possible
only in bounded medium.
• Let two waves are y1=Asin(wt–kx); y2=Asin(wt+kx)

by principle of superposition  y=y1+y2 =2Acoskxsinwt
¬ Equation of stationary wave

• As this equation satisfies the wave equation
2 2

2 2 2

y 1 y
x v t

¶ ¶
=

¶ ¶
, it represent a wave.

• Its amplitude is not constant but varies periodically
with position.

• Nodes®amplitude is minimum :

3 5
coskx 0 x , , ,......

4 4 4
l l l

= Þ =

• Antinodes ® amplitude  is  maximum :

3
cos kx 1 x 0, , , ,......

2 2
l l

= Þ = l

• The nodes divide the medium into segments (loops).
All the particles in a segment vibrate in same phase
but in opposite phase with the particles in the adjacent
segment.

• As nodes are permanently at rest, so no energy can
be transmitted across them, i.e. energy of one region
(segment) is confined in that region.
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Sound Waves
Velocity of sound in a medium of elasticity E and
density r is

Solids
(Young's Modulus)

Fluids

v= E
r

v= v=Y
r

B
r

(Bulk Modulus)

• Newton's formula : Sound propagation is

isothermal 
P

B P v= Þ =
r

• Laplace correction : Sound propagation is

adiabatic 
P

B P v
g

= g Þ =
r

KEY POINTS
• With rise in temperature, velocity of sound

in a gas increases as 
W

RT
v

M
g

=

• With rise in humidity velocity of sound
increases due to presence of water in air.

• Pressure has no effect on velocity of sound
in a gas as long as temperature remains
constant.

Displacement and pressure wave
A sound wave can be described either in terms
of the longitudinal displacement suffered by the
particles of the medium (called displacement
wave) or in terms of the excess pressure generated
due to compression and rarefaction (called
pressure wave).

Displacement wave y=Asin(wt–kx)

Pressure wave p  =  p0cos(wt–kx)

where p0 = ABk = rAvw
Note : As sound-sensors (e.g., ear or mike) detect
pressure changes, description of sound as
pressure wave is preferred over displacement
wave.

KEYPOINTS
• The pressure wave is 90° out of phase w.r.t.

displacement wave, i.e. displacement will be
maximum when pressure is minimum and
vice-versa.

• Intensity in terms of pressure amplitude

2
0p

I
2 v

=
r

Transverse stationary waves in stretched string

[Fixed at both ends] [fixed end ®Node &
free end®Antinode]

l= l
2

Fundamental or

first harmonic or

zero overtone

v
f

2
=

l

l=l

second harmonic

first overtone

2v
f

2
=

l

l= 3l
2

third harmonic

second overtone

3v
f

2
=

l

th

th

n harmonic

(n-1) overtone

nv
f

2
=

l

l

Fixed at one end

l= l
4

Fundamental
v

f=
4l

l=
3l
4

third harmonic

first overtone

3v
f=

4l

l=
5l
4

fifth harmonic

second overtone
5v

f=
4l

( )th

th

2n+1 harmonic

n overtone

( )2n 1 v
f=

4

+

l

Sonometer

plucking
(freeend)

fixed

AN N

\\\
\\\

\\\
\\\

\\\
\\\

\\\
\\\

\

\\\
\\\

\\\
\\\

\\\
\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

n

p T
f

2
=

ml

[ p : number of loops]
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Vibrations of organ pipes

Stationary longitudinal waves closed end ® displacement
node, open end® displacement antinode
• Closed end organ pipe

v
f

4 4
l

= Þ =l
l

3 3v
f

4 4
l

= Þ =l
l

5 5v
f

4 4
l

= Þ =l
l

• Only odd harmonics are present
• Maximum possible wavelength = 4l

• Frequency of mth overtone ( ) v
2m 1

4
= +

l
• Open end organ pipe

v
f

2 2
l

= Þ =l
l

2v
f

2
= l Þ =l

l

3 3v
f

2 2
l

= Þ =l
l

• All harmonics are present
• Maximum possible wavelength is 2l.

• Frequency of mth overtone ( ) v
m 1

2
= +

l

• End correction :
Due to finite momentum of air molecules in organ
pipes reflection takes place not exactly at open end
but some what above it, so antinode is not formed
exactly at free end but slightly above it.

In closed organ pipe 
( )1

v
f

4 e
=

+l
where  e  =  0.6  R   (R=radius  of  pipe)

In open organ pipe ( )1

v
f

2 2e
=

+l
• Resonance Tube

Wavelength        =2( )l -2 1ll End correction    e=
l2-3l1

2

a
b

a
b

B

S
c

T

P

l1 l/4

l2

A

N N

A

3l/4

N

Intensity of sound in decibels

Sound level, 10
0

I
SL 10log

I
æ ö= ç ÷è ø

Where I0 = threshold of human ear = 10–12 W/m2

Characteristics of sound
• Loudness ® Sensation received by the ear due to

intensity of sound.
• Pitch ® Sensation received by the ear due to

frequency of sound.
• Quality (or Timbre)® Sensation received by the ear

due to waveform of sound.
Doppler's effect in sound :

A stationary source emits wave fronts that propagate
with constant velocity with constant separation
between them and a stationary observer encounters
them at regular constant intervals at which they were
emitted by the source.
A moving observer will encounter more or lesser
number of wavefronts depending on whether he is
approaching or receding the source.
A source in motion will emit different wave front
at different places and therefore alter wavelength
i.e. separation between the wavefronts.
The apparent change in frequency or pitch due to
relative motion of source and observer along the
line of sight is called Doppler Effect.

Source
n

vS

Sound Wave
observerv0

Observed frequency

speed of sound wave w.r.t. observer
n

observed wavelength
=¢

0 0

s s

v v v v
n n

v v v v
n

+ +æ ö
= =¢ ç ÷- -æ ö è ø
ç ÷è ø

If  v0,  vs <<<v then 0 sv v
n 1 n

v

+æ ö
» +¢ ç ÷è ø

• 
speed of source

Mach Number=
speed of sound

Doppler's effect in light :
Case  I :   Observer Light Source

v SO
v
c
v
c

v
c
v
c

1 v
Frequency 1

1 c
Violet Shift

1 v
Wavelength 1

1 c

üæ ö+ æ ö ïn = n » + n¢ ç ÷ç ÷ è ø-è ø ïï
ý

æ ö- ïæ öl = l » - l¢ ç ÷ç ÷ ïè ø+è ø ïþ

Case II : Observer Light Source

v SO
v
c
v
c

v
c
v
c

1 v
Frequency 1

1 c
Red Shift

1 v
Wavelength 1

1 c

üæ ö- æ ö¢n = n » - n ïç ÷ ç ÷ç ÷+ è ø ïè ø ï
ý

æ ö+ ïæ ö¢l = l » + lç ÷ ç ÷ ïç ÷- è ø ïè ø þ
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IMPORTANT NOTES
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* It is property of material to resist the deformation so
steel is more elastic than rubber.

* r0 r

U

 U = Potential energy,
 r = inter atomic distance

* Stress =
ResInternal restoring force

Area of cross section

F

A-
= .

There are three types of stress :-

Longitudinal Stress
(a) Tensile Stress:

F

tensile stress
     

F

F

tensile stress

Dll
wall

(b) Compressive Stress :

Dl F
Compressive
Stress

l

Volume Stress

Tangential Stress or Shear Stress

L

FA
B

CD
F

F

D
F

L

A
B

C

PROPERTIES OF MATTER
AND FLUID MECHANICS

(A) ELASTICITY

Strain =
Change in sizeof the body

Original size of the body

Longitudinal strain

    =
change in length of the body L

initial lengthof the body L
D

=

Volume strain

=
change in volume of the body V
original volumeof the body V

D
=

 Shear strain

tan f = 
L
l

or

f=
L
l

=
displacement of upper face
distance between two faces

F

L

A
A' B'B

CD
F

f

l

l

Relation between angle of twist
(q) & angle of shear (f)

A A'

Bfixed

O
tw isted

f

q

q '

AA' = rq and Arc AA'=lf

So rq = lf Þ
rq

f =
l

where q = angle of twist, f = angle
of shear
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Stress – Strain Graph

Elastic
Region

Elastic
Limit

Breaking
strength

Plastic Region

Strain

Stress Pr
op

or
tio

n
Li

m
it

P

0

E Y

B

C

ultimate strength

Breaking
point

Stress

Strain

These type of materials are called ductile

ultimate strength

Breaking
point

Stress

Strain

These type of materials are called brittle materials

Hooke's Law

within elastic limit Stress strainµ 

w Young's modulus of elasticity

Longitudinal stress F

Longitudinal strain A
Y

D
= =

l

l

w If L is the length of wire, r is radius and l is the increase
in length of the wire by suspending a weight Mg at
its one end then Young's modulus of elasticity of the
material of wire

( )
( )

2

2

Mg/ r MgL
Y

/ L r

p
= =

pl l

w Increment in length due to own weight

2MgL g L

2AY 2Y

r
=D =l

w Bulk modulus of elasticity

Volume stress F / A P

V VVolume strain

V V

K =
-D -D

= =
æ ö æ ö
ç ÷ ç ÷è ø è ø

w Bulk modulus of an ideal gas is process
dependent.

• For isothermal process PV = constant

Þ PdV + VdP=0Þ
dP

P
dV / V

-
=

So bulk modulus = P

• For adiabatic process PVg = constant

1PV dV V dP 0g - gÞ g + =

dP
PdV VdP 0 P

dV / V
-

Þ g + = Þ g = ;

So bulk modulus = gP

• For any polytropic process PVn= constant

n 1 nnPV dV V dP 0 PdV VdP 0

dP
nP

dV / V

-Þ + = Þ + =
-

Þ =

So bulk modulus = nP

Compressibility  
1 1

C
Bulk modulus K

= =

Modulus of rigidity

( )tangentialshearing stress

shearing strain

/ AF
h = =

f

Poisson's ratio ( ) lateral strain

Longitudinal strain
s =

Work done in stretching wire

W =
1
2

× stress × strain × volume:

W=
1 F
2 A

D
´ ´

l

l
× A × l =

1
2

F × Dl
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Rod is rigidly fixed between walls

A





 Thermal Strain =  

 Thermal  stress = Y

 Thermal  tension = YA

 Density = 
mass

volume

 Specific weight =
weight

volume

weight

volume
=g

 Relative density
density of given liquid

density of pure water at 4 C


 Density of a Mixture of substance  in the

proportion of mass

the density of the mixture is 
1 2 3

31 2

1 2 3

M M M ....
MM M

....

 
 

  
  

 Density of a mixture of substance in the

proportion of volume

the density of the mixture is  1 1 2 2 3 3

1 2 3

V V V
V V V ....
    

 
  

 Pressure=
normal force

area

 Variation of pressure with depth

Pressure  is  same  at  two  points  in  the  same
horizontal level  P

1
=P

2

The  difference  of  pressure  between  two  points
separated by a depth h : (P

2
–P

1
) = hg

(B) HYDROSTATICS

Effect of Temperature on elasticity

When  temperature  is  increased  then  due  to
weakness  of  inter  molecular  force  the  elastic
properties in general decreases i.e. elastic constant
decreases. Plasticity increases with temperature.
For  example,  at  ordinary  room  temperature,
carbon is elastic but at high temperature, carbon
becomes plastic. Lead is not much elastic at room
temperature but when cooled  in  liquid nitrogen
exhibit highly elastic behaviour.

For a special kind of steel, elastic constants do not
vary appreciably temperature. This steel is called 'INVAR
steel'.

Effect of Impurity on elasticity

Y may increase or decrease depends upon type
impurity.

Pressure in case of accelerating fluid

(i) Liquid placed in elevator:  When  elevator
accelerates  upward  with  acceleration  a0  then
pressure in the fluid, at depth h may be given by,
P=h[g+a0] + P0

a0

h

(ii) Free surface of liquid in case of horizontal

acceleration:

1 2
h2


a0

h1



  
0 0ma a

tan
mg g

  

  If P1 and P2 are pressures at point 1 & 2 then

P1–P2= g (h–h2)=gtan  =a0
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(iii) Free surface of liquid in case of rotating

cylinder

h

C

A
Br



 

2 2 2v r
h

2g 2g


 

L

F

H

P0

Force on the wall of dam = (Pressure of the

centre) (contact area)

(P
0
 + gH/2) (HL)

Pascal's Law

• The pressure in a fluid at rest is same at all the points
if gravity is ignored.

• A liquid exerts equal pressures in all directions.
• If the pressure in an enclosed fluid is changed at a

particular point, the change is transmitted to every
point  of  the  fluid  and  to  the  walls  of  the
container without being diminished in magnitude. [for
ideal fluids]

Types of Pressure  :

Pressure is of three types
(i) Atmospheric pressure (P0)
(ii) Gauge pressure (Pgauge)
(iii) Absolute pressure (Pabs.)

 Atmospheric pressure  :

Force exerted by air column on unit cross–section area
of sea level called  atmospheric pressure (Po)

air 
columnsea 

level

area=1m2

up to top of 
atmosphere

Po=
F
A

=101.3 kN/m2 = 1.013 × 105 N/m2

Barometer  is  used  to  measure  atmospheric

pressure.

Which was discovered by Torricelli.

Atmospheric pressure varies from place to place and

at a particular place from time to time.

• Gauge Pressure  :

Excess Pressure ( P– Patm) measured with the help of

pressure measuring instrument called Gauge pressure.

Pgauge=hg  or Pgauge h

h

manometer

gas

Patm

Pabsolute

Gauge pressure  is  always measured with help of

"manometer"

• Absolute Pressure  :

Sum of atmospheric and  Gauge pressure is called absolute

pressure.

Pabs = Patm + PgaugePabs = Po + hg

The pressure which we measure in our automobile tyres

is gauge pressure.

 Buoyant force

Weight of displaced fluid = Vg

 Apparent weight

Weight – Upthrust

 Rotatory – Equilibrium in Floatation :

For rotational equilibrium of floating body the meta–

centre must always be higher than the centre  of gravity

of the body.

 Relative density of body =
Density of body
Density of water
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 Steady and Unsteady Flow :  Steady flow is defined as that type of flow in which the fluid characteristics like
velocity, pressure and density at a point do not change with time.

 Streamline Flow :  In steady flow all the particles passing through a given point follow the same path and
hence a unique line of flow. This line or path is called a streamline.

 Laminar and Turbulent Flow :  Laminar flow is the flow in which the fluid particles move along well–
defined streamlines which are straight and parallel.

 Compressible and Incompressible Flow  :  In compressible flow the density of fluid varies from point to
point i.e. the density is not constant for the fluid whereas in incompressible flow the density of the fluid
remains constant through out.

 Rotational and Irrotational Flow :  Rotational flow is the flow in which the fluid particles while flowing
along path–lines also rotate about their own axis. In irrotational flow particles do not rotate about their axis.

 Equation of continuity  A1v1 = A2v2  A1v1 = A2v2( if  = constant) Based on conservation of mass
 Bernoulli's theorem : C P2

v2

h2
v1

B
P1

A1

h1

A2

21
P v gh constant

2
        Based on energy conservation

 Kinetic Energy  :

Kinetic energy per unit volume 
2 2Kinetic Energy 1 m 1

v v
volume 2 V 2

   

 Potential Energy  : Potential energy per unit volume 
Potential Energy m

gh gh
volume V

   

 Pressure Energy  : Pressure energy per unit volume = 
Pressure energy

P
volume



 For horizontal flow in venturimeter  :  2 2
1 1 2 1 2 2 2

1 2

2gh

A A

1 1
P v P v v A

2 2
      



 Rate of flow :

Volume of water  flowing per  second      : 1 1 1 2 2 2
1 2

2gh

A A
Q A v A A 



 Velocity of efflux : 2ghv 

 Horizontal range : R 2 h(H h) 

B
vH

h

H–h

A

(C) HYDRODYNAMICS
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(D) SURFACE TENSION

Surface tension is basically a property of liquid. The liquid surface behaves like a stretched elastic membrane which has
a natural tendency to contract and tends to have a minimum surface area. This property of liquid is called surface tension.

 Required excess force for lift
 Wire    Fex  =  2T
 Hollow  disc    Fex =  2T  (r1  +  r2)
 For  ring    Fex =  4rT
 Circular  disc    Fex=2rT
 Square  frame   Fex =  8aT
 Square  plateFex =  4aT

 Work =  surface energy  = TA
 Liquid  drop W =  4r2T
 Soap  bubble  W =  8r2T

Intermolecular forces

(a) Cohesive force : The force acting between the molecules of one type of molecules of same substance is called
cohesive force.

(b) Adhesive force : The force acting between different types of molecules or molecules of different substance is called
adhesive force.

 Intermolecular forces are different from the gravitational forces and do not obey the inverse–square law

 The distance upto which these forces effective, is called molecular range. This distance is nearly 10–9 m.  Within this
limit this increases very rapidly as the distance decreases.

 Molecular range depends on the nature of the substance

Properties of surface tension

• Surface tension is a scalar quantity.

• It acts tangential to liquid surface.

• Surface tension is always produced due to cohesive force.

• More is the cohesive force, more is the surface tension.

• When surface area of liquid is increased, molecules from the interior of the liquid rise to the surface. For this, work is done
against the downward cohesive force.

Dependency of Surface Tension

• On Cohesive Force : Those factors which increase the cohesive force between molecules increase the surface
tension and those which decrease the cohesive force between molecules decrease the surface tension.

• On Impurities : If the impurity is completely soluble then on mixing it in the liquid, its surface tension increases. e.g.,
on dissolving ionic salts in small quantities in a liquid, its surface tension increases. If the impurity is partially soluble in
a liquid then its surface tension decreases because adhesive force between insoluble impurity molecules and liquid
molecules decreases cohesive force effectively, e.g.

(a) On mixing detergent in water its surface tension decreases.

(b) Surface tension of water is more than (alcohol + water) mixture.

• On Temperature  : On increasing temperature surface tension decreases. At critical temperature and boiling point it
becomes zero. Note : Surface tension of water is maximum at 4°C

• On Contamination  : The dust particles or lubricating materials on the liquid surface decreases its surface tension.

• On Electrification  :The surface tension of a liquid decreases due to electrification because a force starts acting due to
it in the outward direction normal to the free surface of liquid.

 Splitting of bigger drop into smaller droples R=n1/3r
Work done= Change  in surface energy

=  4R3T 
1 1
r R

 
   =  4R2T  (n1/3–1)

 Excess pressure Pex  =  Pin  –  Pout

 In  liquid  drop  :  ex

2T

R
P 

 In  soap  bubble  :  ex

4T

R
P 

Definition of surface tension

The force acting per unit length of an imaginary line drawn on the free liquid surface at right angles to the line and in the
plane of liquid surface, is defined as surface tension.

 For floating needle 2T sin = mg
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Newton's law of viscosity:

xv
F A

y


 



 • SI UNITS : 2

N s
m


 or deca poise

• CGS UNITS : dyne–s/cm2 or poise
(1 decapoise = 10 poise)

Dependency of viscosity of fluids

On Temperature of Fluid

(a) Since cohesive forces decrease with
increase in temperature as increase
in K.E.. Therefore with the rise in
temperature, the viscosity of liquids
decreases.

(b) The viscosity of gases is the result
of diffusion of gas molecules from
one moving layer to other moving
layer.  Now  with  increase  in
temperature, the rate of diffusion
increases. So,  the viscosity also
increases. Thus, the viscosity of gases
increases with the rise of temperature.

On Pressure of Fluid

(a) The viscosity of liquids increases with
the increase of pressure.

(b) The viscosity of gases is practically
independent of pressure.

On Nature of Fluid

 Poiseuillel's formula

4dV pr

dt 8 L
Q




 

 Viscous force on spherical body
(stokes' law)  Fv = 6rv

 Terminal velocity

2

T

2 ( )g

9

r
v

  


  vT   r2

 Reynolds number e

v d
R






Re<1000 laminar flow,

1000 < Re < 2000 may be steady or may
be turbulant

Re > 3000 turbulant flow.

ANGLE OF CONTACT (
C
)

The angle enclosed between the tangent plane at the liquid surface and
the tangent plane at the solid surface at the point of contact inside the
liquid is defined as the angle of contact.
The angle of contact depends the nature of the solid and liquid in contact.
 Angle of contact  < 90°  concave shape, Liquid rise up

Angle of contact  > 90°  convex shape, Liquid falls
Angle of contact  = 90°  plane shape, Liquid neither rise nor
falls

 Effect of Temperature on angle of contact
On increasing temperature surface tension decreases, thus cosc

increases  c

1
cos

T
 

  
 
  and cdecrease. So on  increasing

temperature, c decreases.
 Effect of Impurities on angle of contact
(a) Solute impurities increase surface tension, so cosc decreases and

angle of contact c increases.
(b) Partially solute impurities decrease surface tension, so angle of contact

cdecreases.
 Effect of Water Proofing Agent

Angle of contact increases due to water proofing agent. It gets converted
acute to obtuse angle.

 Capillary rise  
2T cos

r g
h






• Zurin's law 
1

r
h 

• Jeager's method   
rg

2
T H hd  

• The height 'h' is measured from the bottom of the meniscus.
However, there exist some liquid above this line also. If correction
of this is applied then the formula will be

1
r g h r

3
T

2cos

 
  
 



• If height of capillary is injufficicnt, then liquid does not come out
of the tube. And radius of curvature of maniscus is given by :
hR = h'R'
h = calculated height
h' = actual height
R = Calculated radius of curvature of mainscus
R' = actual radius of curvature of mainscus

 When two soap bubbles are in contact then  1 2

1 2

r r

r r
r


 (r1 > r2) radius of

curvature of the common surface
 When two soap bubbles are combining to  form a new bubble then

radius of new bubble  2 2
1 2r r r 

 Force required to separate two plates 
2AT

d
F 

(E) VISCOSITY
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THERMAL PHYSICS
TEMPERATURE SCALES AND THERMAL EXPANSION

 

Name of 
the  scale 

Symbol 
for each 
degree 

Lower fixed 
point  (LFP) 

Upper fixed 
point (UFP) 

Number of 
divisions on 

the scale 
Celsius °C 0°C 100°C 100 

Fahrenheit °F 32°F 212°F 180 

Kelvin K 273.15 K 373.15 K 100  

100

C

0

B.P.

M.P.

212 373.15

F K X

UFP

LFP32 273.15

Celsius Fahrenheit Kelvin New

C 0 F 32 K 273.15 X LFP
100 0 212 32 373.15 273.15 UFP LFP

- - - -
= = =

- - - -
C F K X

100 180 100 UFP LFP
D D D D

Þ = = =
-

w Old thermometry : 
0

100 0

X X0
100 0 X X

-q -
=

- -  [two fixed points –ice & steam points]  where X is thermometric property

i.e. length, resistance etc.

w Modern thermometry : 
tr

T 0 X
273.16 0 X

-
=

-  [Only one reference point–triple point of water is chosen]

THERMAL EXPANSION
It is due to asymmetry in potential energy curve.

U

rr0

In solids  ® Linear expansion  l=l0(1+aDT)

Before heating

After heating

T

T+ TD
l l0+ =D l

l0

In solids ® Areal expansion  A= A0 (1+bDT)

l

T+ TD

A

l

A0

T

l0

l0

In solids, liquids and gases ®
Volume expansion V=V0(1+gDT)

l0

l
l

l
l

l

l0

T+ TD
T

l0
V0 V

[For isotropic solids : a : b : g = 1 : 2 : 3]
Thermal expansion of an isotropic object may be imagined
as a photographic enlargement.
For anisotropic materials  bxy=ax+ay and g = ax+ay+az

If a is variable : 
2

1

T

0
T

dTD = aòl l

Measurement of length by metallic scale
Measured value at temp q2 

0C,
MV = la{1 + (a0 – as)(q2 – q1)}

where,

la = actual length of object at q1 
0C

a0 = linear expansion coefficient of object.
as = linear expansion coefficient of scale.

(i) if a0 > as, then MV is more than la
(ii) if a0 < aS, then MV is less than la
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Application of Thermal expansion in solids

I. Bi-metallic strip (used as thermostat or auto-cut

in electric heating circuits) 
( )1 2

dR
T

=
a - a D

a 1 2>a

Room 
Temperature

Higher
Temperature

R

d d

II. Simple pendulum :

1/2 T 1
T 2 T

g T 2
D D

= p Þ µ Þ =
l l

l
l

Fractional change in time period =
T 1
T 2

D
= aDq

III. Scale  reading  : Due to linear expansion /
contraction, scale reading will be lesser / more
than actual value.
If temperature ­ then actual value = scale reading
(1+aDq)

IV. Thermal Stress

Cooling [Tensile Stress]

Heating [Compressive Stress]

Thermal strain 
D

= = aDq
l

l

As Young's modulus 
F / A

Y
/

=
Dl l

;

So thermal stress = YAaDq = ( )
YA
1

aDq
+ aDq

Thermal expansion in liquids
(Only volume expansion)

a

Apparent increase in volume
Initial volume Temperature rise

g =
´

r

real increse in volume
initial volume temperature rise

g =
´

r a vesselg = g + g

Change in volume of liquid w.r.t. vessel

( )0 rV V 3 TD = g - a D

Expansion in enclosed volume

V0

Initially Finally

[ ]L®a® g vessel;  liquid

h

V0

Increase in height of liquid level in tube when bulb
was initially completely filled.

   ( )
( )

0 L

0

 apparent change
V 3 Tin volume of liquid

h
area of tube A 1 2 T

g - a D
= =

+ a D

Anomalous expansion of water :
In the range 0°C to 4 °C water contract on heating
and expands on cooling.  At 4°C ® density is
maximum.
Aquatic life is able to survive in very cold countries
as the lake bottom remains unfrozen at the
temperature around 4°C.

Thermal expansion of gases :

• Coefficient of volume expansion : V
0

V 1
V T T
D

g = =
D

[PV = nRT at constant pressure VµT 
V T
V T

D D
Þ = ]

• Coefficient of pressure expansion P
0

P 1
P T T
D

g = =
D

KEY POINTS :
• Liquids usually expand more than solids because the intermolecular forces in liquids are weaker than in solids.
• Rubber contract on heating because in rubber as temperature increases, the amplitude of transverse vibrations

increases more than the amplitude of longitudinal vibrations.
• Water expands both when heated or cooled from 4°C because volume of water at 4°C is minimum.
• In cold countries, water pipes sometimes burst, because water expands on freezing.
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• Thermal capacity of a body =
Q
TD

Amount of heat required to raise the temperature
of a given body by 1°C (or 1K).

• Specific heat capacity =
Q

m TD
(m = mass)

Amount of heat required to raise the temperature
of unit mass of a body through 1°C (or 1K)

• Molar heat capacity=
Q

n TD
 (n=number of moles)

• Water equivalent :  If thermal capacity of a body
is expressed in terms of mass of water, it is called
water equivalent. Water equivalent of a body is the
mass of water which when given same amount
of heat as to the body, changes the temperature
of water through same range as that of the body.
Therefore water equivalent of a body is the quantity
of water, whose heat capacity is the same as the
heat capacity of the body.
Water equivalent of the body,

W=mass  of  body  ×  
specific heat of body
specific heat of water

æ ö
ç ÷è ø

Unit of water equivalent is g or kg.

• Latent Heat (Hidden heat) : The amount of
heat that has to supplied to (or removed from) a
body for its complete change of state (from solid
to liquid, liquid to gas etc) is called latent heat of

CALORIMETRY  ; 1 cal = 4.186 J  4.2 J

• Specific heat of a body may be greater than its thermal
capacity as mass of the body may be less than unity.

• The steam at 100°C causes more severe burn to human
body than the water at 100°C because steam has greater
internal energy than water due to latent heat of
vaporization.

• Heat is energy in transit which is transferred from
hot body to cold body.

• One calorie is the amount of heat required to raise

the body. Remember that phase transformation
is an isothermal (i.e. temperature = constant)
change.

• Principle of calorimetry :
Heat lost = heat gained
For temperature change Q = msDT,
For phase change Q = mL

• Heating curve :
If to a given mass (m) of a solid, heat is supplied
at constant rate (Q) and a graph is plotted between
temperature and time, the graph is called heating
curve.

Temperature

B.P.

M.P.

O
t1 t2 t3 t4

time

A B
melting

boiling

ga
s

liq
uid

so
lid

C D

E

Specific heat
1

slope of curve
µ

(or thermal capacity)
Latent heat µ length of horizontal line.

KEY POINTS
the temperature of one gram of water through 1°C
(more precisely from 14.5°C to 15.5°C).

• Clausins & clapeyron equation (effect of pressure
on boiling point of liquids &  melting point of solids

related with latent heat)  
2 1

dP L
dT T(V V )

=
-
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Heat Transfer

Conduction Convection Radiation
In conduction, heat is transferred from one point to
another without the actual motion of heated particles.
In the process of convection, the heated particles of
matter actually move. In radiation, intervening medium
is not affected and heat is transferred without any
material medium.

Conduction Convection Radiation 

Heat Transfer due 
toTemperature 

difference 

Heat transfer 
due to density  

difference 

Heat transfer with 
out any medium 

Due to free electron 
or vibration motion 

of molecules 

Actual motion 
of particles 

Electromagnetic 
radiation 

Heat transfer in solid 
body (in mercury 

also) 

Heat transfer 
in fluids 

(Liquid+gas) 

All 

Slow process Slow process Fast process  
(3 ×  108 m/sec) 

Irregular path Irregular path Straight line  
(like light) 

 

dQ
dt

dQ
dt

T1 T2

RH

l

A

A B
T1 T2

Rate of heat flow

dQ dT
KA

dt dx
= -  or 

( )1 2KA T TQ
t

-
=

l

Thermal resistance HR
KA

=
l

K1 K2

Rods in series

l1 l2

A K1

K2

Rods in parallel

A1

A2

eqK
/ K

S
=

S
l

l
; eq

KA
K

A
S

=
S

Growth of Ice on Ponds
Time taken by ice to grow a thickness from x1

to  x2: ( )2 2
2 1

L
t x x

2K
r

= -
q

[K=thermal conductivity of ice, r=density of ice]

THERMAL CONDUCTION
– °Cq

0°C

RADIATION

• Spectral, emissive, absorptive and
transmittive power of a given body surface:
Due to incident radiations on the surface of a body
following phenomena occur by which the radiation
is divided into three parts.
(a) Reflection (b) Absorption  (c) Transmission

amount of incident 
radiation Q

amount of reflected
radiation Qr

amount of transmitted
radiation Qt

amount of
absorbed
radiation Qa

From energy conservation

  Q = Qr  + Qa + Qt  Þ
ar tQQ Q

1
Q Q Q

+ + =

  Þ    r + a + t = 1

• Reflective Coefficient : r = rQ
Q

• Absorptive Coefficient : a = aQ
Q

• Transmittive Coefficient : t = tQ
Q

r = 1 and a = 0 , t = 0 Þ Perfect reflector
a = 1 and r = 0,  t = 0 Þ  Ideal absorber
(ideal black body)
t = 1 and a = 0,   r = 0 Þ Perfect transmitter
(daithermanous)

Reflection power (r) = 
rQ

100 %
Q

é ù
´ê ú

ë û

Absorption power (a) = 
aQ

100 %
Q

é ù
´ê ú

ë û

Transmission power (t) = 
tQ

100 %
Q

é ù
´ê ú

ë û
• Stefan's Boltzmann law :

Radiated energy emitted by a perfect black body
per unit area/sec E= sT4

For a general  body E=serT
4 [where 0 £ er £ 1]

• Prevost's theory of heat exchange :
A body is simultaneously emitting radiations to its
surrounding and absorbing radiations from the
surroundings. If surrounding has temperature T0
then  Enet =  ers(T4–T0

4)
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• Kirchhoff's law :
The ratio of emissive power to absorptive power
is same for all surfaces at the same temperature
and is equal to the emissive power of a perfectly
black body at that temperature.

e E E e
E e a

a A 1 a
= = Þ = Þ µ

Therefore a good absorber is a good emitter.

• Perfectly Black Body :
A body which absorbs all the radiations incident
on  it  is  called  a  perfectly  black  body.

• Absorptive Power (a) :
Absorptive power of a surface is defined as the
ratio of the radiant energy absorbed by it in a given
time to the total radiant energy incident on it in
the same time.
For ideal black body, absorptive power =1

• Emissive power(e) :
For a given surface it is defined as the radiant energy
emitted per second per unit area of the surface.

• Newton's law of cooling:
q

q1

q0

t
If temperature difference is small
Rate of cooling

( )0

d
dt
q

µ q - q ( ) kt
0 1 0 e-Þ q = q + q - q

[where k = constant]
when a body cools from q1 to q2 in  time  't'  in  a
surrounding of temperature q0 then

1 2 1 2
0k

t 2
q - q q + qé ù

= - qê úë û
  [where k= constant]

• Wien's Displacement Law :
Product of the wavelength lm of most intense
radiation emitted by a black body and absolute
temperature of the black body is a constant
lmT=b = 2.89 × 10–3 mK = Wein's constant

  

el

T1

T2

T3

l
lm1 l lm m2 3

T >T >T1 2 3

4

0

Area under e graph= e d e T
¥

l l- l l = = sò

Solar constant
The Sun emits radiant energy continuously in space
of which an insignificant part reaches the Earth.
The solar radiant energy received per unit area per
unit time by a black surface held at right angles to
the Sun's rays and placed at the mean distance of
the Earth (in the absence of atmosphere) is called
solar constant.

r

S= 2

P
4 rp =

2 4
S

2

4 R T
4 r

p s
p =

2

4SR
T

r
æ ö

s ç ÷è ø

where RS = radius of sun

r  = average distance between

     sun  and  earth.

Note :- S = 2 cal cm–2min=1.4 kWm–2

T = temperature of sun » 5800 K

KEY POINTS

• Stainless steel cooking pans are preferred with
extra copper bottom because thermal
conductivity of copper is more than steel.

• Two layers of cloth of same thickness
provide warmer covering than a single layer
of cloth of double the thickness because
air (which is better insulator of heat) is
trapped between them.

• Animals curl into a ball when they feel very
cold to reduce the surface area of the body.

• Water cannot be boiled inside a satellite by
convection because in weightlessness
conditions, natural movement of heated
fluid is not possible.

• Metals have high thermal conductivity
because metals have free electrons.
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KINETIC THEORY OF GASES
It related the macroscopic properties of gases to the microscopic properties of gas molecules.

Basic postulates of Kinetic theory of gases

• Every gas consists of extremely small particles known
as molecules.  The molecules of a given gas are all
identical but are different than those another gas.

• The molecules of a gas are identical, spherical, rigid
and perfectly elastic point masses.

• The size is negligible in comparision to inter molecular
distance (10–9 m)

Assumptions regarding motion :

• Molecules of a gas keep on moving randomly in all
possible direction with all possible velocities.

• The speed of gas molecules lie between zero and infinity
(very high speed).

• The number of molecules moving with most probable
speed is maximum.

Assumptions regarding collision:

• The gas molecules keep colliding among themselves
as well as with the walls of containing vessel.  These
collision are perfectly elastic.  (ie., the total energy before
collision = total energy after the collisions.)

Assumptions regarding force:

• No attractive or repulsive force acts between gas
molecules.

• Gravitational attraction among the molecules is
ineffective due to extremely small masses and very high
speed of molecules.

Assumptions regarding pressure:

• Molecules constantly collide with the walls of container
due to which their momentum changes.  This change
in momentum is transferred to the walls of the container.
Consequently pressure is exerted by gas molecules on
the walls of container.

Assumptions regarding density:

• The density of gas is constant at all points of the
container.

Kinetic interpretation of pressure :

2
rms

1
PV mNv

3
=

[ m = mass of a molecule, N = no. of molecules]

Ideal gas equation

PV =µRT 
AN kTRT N

P kT nkT
V V V

mm æ öÞ = = = =ç ÷è ø

Gas laws

r Boyle's law :For a given mass at constant

temperature. 
1

V
P

µ

r Charles' law  : For a given mass at constant pressure
V µ T

r Gay–Lussac's law For a given mass at constant
volume P µ T

r Avogadro's law:If P,V & T are same then no. of
molecules N1=N2

Different speeds of molecules

rms
W

3RT 3kT
v

M m
= =  ; mp

W

2RT 2kT
v

M m
= =

av
W

8RT 8kT
v

M m
= =

p p

v

vmp (T )1 vmp vmp(T )2 (T )3

vmp=most probable speed
vmax=maximum speed of molecule

nu
m

be
r
of

m
ol

ec
ul

es
(N

)

velocity of molecule

Nmax
(T )1

Nmax

Nmax

T =500K1

T =1000K2

T =2000K3

(T )2

(T )3

Kinetic Interpretation of Temperature :
Temperature of an ideal gas is proportional to the average
KE of molecules,

2
rms

1
PV mNV

3
=  & PV = mRT 2

rms

1 3
mv kT

2 2
Þ =
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Degree of Freedom (F) :

Number of minimum coordinates required to specify
the dynamical state of a system.

At higher temperature, diatomic molecules have
two more degree of freedom due to vibrational
motion (one for KE + one for PE)

At higher temperature diatomic gas has f = 7

Maxwell's Law of equipartition of energy:

Kinetic energy associated with each degree of freedom

of particles of an ideal gas is equal to 
1

kT
2

• Average KE of a particle having f degree of

freedom=
f
2

kT

• Translational KE of a molecule = 
3

kT
2

• Translational KE of a mole =
3

RT
2

• Internal energy of an ideal gas: f
U RT

2
= m

Specific  heats  (CP and  CV)  :

• Molar specific heat of a gas dQ
C

dT
=

m

• V
V constant

dQ dU
C

dT dT=

æ ö
= =ç ÷è m ø m

• P V
dP 0

dQ
C C R

dT =

æ ö
= = +ç ÷è m ø  ¬ Mayer's equation

A
to

m
ic

ity
 

Tr
an

sl
at

io
na

l 
R

ot
at

io
na

l 
T

ot
al

 (
f) 

P

V

C
C

g =
 

V

f
C R

2
=

C
P
=

C
V
+

R
 

Monoatomic  
[He, Ar, Ne…  ] 3 0 3 

5
3

=1.67 3
R

2
 

5
R

2
 

Diatomic 
[H2, N2….] 

3 2 5 
7

5
=1.4 5

2
R 7

2
R 

Triatomic 
(Linear CO2) 

3 2 5 
7
5

=1.4 5
2

R 7
2

R 

Triatomic 
Non-linear-NH3) 
& Polyatomic 

3 3 6 
4
3

=1.33 3R 4R 

 

• Kinetic energy per unit volume

2
V rms

1 mN 3
E v P

2 V 2
æ ö

= =ç ÷è ø

• At absolute zero, the motion of all molecules of
the gas stops.

• At higher temperature and low pressure or at
higher temperature and low density, a real gas
behaves as an ideal gas.

• For any general process

(a) Internal energy change DU = nCVdT

(b) Heat supplied to a gas DQ = nCdT

where C for any polytropic process

PVx = constant is V

R
C C

1 x
= +

-

(c) Work done for any process DW = PDV

It can be calculated as area under P-V curve

(d) Work done = DQ – DU = 
nR

dT
1 x-

For any polytropic process PVx = constant

KEY POINTS

For mixture of non-reacting gases

Molecular weight : 
1 2

mix

1 W 2 W

W
1 2

M M ....
M

....

m + m +
=

m + m +

Specific heat at constant V: 1 2

mix

1 V 2 V

V
1 2

C C .....
C

....

m + m +
=

m + m +

Specific heat at constant P: 1 2

mix

1 P 2 P

P
1 2

C C ......
C

......

m + m +
=

m + m +

mix 1 2

mix 1 2

P 1 P 2 P

mix
V 1 V 2 V

C C C ......

C C C .....

m + m +
g = =

m + m +
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• Zeroth law of thermodynamics : If two systems
are each in thermal equilibrium with a third, they are
also in thermal equilibrium with each other.

• First law of thermodynamics : Heat supplied (DQ)
to a system is equal to algebraic sum of change in
internal energy (DU) of the system and mechanical work
(W) done by the system

DQ = W + DU  [Here W PdV= ò ; DU = nCVDT]

For differential change 

dQ = W + dUd

path 
dependent

path 
independent

Area between P-V curve & V-axis gives work done
by gas from one state to another state.

• Sign Convention
Heat absorbed by the system ®positive
Heat rejected by the system ® negative
Increase in internal energy

(i.e. rise in temperature)®positive
Decrease in internal energy

(i.e. fall in temperature)® negative
Work done by the system ®positive
Work done on the system ®negative

• For cyclic process DU = 0 Þ DQ=W
• For isochoric process

V = constant Þ P µ T & W = 0
DQ = DU = mCVDT
Isochoric DV = 0 B = not defined.
Bulc modulus
Volume expansion coefficient = 0

• For isobaric process
P = constant Þ   V µ T
DQ = mCPDT, DU = mCVDT
W = P(V2 – V1) = mRDT
Isobaric DP = 0 Bulk modulus (B) = 0

Volume Expansion coefficient = 
1
T

• For adiabatic process PVg = constant
or Tg P1–g = constant

or  TVg–1 = constant
In this process DQ = 0 and

 W = –DU = µCV (T1 – T2) 
1 1 2 2P V P V

1

-
=

g -

adiabatic Bulk modulus B = 
Pv
v

¶æ ö- ç ÷¶è ø
B P= g

Volume Expansion coefficient = ( )
1

1 T- g

w For Isothermal Process
T = constant   or  DT = 0 Þ PV = constant
In this process  DU = µCvDT = 0

So, DQ = W = µRT ln 
æ ö
ç ÷
è ø

2

1

V
V  = µRTln 

æ ö
ç ÷
è ø

1

2

P
P

Isothermal Bulk modulus B = 
=

¶æ ö- ç ÷¶è øT const

P
v

v

PB v P
v

-æ ö= - =ç ÷
è ø

DT = 0
Volume expansion coefficient not defined.

• For any general polytropic process
PVx = constant

• Molar heat capacity V

R
C C

1 x
= +

-
• Work done by gas

( ) ( )1 2 1 1 2 2nR T T P V P V
W

x 1 x 1

- -
= =

- -
• Slope of P-V diagram (also known as indicator

diagram at any point 
dP P

x
dV V

= - )

Polytropic Bulk modulus B = xP
Efficiency of a cycle

Source TH Sink TC

QH QCWorking
substance

W

Work doneby working substance

Heat supplied 
h =

-
= = = -H C C

H H H

Q Q QW
1

Q Q Q

For carnot cycle

=C C

H H

Q T
Q T  so  h = 1 – 

C

H

Q
Q = 1 – 

C

H

T
T

For refrigerator

 
Source TH Sink TC

QH QCWorking
substance

W

Coefficient of performance

b = = =
- -

C C C

H C H C

Q Q T
W Q Q T T

THERMODYNAMICS



E

no
de

06
\B

0A
I-B

0\
Ko

ta
\J

EE
(A

dv
an

ce
d)

\L
ea

de
r\

Ph
y\

Sh
ee

t\
Ha

nd
 b

oo
k 

(E
+L

)\
En

g\
13

_K
in

et
ic 

Th
eo

ry
 o

f G
as

es
.p

65

ALLEN

75

Physics HandBookC H A P T E R

KEY POINTS
Work done is least for monoatomic gas (adiabatic process) in shown expansion.

Isothermal

Isobaric

Diatomic

Monoatomic
Adiabatic

V

P

At a particular pressure and volume, magnitude of slope of P-V curve is greater for adiabatic 
P
V

æ ögç ÷
è ø

 then

isothermal 
P
V

æ ö
ç ÷
è ø

Air quickly leaking out of a balloon becomes cooler as the leaking air undergoes adiabatic expansion.
• First law of thermodynamics does not forbid flow of heat from lower temperature to higher temperature.
• First law of thermodynamics allows many processes which actually don't happen.

•  

P P

W ®positive

V V

W negative®

• CARNOT ENGINE

It is a hypothetical engine with maximum possible efficiency

Process 1®2 & 3®4 are isothermal

Process 2®3 & 4®1 are adiabatic.

Second Law :- First law is quantitative analysis while second law is qualitative analysis of thermodynamics
processes. Second law tells us in what conditions best can be converted into useful work.

dQds
T

= ds ® change in entropy, dq ® best exchanged.

P

V

QS

QR

1
2

34
3 4

1 2

T
1

T
-

-

h = -
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IMPORTANT NOTES
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ELECTROSTATICS
ELECTRIC  CHARGE

Charge of a material  body  is that property due to which it interacts with other charges. There are two kinds
of charges- positive and negative.
S.I. unit ®  Coulomb (C)
Properties of charge :-
(a) Charge is a scalar quantity (b)Charge is quantised
(c) Charge is conserved. (d)Charge is independent of frame of reference.
Methods of charging :-
(a) Friction    (b) Induction  (c) Conduction

COULOMB'S LAW

Force between two charges  1 2
2

0

q q1 ˆF r
4 r

=
p Î

r

q1 q2

r

where, p Î0

1
4  = 9 × 109 

2

2
Nm

C

 If medium is present then =
p Î Î

r
1 2
2

0 r

q q1 ˆF r
4 r

NOTE :The Law is applicable only for static and point charges. Moving charges may result in magnetic interaction.
And if charges are spread on bodies then induction may change the charge distribution.

ELECTRIC FIELD OR ELECTRIC INTENSITY OR ELECTRIC FIELD STRENGTH
Electric field intensity is defined as force on unit test charge.

= =
r r

2 3
kq kqˆE r r
r r

r
q

 SI unit : Newton/coulomb (N/C)

(a) Due to point charge =
r

2
kq ˆE r
r

P

q

r

r

E

ELECTRIC FIELD DUE TO SPECIAL CHARGE DISTRIBUTION

(b) Due to linear change distribution :-

a
b Ex

Ey

lC/m

( )l
= a + b

p Îx
0

E sin sin
4 r

( )l
= b - a

p Îy
0

E cos cos
4 r
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(c) Due to infinite line of charge

l
=

p Î

r

P
0

ˆE r
2 r

Pr
lC/m

   

r

E

(d) Electric field due to uniformly changed ring

+

+

+

+ +
++

+ +
++

+
+ +

+

O

R

x P

E

++
Q

  

E

–R/ 2Ö

  R/ 2Ö r

EP = 

( )+
3/22 2

kQx

R x

(i) At centre of the ring, x = 0. So E = 0

(ii) Electric field is maximum at x = ± 
R

2

(e) Due to segment of ring

R

P
a

l

          
l aæ ö= ç ÷

è ø
P

2k
E sin

R 2

Direction of electric field is along the direction of
angle bisector of the arc.

(f) Due to charged disk

+++ +
+

++++ +
+++ +

+
++

+

+

+
++

+++
+

+
+

E
Px

sC/m2

R
O

æ ös ç ÷= -
ç ÷Î +è ø

P
2 20

x
E 1

2 R x

(g) Due to infinite plane sheet of charge

P
0

ˆE n
2

s
=

Î

r

P

n
E

^

s C/m2

++ +
+
++ +
+

+
+
++

+

++ +++ +++
+

+
++++

+ + +
++++

+++
+    

s Î/2 0

E

r

(h) Due to infinite charged conducting plate

P
0

ˆE n
s

=
Î

r

P

n
E

^

s C/m2

++ +
+
++ +
+

+
+
++

+

++ +++ +++
+

+
++++

+ + +
++++

+++
++

   
s Î/ 0

E

r

(i) Due to hollow non-conducting sphere

Kq/R2

E

R r

A

R

B
C

(a) For point inside the sphere (r < R) : EA = 0

(b) For point on the surface (r = R) : B 2
kQ

E
R

=

(c) For point outside the sphere : C 2
kQ

E
r

=

(j) Due to uniformly charged non-conducting sphere

Kq/R2

E

R r

A

R

B C
+ +

+ ++
+ +
+ +
+ +

+ +

+
+ +

+++
+

(a) For point inside the sphere (r < R)



E

no
de

06
\B

0A
I-B

0\
Ko

ta
\J

EE
(A

dv
an

ce
d)

\L
ea

de
r\

Ph
y\

Sh
ee

t\
H

an
d 

bo
ok

 (E
+L

)\
En

g\
14

_E
lec

tro
sta

tic
s.

p6
5

ALLEN

79

Physics HandBookC H A P T E R

A 3
0

kQr r
E

3R

r
= =

Î

(b) For point on the surface (r = R) : EB = 2
kQ

R

(c) For point outside the sphere (r > R) : C 2
kQ

E
r

=

(k) Due to solid or Hollow conducting sphere

Kq/R2

E

R r

A

R

B
C

(a) For point inside the sphere (r < R) : EA = 0

(b) For point on the surface (r = R): EB = 2
kQ

R

(c) For point outside the sphere (r > R) : C 2
kQ

E
r

=

ELECTRIC FIELD LINES

BA

q >qA B

       

+

Fixed point charge
near infinite metal 
plate

Electric field lines have the following properties :-
(a) Imaginary curves
(b) Never intersect each other
(c) Never form closed loops
(d) Start from (+ve) charge and ends on (–ve) charge.
(e) If there is no electric field then there will no

field lines
(f) Number of electric field lines per unit area

normal to the  area at a point represents
magnitude of electric field intensity.  Crowded
lines represent strong field while distant lines
weak field.

(g) Number of l ines originating from or
terminating on  a charge is proportional to
magnitude of charge.

(h) Field lines start or end normally at the surface
of a conductor.

(i) Tangent to the lines of force at a point in an
electric field gives direction of intensity of
electric field.

ELECTRIC FLUX

f = ò
uuurr

E.dA

(a) Scalar quantity
(b) SI unit :- Nm2/C or V–m

(i) For uniform electric field f = E.A EA cos= q
rr

where, q = Angle between E
r

 and area vector ( A
r

).

(ii) For non-uniform field E.dAf = ò
uuurr

Gauss’s Law

For a closed surface, total flux 
in

0

q
E.dAf = =

Îò
uuurr

Ñ

where qin = net charge enclosed by the closed surface.
(i) Flux through Gaussian surface is independent of

its shape.
(ii) Flux depends only on charges present inside the

closed surface.
(iii) Flux through a closed surface is independent of

position of charges inside it.
(iv) Electric field intensity at the Gaussian surface is

due to all charges present (inside as well as
outside).

ELECTROSTATIC POTENTIAL ENERGY
It is the amount of energy required to bring any charge
from ¥ to any particular point without any charge in
K.E.
Interection energy of a system of two charged
particles

q1 q2

r

U = 1 2kq q
r

{ Assuming potential energy at ¥ to be zero}

ELECTRIC POTENTIAL
It is the work done against the field to take a unit
positive charge from infinity (reference point) to the
given point P without gaining any kinetic energy.

( )¥-
= =

p ext
P

W U
V

q q

(i) Electric potential is a scalar quantity
(ii) SI unit :- Volt (V) or J/C
(iii) In presence of dielectric medium, potential decreases

and becomes 
r

1
e  times of its free space value.
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ELECTRIC POTENTIAL DUE TO SPECIAL CHARGE
DISTRIBUTION :-
(a) Due to a point charge :-

q

r

P

         

r

V

P
0

kq q
V

r 4 r
= =

pe

(b) Due to a charged ring :-

P

R

x

q

+
+
+
+
+ + +

+
+
+
+
+
+
++

+
+
+
+++ ++

   P
2 2

kq
V

R x
=

+

(c) Due to segment of ring :-

++
+

+
+
+
++ +

P

R

q

            P
kQ

V
R

=

(d) due to charged disk :-

Px
R

++ +
s

+
+
+

+
+

+
+

+ +
+

+
+

+

2 2
P

0
V x R x

2
s æ ö= + -ç ÷
Î è ø

(e) Due to non-conducting spherical shell :-
(a) For point inside the sphere (r < R) :-

A
kQ

V
R

=

          

Q

O R

A B
C+++

+
+
+

+ + + +
+
+   

r

V

R

(b) For point on the surface (r = R) :-

B
kQ

V
R

=

(c) For point outside the sphere (r > R) :-

C
kQ

V
r

=

(f) Due to solid non-conducting sphere :-
(a) For point inside the sphere (r < R) :-

( )2 2
A 3

kQ
V 3R r

2R
= -

Q

O R

A B
C

   

r

V

R

3kQ/2R

(b) For point on the surface (r = R)

B
kQ

V
R

=

(c) For point outside the sphere (r > R) :-

C
kQ

V
r

=

(g) Due to conducting sphere or shell :-

Q

O R

A B
C

  

r

V

R

kQ/R

(a) For point inside the sphere (r < R) :-

A
kQ

V
R

=

(b) For point on the surface (r = R) :-

B
kQ

V
R

=

(c) For point outside the surface (r > R) :-

C
kQ

V
r

=
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POTENTIAL DIFFERENCE
The potential difference between two points A & B is
work done by external agent against electric field in taking
a unit positive charge from B to A keeping kinetic energy
constant :

( )BA ext
A B

W
V V

q
- =

Relation between electric field & electric
potential :-

dV ˆE V gradV r
dr

= -D = - = -
r r

v v v ˆˆ ˆE i j k
x y z

-¶ ¶ ¶
= - -

¶ ¶ ¶

r

 ; V E.dr= -ò
uurr

(a) Direction of E
r

 is from high potential to low potential.

(b) If V = constant over a region, then E = 0 (in that region)

EQUIPOTENTIAL SURFACE.
The locus of all points having same potential is called
(a) Equipotential surfaces can never cross each other.
(b) Equipotential surfaces are always perpendicular to

the direction of electric field.
(c) No work is done in moving a charge from one point

to other over an equipotential surface.

ELECTRIC DIPOLE
A system of two equal and opposite charges separated by
a small distance is called electric dipole :

d
–q +qP

Dipole Moment :-  p qd=
rr

Direction of dipole moment is from negative to positive
charge :

DIPOLE PLACED IN UNIFORM ELECTRIC FIELD

(a) Torque p Et = ´
rrr

(b) Net force = 0
(c) Work done in rotation of dipole from q1 to q2 angle

in external electric field W = pE(cosq1 – cos q2)

(d) Electrostatic potential energy = p.E pE cos- = - q
rr

(e) In non-uniform electric field, force on electric dipole

dE
F p.

dr
= -

r
r r

ELECTRIC FIELD DUE TO DIPOLE

(a) At an axial point :-

=
r

r

3
2kp

E
r

(b) On the equitorial line :-

-
=

r
r

3
kp

E
r

(c) At any general point :-

= + q
r

r
2

3
kp

E 1 3cos
r

ELECTRIC POTENTIAL DUE TO DIPOLE

(a) At an axial point :-

=
2

kp
V

r

(b) At equitorial point :-
V = 0

(c) At a general point :-

q
=

2
kpcos

V
r

CONDUCTORS AND ITS PROPERTIES

(a) Conductors are always equipotential surfaces.
(b) Charge always reside on the outer surface of a

conductor.
(c) Electric field is always perpendicular to conducting

surface.
(d) Electric field lines never exist within conducting

materials.
(e) When a conductor is grounded, its potential

becomes zero.
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Newton's law of gravitation
r m2m1

Force of attraction between two point masses

1 2
2

Gm m
F

r
=

Directed along the line joining of point masses.
• It is a conservative force field Þ mechanical energy

is conserved.
• It is a central force field Þ angular momentum is

conserved.

G = 6.67× 10–11

3

2

m
kgs

Gravitational field due to point mass at
distance  x

2

Gm
Eg

r
=  [Radially inwards]

Gravitational field on the axis of uniform
thin  ring  at  distance  x

2 2 3/2

Gm
Eg x

(R x )
=

+  [Directed towards centre]

Eg is max at 
R

x
2

= ±

Uniform linear mass (mass density l)

x
a

b

(Eg) = G—–xy
l (cos –cos )ab

(Eg) = G—–xx
l (sin –sin )ba

Gravitational field due to spherical shell

RM
   

E

rr=R

I = 0

GRAVITATION

r Outside the shell g 2

GM

r
E = , where r > R

r On the surface g 2

GM

r
E = , where r=R

r Inside the shell Eg = 0, where r<R
[Note:Direction always towards the centre of the sphere]

Gravitational field due to solid sphere

RM
    

E

rr=R

I  rµ 

r Outside the sphere g 2

GM

r
E = ,  where  r  >  R

r On the surface g 2

GM

r
E = , where r=R

r Inside the sphere g 3

GMr
E

R
= ,  where  r<  R

Acceleration due to gravity  2

GM
g

R
=

r At height h : h 2

GM
g

(R+h)
=

 If h << R : h s

2h
g g 1

R
æ ö» -ç ÷è ø

r At depth d : d s3

GM(R d) d
g g 1

RR
- æ ö= = -ç ÷è ø

r Effect of rotation on g : g' = g–w2Rcos2l
 where l is angle of latitude.

Gravitational potential

Due to a point mass at a distance  
GM

V
r

= -
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Gravitational potential due to

 spherical shell

R

GM
R

–

O

V

r

r Outside the shell  
GM

V
r

= - , r>R

r Inside/on the surface the shell 
GM

V
R

= - , r£ R

Potential due to solid sphere

R

GM
R

–

O

V

r

3GM
2R

–

r Outside the sphere
GM

V
r

= - , r > R

r On the surface
GM

V
R

= - , r = R

r Inside the sphere  
( )2 2

3

GM 3R r
V

2R

-
= - , r < R

Potential on the axis of a thin ring at a

distance x

2 2

GM
V

R x
= -

+

Electrostatic self-energy

r For two point masses 1 2Gm m
U

r
= -

r Uniform thin spherical shell
2GM

U
2R

= -

r Uniform solid sphere
23 GM

U
2 R

=

Escape velocity from the surface a planet
of mass M & radius R

=e

2GM
v

R

Orbital velocity of satellite

0

GM GM
v

r (R h)
= =

+

r For nearby satellite e
0

vGM
v

R 2
= =

Here ve = escape velocity on earth surface.

Time period of satellite
3/22 r 2 r

T
v GM

p p
= =

Energies of a satellite

r Potential energy
GMm

U
r

= -

r Kinetic energy 21 GMm
K mv

2 2r
= =

r Mechanical energy
GMm

E U K
2r

= + = -

r Binding energy
GMm

BE E
2r

= - =

Kepler's laws
r Ist Law (Law of orbit) Path of a planet is elliptical

with the sun at a focus.
r IInd Law (Law of area)

Areal velocity 
dA
dt

= constant =
L

2m
r IIIrd Law (Law of  period)   T2 µ a3 or

      ( )
3

32 max minr rT mean radius
2
+æ öµ µç ÷è ø

For circular orbits T2 µ R3
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IMPORTANT NOTES
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CURRENT ELECTRICTY
Some Definations

ELECTRIC CURRENT
The rate of flow of electric charge across any cross-
section is called electric current.

(a) Instantaneous electric current 
dq

I
dt

=

(b) Average electric current av

q
I

t
D

=
D

Current Density
Current flowing per unit area through any cross-
section is called current density.

A I
 

I
J

A
=

I J.A JAcos= = q
rr

Drift Velocity
Average velocity with which electrons drift from
low potential end to high potential end of the
conductor (vd). Drift velocity is given by

d

e
v E

m
t

= -
rr

 (in terms of applied electric field)

=d

I
v

neA
 (in terms of current through the

conductor) From second relation

I = neAvd where A is the area of cross-section
and “Avd” represents the rate of flow.

The term dv
E

 is called mobility of charge

carriers, represented by dv e
E m

t
m = = .

(here t ® mean relaxation time depends on

temperature 1

T
t µ , T ® absolute temperature

of the conductor)

OHM’S LAW

V
I

R
=  where 1

R
A A

r
= =

s
l l  where r (resistivity) =

1
s

Hence according to Ohm’s law when R is constant
I µ V  Þ I ~V curve is a straight line (at constant
temperature)

• Resistance of a conductor is given by

2

m
R

A ne A
r

= =
t

l l

where r is resistivity. Its units is W m.

• Resistivity of a conductor, 2

m
ne

r =
t  (where m is

mass of electron, n is number density of free
electrons, t is average relaxation time).

Variatio in resistance (R)

Variation with length: R
A

= r
l

(a) If a wire is cut to alter its length, then area
remains same.      \ R µ l

(b) If  a  wire  is  stretched  or  drawn  out  or  folded,
area varies but volume remains constant.  Þ R
µ l2

For small percentage changes (< 5%) in length by

stretching or folding, then, R 2
R

D D
=

l

l

Variation with area of cross-section or
thickness
(a) If area is increased / decreased but length is

kept same.

\ 
1

R
A

µ  or 
2

1
R

r
µ  (r = radius / thickness)

(b) If area is increased/decreased but volume
remains same.

2

1
R

A
µ  or 

4

1
R

r
µ

For Conductors :
rt = r0(1+at), where ‘a’ is temperature.
Coefficient of resistivity.

As R µ r Þ R = R0(1 + at)
(R0 is the resistance at reference temperature)

At temperature t1, R1 = R0 (1 + at1)
At temperature t2, R2 = R0 (1 + at2)

    Þ 2 1

0 2 1

R R

R (t t )

-
a =

-
, 2 1

0
2 1

R R
R

(t t )

-
=

a -
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COMBINATION  OF  RESISTANCES

Resistance  In  Series (Same Current)
R = R1 + R2 + R3 + ................ + Rn  and
V = V1 + V2 + V3 + ................ + Vn 

 .

R1 R2 R3

V1 V2 V3

V

R = R + R + Rnet 1 2 3

Þ

Þ V = IR , V = IR , V = IR1 1 2 2 3 3  

Resistance  In  Parallel (Same Potential
difference)
Effective resistance (R) then

1 2 3 n

1 1 1 1 1
..........

R R R R R
= + + + +

R1

R2

R3

I

Rn

V

I1

In

For two resistance 1 2

1 2

R R
R

R R
=

+

Equivalent Resistance  In  Cube (Symmatry)

1 2

34

5 6

78

(a) Resistance between two nearer corners

12

7
R r

12
=

12

12C
C

7
=

(b) Resistance across face diagonal

13

3
R r

4
= 13

4C
C

3
=

(c) Resistance across main diagonal

17

5
R r

6
= 17

6C
C

5
=

KIRCHHOFF’S LAWS

1. Junction Rule (K.C.L.)
It is based on conservation of charge.

I2

I1I

I = I + I1 2

2. Loop Rule (K.V.L.)
For any closed loop, total rise in potential + total
fall in potential = 0.
It is based on conservation of energy.

i

+ v –iR =0
R

V

Terminal Voltage V = E – iR discharging,
E + iR charging

Cell
• EMF (E) : The potential difference across the

terminals of a practical cell when no current is
being drawn from it.

• Internal Resistance (r) : The opposition of flow
of current inside the cell. It depends on
(i) Distance between electrodes : ­r­
(ii) Area of electrodes : ­r¯
(iii) Concentration of electrolyte : ­r­
(iv) Temperature : ­r¯

Series Compbination of Cells :

E1 E2 E3r1 r2 r3

i

R

+ + +– – – n cells

(a) Eequivalent = E1 + E2 + E3 + ....... En
(b) requivalent = r1 + r2 + r3 + ...... rn

(c) Current 
E

i
r R

=
+

å
å

i

i

       

(d) If all cells have equal emf E and equal internal

resistance r then 
nE

i
nr R

=
+
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Cases :

(i) If nr >> R Þ 
E

i
r

=

(ii)  If nr << R Þ 
nE

i
R

=

Parallel Combination of cells :

E1

E2

E3

R

r2

r3

r1

i n cell

(a)

31 2

1 2 3
equivalent

1 2 3

EE E
......

r r r
E

1 1 1
........

r r r

+ + +
=

+ + +

(b) equivalent

1 2 3

1
r

1 1 1
......

r r r

=
+ + +

(c) If all cells have equal emf. E and internal
resistance r then Eequivalent = E

equivalent r
n

r E
r current i

n R
= Þ =

+

Mixed combination
Total number of identical cell in this circuit is nm. If n cells
connected in a series and there are m such branches in
the circuit than the internal resistance of the cells connected
in a row = nr

   

E E Er r r

E E Er r r

E E Er r r

R

Total internal resistance of the circuit 
net

1 1 1
r nr nr

= + +

....upto m turns

(Q There are such m rows) net

nr
r

m
=

Total e.m.f. of the circuit = total e.m.f. of the cells
connected in a row   ET = nE

net

net

E nE
I

nrR r R
m

= =
+ +

Current in the circuit is maximum when external resistance
in the circuit is equal to the total internal resistance of the

cells 
nr

R
m

=

WHEAT STONE  BRIDGE

When current through the galvanometer is zero  (null

point or zero defluction) 
P R
Q S

= .

When   PS > QR, VC < VD & PS < QR, VC > VD    or

PS = QR Þ products of opposite arms are equal.

Potential difference between C & D at null point is

zero . The  null  point is not affected by  resistance

of G & E. It is not affected even if the positions of G

& E are interchanged.

RE

D

R S

B

Q

GA

P

C
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Electrical Instruments

Metre Bridge : Works on principle of
wheet stone bridge

At balance condition :

( )100P R R
S R

Q S (100 ) S

-
= Þ = Þ =

-
ll

l l

G

P

S
RB

C
B

A

D

J

Potentiometer  :

A potentiometer is a linear conductor of uniform

cross-section with a steady current set up in it. This

maintains a uniform potential gradient along the

length of the wire . Any potential difference which

is less than the potential difference maintained

across the potentiometer wire can be measured

using this .

Circuits of potentiometer :

E r Rh(0 –R) 

wire
A B

secondary circuit

primary circuit

E'<EG

L

E'

current  resistance of 
V   potentiometer wire R

x I
L length of potentiometer wire L

´
æ ö= = = ç ÷è ø

Applications of potentiometer :

(i) Comparision of emfs of two cells
1 1

2 2

E
E

=
l

l

1
2
3

E1

G

B
J J'A

E2

(ii) Internal Resistance of a given primary cell

1 2

2

r R
æ ö-

= ç ÷è ø
l l

l

E

G

B
J' JA

Rh

R.B.
R

K

(iii) Comparision of two resistances

1 1

1 2 2

R
R R

=
+

l

l

B
J

A

R1 R2

V

G

1 2

I
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Galvanometer :
An instrument used to measure shtrength of current
by measuring the diflection of me coil due to torque
produced by a magnetic field.

T µ i µ q
A galvanometer can be converted into ammeter &
voltmeter of varied scale as below.

Ammeter  :
It is a modified form of suspended coil
galvanometer, it is used to measure current. A shunt
(small resistance) is connected in parallel with
galvanometer to convert into ammeter .

Rg

Ig

IS S

 
g g

g

I R
S

I I
=

-

where
Rg = galvanometer resistance
Ig = Maximum current that can flow through the
galvanometer .
I = Maximum current that can be measured using
the given ammeter .
An ideal ammeter has zero resistance.

Voltmeter  :
A high resistance is put in series with galvanometer.
It is used to measure potential difference.

o
g

g

V
I

R R
=

+ ;  R ® ¥ ,  Ideal voltmeter

V0

R
Rg

Ig

Electrical  Power  :
The energy liberated per second in a device is called
its power. The electrical power P delivered by an
electrical device is given by  P = VI,  where V =
potential difference across device  & I = current. If
the current enters the higher potential point of the
device then power is consumed by it (i.e. acts as
load) . If the current enters the lower potential point
then the device supplies power (i.e. acts as source).
Power consumed by a resistor

P = I2R  = VI = 
2V

R

Heating  Effect  Of  Electric  Current  :
When a current is passed through a resistor energy
is wasted in over coming the resistances of the wire.
This energy is converted into heat

W = VIt = I2 Rt =
2V

t
R

Joules  Law  Of  Electrical  Heating  :
The  heat  generated (in joules) when a current of
I ampere  flows  through  a  resistance of R ohm
for T second is given by :

H = I2 RT  joule =
2I RT
4.2

 calories.

If current is variable passing through the conductor
then we use for heat produced in resistance in time

0 to T is: = ò
T

2

0

H I Rdt

Unit  Of  Electrical  Energy  Consumption :
1 unit of electrical energy

= kilowatt hour
= 1 kWh = 3.6 × 106 joules.

w Series combination of Bulbs

total 1 2 3

1 1 1 1
....

P P P P
= + + +

P ,V1 P ,V2 P ,V3 P ,Vn

V

w Parallel combination of Bulbs
Ptotal =  P1 +  P2 +  P3+...

P ,Vn

P ,V3

P ,V2

P ,V1

V
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KEY POINTS
• A current flows through a conductor only when there is an electric field within the conductor because the

drift velocity of electrons is directly proportional to the applied electric field.

• Electric field outside the conducting wire which carries a constant current is zero because net charge on a
current carrying conductor is zero.

• A metal has a resistance and gets often heated by flow of current because when free electrons drift through
a metal, they make occasional collisions with the lattice. These collisions are inelastic and transfer energy
to the lattice as internal energy.

• Ohm's law holds only for small current in metallic wire, not for high currents because resistance increased
with increase in temperature.

• Potentiometer is an ideal instrument to measure the potential difference because potential gradient along
the potentiometer wire can be made very small.

• An ammeter is always connected in series whereas a voltmeter is connected in parallel because an ammeter
is a low-resistance galvanometer while a voltmeter is a high-resistance galvanometer.

• Current is passed through a metallic wires, heating it red, when cold water is poured over half of the
portion, rest of the portion becomes more hot because resistance decreases due to decrease in temperature
so current through wire increases.

IMPORTANT NOTES
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CONCEPT OF CAPACITANCE
When a conductor is charged then its potential rises. The increase in potential is directly proportional to the charge

given to the conductor. Q µ V Þ Q = CV

The constant C is known as the capacity of the conductor.

Capacitance is a scalar quantity with dimension 
2 2 2

1 2 2
Q Q A T

C
V W M L T-

= = =  = M
–1

 L
–2

 T
4
 A

2

Unit :- farad, coulomb/volt
PARALLEL PLATE CAPACITOR

r 0Aq
C

V d

e e
= =

+ –
+ –
+ –
+ –
+ –
+ –
+ –

+
+
+
+
+
+
+

M N

• If one of the plates of parallel plate capacitor slides

A A

d

relatively than C decrease (As overlapping area

decreases).

• If both the plates of parallel plate capacitor are touched

each other resultant charge and potential became zero.

• Electric field between the plates of a capacitor is shown in figure. Non-uniformity of electric field at the boundaries of the

plates is negligible if the distance between the plates is very small as  compared to the length of the plates.

–
–
–
–
–
–
–
–
–
–

+
+
+
+
+
+
+
+
+

+
M N

Edge effect

E = uniform in the centre

E = non-uniform at the edges

THE CAPACITANCE OF A SPHERICAL CONDUCTOR
When a charge Q is given to a isolated spherical conductor then its potential rises.

1 Q
V

4 R0
=

pe
 Þ 

Q
C 4 R0V

= = pe

R

O

++
+

+

+
+ +

+
+

+
+

If conductor is placed in a medium then

Cmedium = 4peR  =  4pe0erR

CAPACITANCE
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SPHERICAL CAPACITOR OUTER SPHERE IS EARTHED                

C = 
Q
V

 = 4 p e0 
1 2

2 1

R R
R R-  (in air or vacuum)              

-
-

-

-

-

-

-

-

-
-

R2

- -

-

+

+

++
+
+

+
+

++

R1

CYLINDRICAL CAPACITOR

Electrical field between cylinders E = 
02 rpe

l
 = 

0

Q /
2 rpe

l
          +

+
+
+
+
+
+

-
-
-
-
-
-
-

-
-
-
-
-
-
-

R1

R2

+
+
+
+
+
+
+

Potential difference between plates  V = 
2

1

R

0R

Q
dr

2 rpeò
l

 = 
0

Q

2pe l

2

1

R
n

R

æ ö
ç ÷
è ø

l

Capacitance C = 
Q

V
 = 

0

e 2 1

2
log (R / R )

pe l

(ii) Force between the plates

F = –Q E = – 

2

0

Q

A2e

Magnitude of force  F = 
2

0

Q
2 Ae

 = 
1

2
 e0 A E

2

Force per unit area or energy density or electrostatic pressure 
2

0

F 1
u p E

A 2
= = = = Î

COMBINATION OF CAPACITOR
• Capacitor in series:

V1

+Q +Q +Q–Q –Q –Q

V2 V3

V

+ –

A B
C1 C2 C3

In this arrangement of capacitors the charge has no alternative

path(s) to flow.

(i) The charges on each capacitor are equal

i.e.  Q = C1V1 = C2V2 = C3V3
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(ii) The total potential difference across AB is shared by the capacitors

in the inverse ratio of the capacitances   V = V1 + V2 + V3

If CS is the net capacitance of the series combination, then

S 1 2 3

Q Q Q

C C C C

Q
= + +  Þ 

S 1 2 3

1 1 1 1

C C C C
= + +

• Capacitors in parallel
In such arrangement of capacitors the charge has an alternative path(s) to flow.

(i) The potential difference across each capacitor is same and equal the         
+Q 1

V

+Q 2

+Q 3

–Q 1

–Q 2

–Q 3

C1

C2

C3

A B
total potential applied. i.e. V = V1 = V2 = V3  Þ 31 2

1 2 3

QQ Q
V

C C C
= = =

(ii) The total charge Q is shared by each capacitor in the direct ratio of the

capacitances.      Q = Q1 + Q2 + Q3

If CP is the net capacitance for the parallel combination of capacitors :

CPV = C1V + C2V + C3V Þ CP = C1 + C2 + C3

• For a given voltage to store maximum energy capacitors should be connected in parallel.

• If N  identical capacitors each having breakdown voltage V are joined in

(i) series then the break down voltage of the combination is equal to NV

(ii) parallel then the breakdown voltage of the combination is equal to V.

• Two capacitors are connected in series with a battery. Now battery is removed           

and loose wires connected together then final charge on each capacitor is zero.

• If N identical capacitors are connected then series

C
C

N
=  , parallelC NC=

• In DC capacitor's offers infinite resistance in steady state, so there will be no current flows through capacitor branch.

ENERGY STORED IN A CHARGED CONDUCTOR/CAPACITOR
Let C is capacitance of a conductor. On being connected to a battery. It charges to a potential V from zero potential. If
q is charge on the conductor at that time then q = CV. Let battery supplies small amount of charge dq to the conductor
at constant potential V.  Then small amount of work done by the battery against the force exerted by exsiting charge is

q
dW Vdq dq

C
= = Þ 

QQ 2

0 0

q 1 q
W dq

C C 2
= =

é ù
ê ú
ë û

ò Þ
2Q

W
2C

=

where Q is the final charge acquired by the conductor. This work done is stored as potential energy, so

2Q
U

2C
=  = 

2
21 (CV) 1

CV
2 C 2

= = 
21 Q

V
2 V

æ ö
ç ÷
è ø

 = 
1

QV
2

\   
2

2Q 1 1
U CV QV

2C 2 2
= = =
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• As the potential of the Earth is assumed to be zero, capacity of earth or a conductor             

C=¥
connceted to earth will be infinite

q q
C

V 0
= = = ¥

 • Actual capacity of the Earth  C = 4pe0 R = 
5

9

1
64 10 711 F

9 10
´ ´ = m

´

 • Work done by battery Wb = (charge given by battery) ×  (emf) = QV but

Energy stored in conductor 
1

QV
2

=

so 50% energy supplied by the battery is lost in form of heat.

REDISTRIBUTION OF CHARGES AND LOSS OF ENERGY
When two charged conductors are connected by a conducting wire then charge flows from a conductor at higher potential
to that at lower potential. This flow of charge stops when the potential of two conductors became equal.
Let the amounts of charges after the conductors are connected are Q1' and Q2' respectively and potential is V then

+

+

+

++

+

+

+

C1 Q1

V1

++
+
+

+
+ + +

+
+

+
+

C2 Q2

V2

+

+

+

++

+

+

+

C1 Q 1'

V

++
+

+
+ + +

+
+

+
+

C2 Q'2

V

          (Before connection) (After connection)
• Common potential

According to law of Conservation of charge Qbefore connection = Q after connection

Þ   C1V1 + C2V2 =  C1V + C2V

Common potential after connection 1 1 2 2

1 2

C V C V
V

C C

+
=

+

• Charges after connection

Q1' = C1V = C1 
1 2 1

1 2 1 2

Q
Q Q C
C C C C

æ ö æ ö+
=ç ÷ ç ÷+ +è ø è ø

  (Q : Total charge on system)

Q2' = C2V = C2 
1 2 2

1 2 1 2

Q Q C
Q

C C C C

æ ö æ ö+
=ç ÷ ç ÷+ +è ø è ø

Ratio of the charges after redistribution  
1 1 1

2 2 2

Q C V R

Q C V R

'
(in case of spherical conductors)

'
= =

• Loss of energy in redistribution
When charge flows through the conducting wire then energy is lost mainly on account of Joule effect, electrical
energy is converted into heat energy, so change in energy of this system,

DU = Uf – Ui  Þ
2 2 2 2

1 2 1 1 2 2

1 1 1 1
C V C V C V C V

2 2 2 2
+ - +

æ ö æ ö
ç ÷ ç ÷
è ø è ø

 Þ 
2

21 2
1 2

1

1 C C
U (V V )

2 C C
D = - -

+

æ ö
ç ÷ç ÷
è ø

Here negative sign indicates that energy of the system decreases in the process.SOLVED EXAMPLES
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EFFECT OF DIELECTRIC

• The insulators in which microscopic local displacement of charges takes place in presence of electric field are known
as dielectrics.

• Dielectrics are non conductors upto certain value of field depending on its nature. If the field exceeds this limiting
value called dielectric strength they lose their insulating property and begin to conduct.

• Dielectric strength is defined as the maximum value of electric field that a dielectric can tolerate without breakdown.
Unit is volt/metre. Dimensions  M

1
L

1
T

–3
A

–1

Polar dielectrics

• In absence of external field the centres of positive and negative charge do not coincide-due to asymmetric shape
of molecules.

• Each molecule has permanent dipole moment.

• The dipole are randomly oriented so average dipole moment per unit volume of polar dielectric in absence of external
field is nearly zero.

• In presence of external field dipoles tends to align in direction of field.

Ex. Water, Alcohol, CO2, HCl, NH3

Non polar dielectrics

• In absence of external field the centre of positive and negative charge coincides in these atoms or molecules because
they are symmetric.

• The dipole moment is zero in normal state.

• In presence of external field they acquire induced dipole moment.

Ex. Nitrogen, Oxygen, Benzene, Methane

Polarisation  :

The alignment of dipole moments of permanent or induced dipoles in the direction applied electric field is called
polarisation.

• Polarisation vector P
r

This is a vector quantity which describes the extent to which molecules of dielectric become polarized by an electric
field or oriented in direction of field.

P
r

 = the dipole moment per unit volume of dielectric = np
r

where n is number of atoms per unit volume of dielectric and p
r

 is dipole moment of an atom or molecule.

P
r

 = np
r

 = 
i

Ad

q d
 = 

iq
A

æ ö
ç ÷
è ø

 = si = induced surface charge density.

Unit of P
r

 is C/m
2

Dimension is L
–2

T
1
A

1

E0

Dielectric slab
s   -s s si                  i       -

E

Ei

Let E0, V0, C0 be electric field, potential difference and capacitance in absence of dielectric. Let E, V, C are electric
field, potential difference and capacitance in presence of dielectric respectively.



E

no
de

06
\B

0A
I-B

0\
Ko

ta
\J

EE
(A

dv
an

ce
d)

\L
ea

de
r\

Ph
y\

Sh
ee

t\
H

an
d 

bo
ok

 (E
+L

)\
En

g\
17

_C
ap

ac
ita

nc
e.

p6
5

96

Physics HandBook ALLEN
C H A P T E R

Electric field in absence of dielectric E0 = 
0

0 0

QV
d A

s
= =

e e

Electric field in presence of dielectric E = E0 – Ei = 
i

0

s - s
e  = 

i

0

Q Q-
e  = 

V
d

Capacitance in absence of dielectric C0 = 
0

Q
V

Capacitance in presence of dielectricC = 
iQ Q

V

-

The dielectric constant or relative permittivity K

or er = 
0E

E
 = 

0V

V
 = 

0

C
C  = 

i

Q
Q Q-  = 

i

s
s - s  = 

0

e
e

From K= 
i

Q
Q Q-

Þ Qi = Q (1 – 
1
K

) and K=
i

s
s - s

 Þ si = s (1 – 
1
K

)

If capacitor is partially filled with dielectric
V = E0(d – t) + E t

Þ V = 0
0

E
E d t t

E
- +

é ùæ ö
ê úç ÷

è øë û
 Q  

0
r

E

E
= e  = Dielectric constant

dE= E0
er

E0

er

E0

t

Þ
0 r

t
V d t

s
= - +

e e

é ù
ê ú
ë û 0 r

q t
d t

A
= - +

e e

é ù
ê ú
ë û

Þ 0

r

Aq
C

V 1
d t 1

e
= =

- -
e

æ ö
ç ÷
è ø

0

r

A

1
d t 1

e
=

- -
e

æ ö
ç ÷
è ø

...(i)

If medium is fully present between the space.
Q t = d                                 

C med

er

Now from equation (i)
0 r

medium

A
C

d

e e
=

If capacitor is partialy filled by a conducting slab of thickness (t< d).

Q er = ¥ for conductor  0A
C

1
d t 1

e
=

- -
¥

æ ö
ç ÷
è ø

( )
0A

d t

e
=

-
                dE=0

E0

E0

t e ¥r=

DISTANCE AND AREA DIVISION BY DIELECTRIC
• Distance Division
(i) Distance is divided and area remains same.
(ii) Capacitors are in series.

(iii) Individual capacitances are 10 r
1

1

A
C

d

e e
=  , 

20 r
2

2

A
C

d

e e
=

    

A B
er2

er1

d1
d

d2

These two are in series 
1 2

1 1 1

C C C
= +  Þ

1 2

1 2

0 r 0 r

1

C A

d d
A

= +
e e e e
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Þ
2 1

1 2

1 r 2 r

0 r r

1

C

d d1
A

=
é ùe + e
ê ú

e e eê úë û
 Þ

1 2

2 1

r r
0

1 r 2 r

C A
d d

é ùe e
= e ê ú

e + eê úë û

Special case :  If  d1 = d2 = 
d

2
     Þ

1 2

1 2

r r0

r r

A
C

2

d
=

é ùe ee
ê ú

e + eê úë û

• Area Division
(i) Area is divided and distance remains same.
(ii) Capacitors are in parallel.

(iii) Individual capacitances are 10 r 1
1

A
C

d

e e
= 20 r 2

2

A
C

d

e e
=

These two are in parallel so C  = C1 + 1 20 r 20 r 1
2

AA
C

d d

e ee e
= +

1

0
r 1 r 22( A A )

d
e

= e + e      er2

er1

A2

A1

Special case : If A1 =  A2 = 
A

2
   Then C = 

1r r20A

d 2

e + eæ öe
ç ÷
è ø

• Variable Dielectric Constant :
If the dielectric constant is variable, then equivalent capacitance can be obtained by selecting an element as per the given
condition and then integrating.

(i) If different elements are in parallel, then C = dCò , where dC = capacitance of selected differential element.

(ii) If different element are in series, then  
1 1

d
C C

æ ö= ç ÷
è øò is solved to get equivalent capacitance C.

FORCE ON A DIELECTRIC IN A CAPACITOR
Consider a differential displacement dx of the dielectric as shown in figure always keeping the net force on it zero so
that the dielectric moves slowly without acceleration. Then, WElectrostatic + WF =0, where WF denotes the work done by
external agent in displacement dx

dx x
Force exerted by
an external agent

F

WF = –WElectrostatic  WF = DU

Þ
2Q 1

F.dx d
2 C

é ù- = ê úë û
 

2Q
U

2C

é ù
=ê ú

ë û
 Þ –F.dx = 

2

2

Q
dC

2C
-

Þ
2

2

Q dC
F

2C dx
æ ö= ç ÷
è ø

This is also true for the force between the plates of the capacitor. If the capacitor has battery connected to it, then as

the p.d. across the plates is maintained constant. V = 
Q
C

 Þ 
21 dC

F V .
2 dx

=
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CHARGING & DISCHARGING OF A CAPACITOR

               Charging Discharging

    • When a capacitor, resistance, battery, and • When a charged capacitor, resistance and keys is
key is conected in series and key is closed, conected in series and key is closed. Then energy
then stored in capacitor is used to circulate current in the

circuit.

–+

V

VR

R C

VC

S
S

VR

C R

VC

• Charge at any instant • Charge at any instant

V = VC + VR

Q
IR

C
+=  

Q dQ
R

C dt
= + VC + VR = 0

t RCQ CV 1 e-= -é ù
ë û=

t RC
0 1 eQ --é ù

ë û Q=Q0e
–t/RC

At  t = t = RC = time constant At  t = t = RC = time constant

Q = Q0 [1 – e–1] = 0.632 Q0 Q = Q0 e
–1 = 0.368 Q0

So, in charging, charge increases to So, in discharging, charge decreases to 36.8% of the

63.2% of charge in the time equal to t. initial  charge in the time equal to t.

• Current at any instant • Current at any instant

i = dQ/dt  = t / RC
0i e-  {i0 = Q0/RC} i = dQ/dt = t / RC

0i e--  {i0 = Q0/RC}

• Potential at any instant • Potential at any instant
t RC

0V V (1 e )-= - t RC
0V V e-=
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BIOT-SAVART'S LAW :-

® The magnetic field dB at a point due to

current element 
uur

lId  is given by ,

q
Idl

P

r

uur

lId  is given by

0
3

(Id r)
dB

4 r

m ´
=

p

r r
r l

m q
Þ =

p
l0

2

Id sin
dB

4 r

® Magnetic field at P due to moving charge
is given by,

q

q

P

r

v

( )´m
=

p

rr
r

0
3

q v r
B

4 r

Þ 0
2

qv sin
B

4 r

m q
=

p

r

1. Magnetic  field  due  to  finite  current
carrying wire at point P,

( )m
= q + q

p
0

P 1 2
I

B sin sin
4 d

q1
P

I q2

d

(a) For infinite wire,

q1 = q2 = 90°

m
=

p
0

P
I

B
2 d

P
I

d

(b) For semi-infinite wire,

q1 = 0°, q2 = 90°

m
=

p
0

P
I

B
4 d

P

I

d

Note : For points along the length of the
wire (but not on it), the field is always zero.

2. Magnetic field at the centre of current
carrying circular arc.

( )m
= a

p
0

0
I

B
4 R

Magnetic Effect of Current & Magnetism
Magnetic effect of current discovered by : Orested
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I

a RR

O

(a) At the centre of current carrying circular
loop,

m
= 0

0
I

B
2R

R

I

O

(b) At the centre of semi-circular arc

m
= 0

0
I

B
4R

R

I

O

3. Magnetic-field at an axial point of current
carrying circular loop,

( )

2
0

P 3
2 2 2

IR
B

2 R x

m
=

+

R
I

x
P

4. Magnetic field at the axis of solenoid :

(a) Finite length :

m
= q + qé ùë û

0
P 1 2

nI
B sin sin

2

(b) Infinite length :

BP = µ0nI

P

q1 q2

n ®  number of turns per unit length.

Note : Magnetic field outside solenoid is
zero.

 AMPERE'S LAW :

The line integral of magnetic field over the

closed path ( )×ò
uurr

lÑB d  is equal to µ0 times the

net current crossing the area inclosed by the
path.

× = mò
uurr

lÑ 0 enclosedB d I

Here 
r

B  is net magnetic field.

(i) Magnetic field due to infinite current sheet.

m
= 0kB

2

Here k is linear current density

(ii) Magnetic field inside toroid :

Field inside toroid :-
B = µ0nI, where n = N/2pRm, turn density

mean radius 1 2
m

R R
R

2
+

=
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Magnetic force on moving charge in
magnetic field

Vector from = ´
r rr

m extF q(v B )  Always 
é ù^
ê ú

^ê úë û

r r

r r
m

m ext

F v

F B

(+q, m)

Fm

®

v®

CW

Bext

®

Magnitude form :

F = qvBsinm q
q ^ Þ=90° (v B)  F = qvB m (max)

q Þ=0° or 180°  F = 0 m (min)

Motion of charge in uniform field

^ q
rr

(v B, =90°)  
2mv

qvB
r

=

r

O
Fm

v
×B

(a) Radius of circular path :

K acc

mv
r ,  where P = mv = 2mE 2mqV

qB
= =

(b) Time period : 
2 m

T
qB
p

=

(c) Kinetic energy of charge :
2

K

(qBr)
E

2m
=

Motion of charge in uniform field at any
angle except 0° or 180° or 90°

(a) Radius of helical path : 
mv sin

r
qB

q
=

(b) Time period : 2 m
T

qB
p

=

(c) Pitch of helix : P = (vcosq) T, where 2 m
T

qB
p

=

Combined effect of E
r

 & B
r

on moving charge

Electromegnetic or Lorentz force

L e mF F F= +
r r r

LF qE q(v B)= + ´
r r rr

Magnetic force on current carrying wire
(or conductor)

(a) Straight wire :- = ´
r r r

m ext / uniformF I(L B )

L

L I N
Bext

(b) Arbitrary wire :- = ´
r r r

m ext / uniformF I(L B )

I

N
L
®

L

Bext

Magnetic force b/w two long parallel wires

1 2

I1 I2

d

0 1 2µ I I
f N / m

2 d
=

p

parallel currents  Attraction

antiparallel currents  Repulsion

Þé ù
ê úÞë û
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MAGNETIC TORQUE ON A CLOSED CURRENT CIRCUIT
When a plane closed current circuit is placed in uniform magnetic field , it experience a zero net force, but

experience a  torque given by NI A B M B BINAsint = ´ = ´ = q
r r r rr

 where A
r

 = area vector outward from the

face of the circuit where the current is anticlockwise, B
r

= magnetic induction of the uniform magnetic field.

M
r

= magnetic moment of the current circuit = IN A
r

Note : This  expression  can  be  used  only  if  B
r

 is uniform.

(a) Imaginary vertical plane passing through the
magnetic North - South poles at that place. This
plane is called the MAGNETIC  MERIDIAN. The
Earth's Magnetic poles are opposite to the
geometric poles i.e. at earth's north pole, its
geomagnetic south pole is situated and vice versa.

(b) On the magnetic meridian, the magnetic
induction vector of the earth at any point,
generally inclined to the horizontal at an angle
called the MAGNETIC DIP at that place , such that

B
r = total magnetic induction of the earth at that
point.

vB
r

= the vertical component of B
r

 in the magnetic

meridian plane = B sin q

HB
r

= the horizontal component of B
r

 in the

magnetic meridian plane=B cos q.      
v

H

B
B  = tan q

(c) At  a  given  place  on  the  surface  of the earth ,
the  magnetic  meridian and the geographic
meridian  may  not  coincide . The  angle  between
them  is  called "DECLINATION  AT  THAT  PLACE"

w Intensity of magnetisation I = M/V
w Magnetic induction B = µH = µ0(H + I)

w Magnetic permeability µ = 
B
H

w Magnetic susceptibility cm = 
I
H

 = µr – 1

w Curie law

r  For paramagnetic materials cm µ  
1
T

w Curie Wiess law

r For Ferromagnetic materials cm µ  - C

1
T T

Where TC = curie temperature

GILBERT'S MAGNETISM  (EARTH'S  MAGNETIC  FIELD)

Magnetic dipole
r Magnetic moment  M = m × 2l,

where m is pole strength of the
magnet

r Magnetic field at axial point (or End-

on position) of dipole 0
3

µ 2M
B

4 r
=

p

r
r

r Magnetic field at equitorial position
(Broad-side on position) of dipole

( )
0

3

Mµ
B

4 r

-
=

p

r

r

r Magnetic field  at a point which is at
a distance r from dipole midpoint and
making angle q with dipole axis.

2
0

3

µ M 1 3cos
B

4 r
+ q

=
p

r Torque on dipole placed in uniform

magnetic field M Bt = ´
r rr

r Potential energy of dipole placed in

an uniform field U M B= - ×
r r

Magnetic moment of a
rotating charge

If a charge q is rotating at an angular
velocity w,  its equivalent current is

given as 
q

I
2

w
=

p
 & its magnetic

moment  is  M =  IpR2 = 
1
2

qwR2.

q

R

w

NOTE:  The  ratio  of  magnetic
moment to angular momentum
called gyromagnetic ratio of a
uniform rotating object which is
charged uniformly is always a
constant and equal to half of specific
charge. Irrespective of the shape of

conductor M /L q /2m=

Moving Coil
Galvanometer

It consists of a plane coil of
many turns suspended in a
radial magnetic field. When a
current is passed in the coil
it experiences a torque which
produces a twist in the
suspension.
This deflection is directly
proportional to the torque

\NIAB = Kq;

K
I

NAB
æ ö= qç ÷è ø

;

K=elastic torsional constant of
the suspension

I  =  Cq; 
K

C
NAB

=

= Galvanometer constant
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KEY POINTS
• A charged particle moves perpendicular to magnetic field. Its kinetic energy will remain constant but

momentum changes because magnetic force acts perpendicular to velocity of particle.

• If a unit north pole rotates around a current carrying wire then work has to be done because magnetic
field produced by current is always non-conservative in nature.

• In a conductor, free electrons keep on moving but no magnetic force acts on a conductor in a magnetic
field because in a conductor, the average thermal velocity of electrons is zero.

• Magnetic force between two charges is  generally much smaller than the electric force between them
because speeds of charges are much smaller than the free space speed of light.

Note : 
2

magnetic

2
electric

F v
F c

=

IMPORTANT NOTES
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IMPORTANT NOTES
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Electromagnetic Induction
FARADAY'S LAW

Rate of change of magnetic flux is propotional to incuced emf 
f

=
d

e
dt

MAGNETIC FLUX (f)
Number of magnetic line of forces passing through a area perpendicular is known as magnetic flux.

Magnetic flux (f) = NB.A NBAcos= q
rr

A B

Bsinq

Bcosq

emf = 
–df
dt

=
–d(B.A)

dt

B changes

emf = –A
dB
dt

A changes

emf = –B
dA
dt

q changes

emf = –NBA sin t   
(where  = t)

w w
q w

= A(B–B )i f

t

B(A–A )i f

t
=

NBA(cos –cos )q q1 2

t
=

Avg emf Avg emf Avg emf 

Lenz Law

Direction of induced current is such that it always try to oppose the course of change.

Lanz Law Faraday Law

e = – d
dt

—–f

Motional EMF

dl

dl

dl
dl

dl dl dl

A

B

× × × × ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
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• When a rod moves perpendicular to its length and
perpendicular to magnetic field then induces emf

in rod  = Blv  (v B)^ ^
rrr

l

l

V

ÄB

• When a conducting disc or conducting rod is
rotated about its axis ̂  to magnetic field then emf
induced between its centre and periphery is given

by 
2B

emf
2
w

=
l

BÄ

l l

w

BÄ

When a loop of area A is rotated about its diameter
in uniform magnetic field B then maximum
induced emf = NBAw

Note :

w

ÄB

BA R w

R

ÄB

emf = zero emf = NBA sin tw w

Self induction

Phenomena of inducing emf due to change in its

own current 
Ldi

Li emf
dt

f = = -

Self inductance (L) for solenoid

2
20

0

N A
L n A

m
= = m l

l

N = number of turns; n = number of turns/length

Combination of inductors

Series L = L1+ L2       Parallel 
1 2

1 1 1
L L L

= +

= ´ò
rr r
le B (d v) , = ´

r r r

BAe B.(L v)

Rod is rotating with angular velocity

=
l

2Bw
e

2
-

- =
l l

2 2
2 1

B A

Bw( )
v v

2

× × × × × ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

w

l1

l2

A

B

Case-II : If angle between area vector and magnetic
field changes

B.A cosf = q
rr

de BA sin t
dt

f
= = w w



E

no
de

06
\B

0A
I-B

0\
Ko

ta
\J

EE
(A

dv
an

ce
d)

\L
ea

de
r\

Ph
y\

Sh
ee

t\
H

an
d 

bo
ok

 (E
+L

)\
En

g\
19

_E
le

ctr
om

ag
ne

tic
 In

du
cti

on
.p

65

ALLEN

107

Physics HandBookC H A P T E R

Energy stored in inductor :
2

21 i
U Li

2 2L 2
f f

= = =

Mutual induction :
Phenomena of including emf in a coil due to change
in current in another coil is known as mutual
induction.

di
Mi emf M

dt
f = = -

Mutual inductance between 2 solenoids

0 1 2N N A
M

m
=

l

Relation between self inductance  and
mutal inductance.
Real Ideal

1 2M k L L=

L2

L1

1 2M L L=

k = coupling factor ( k = 1)

air gap

0 < k < 1

soft iron

k = 1

Transmissions are done at high voltage and low current by using step up transformer.

Laminated 
Soft core

AC mains

Primary 
winding

Secondary 
winding

Lo
ad

Works only for AC
Principle : Mutual induction
For ideal transformer
(1) Power loss = 0 Þ efficiency = 100%
(2) Flux loss = 0
But practicaly  Pout < Pin  \ efficiency < 100%

pS S

P P s

iV N
turnratio

V N i
= = =   

2
s

P p

i R
(efficiency) 100

V i
h = ´

TRANSFORMER

Coil (Cu losses)

Heat loss Flux loss
Can be minimize
by using thick wires

Can zero by 
making coupling factor1

Core (Iron losses)

Hysteresis Eddy current
Can be controlled by using
substance of high  (soft iron)m r

Can be controlled 
by laminating the core

Losses in tranformers

Induced electric field :

Produced due to change in magnetic field and is non-conservative in nature  
Bd

E.d
dt

® f
= -ò

r

lÑ

Types of transformer

Step up
V > V
N > N
i > i

S P

S P

P S

Step down
V > V
N > N
i > i

P S

P S

S P
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Growth   of   a   Current   in   an   L -  R
Circuit

L

R
t=0

I

S

E
I

R
=  (1 - e-Rt/L) .  [If initial current = 0]

I = I0 (1 - e-t/t)

L
R

t =  = time constant of the circuit.

0

E
I

R
= .

(i) L behaves as open circuit  at  t =  0   [ as if  I = 0 ]
(ii) L behaves as short circuit at  t = ¥ always.

(2)

I

(1)
t

Curve (1)  ¾® 
L
R

 Large  Curve (2)  ¾®  
L
R

 Small

KEY POINTS
• An emf is induced in a closed loop where

magnetic flux is varied. The induced
electric field is not conservative field
because for induced electric field, the line

integral E.dò
r r

lÑ  around a closed path is

non-zero.

• Acceleration of a magnet falling through
a long solenoid decrease because the
induced current produced in a circuit
always flows in such direction that it
opposes the change or the cause that
produces it.

• The mutual inductance of two coils is
doubled if the self inductance of the
primary and secondary coil is doubled

because mutual inductance 1 2M L Lµ .

IMPORTANT NOTES

Decay  of  Current
Initial current through  the inductor = I0 ; Current at any
instant  i = I0e

-Rt/L

L I

t=0

R

S

I
I0

t
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Alternating Current & EM Waves
Voltage or current is said to be alternating if periodically it changes its dir. and magnitude.

i = I0  sin wt         v = V0 sin (wt + f)

t

0
t

0

idt
Average current =

dt

ò
ò

    

t 2
0

rms t

0

i dt
i =

dt

ò
ò

AC ammeter and voltmeter reads RMS value of current and voltages respectively Þ i0 > irms > iAV

Nature of Wave–form RMS Value Average or mean
wave form Value for half cycle

Sinusoidal 0
+

–
p 2p

0I

2
= 0.707 I0

02I
p

=0.637 I0(half cycle)

Half wave rectifier  0 p 2p

0I
2

= 0.5 I0
0I
p

= 0.318 I0 (full cycle)

Full wave rectifier
0 p 2p

0I

2
= 0.707 I0 02I

p
=0.637 I0

Square or Rectangular +

–
I0 I0

Saw Tooth wave
2pp0 0I

3
0I
2

A
C

 C
IR

C
U

IT
S

R L C

R L C

0V V sin t= w V = 0V sin tw V = 0V sin tw

0V
i sin t

R
= w 0V

i ( cos t)
L

= - w
w ( )

0V
i cos t

1/ C
= w

w

Resistance = R Reactance XL = wL Reactance C
1

X
C

=
w

i
V , RR

X ,VL L

i X , VC C

i

VR = iR VL = iXL VC = iXC



E

no
de

06
\B

0A
I-B

0\
Ko

ta
\J

EE
(A

dv
an

ce
d)

\L
ea

de
r\

Ph
y\

Sh
ee

t\
Ha

nd
 b

oo
k 

(E
+L

)\
En

g\
20

_A
C 

&
 E

M
 W

av
es

.p
65

110

Physics HandBook ALLEN
C H A P T E R

AC THROUGH LCR CIRCUIT

VR

i

VL

VC

R L C

v=V sin t0 w

If VL > VC Þ XL > XC  then

VR

V –VL C

f

V +(V –V )R L C
2 2V=

R

X –XL C

f

Z

Impedence= 2 2
L CZ R (X X )= + -   and admittance = 

1
Z

 and 
V

i
Z

æ ö=ç ÷
è ø

 and 
R

cos
Z

æ öf =ç ÷
è ø

Power  in AC Circuit : V = V0sin wt
i = I0 sin(wt + f)
Power = Vrms irms cos f = i2 R            

V

f

i

Wattfull current = irms cosf
Wattless current = irms sinf
Wattless power = vrms irms sinf
Where cosf = Power factor

L-C-R PARALLEL COMBINATION

~

      

2

2
L C

1 1 1 1
Z x xR

æ ö
= + -ç ÷

è ø

CHOKE COIL
It is used to control alternating current without any power
loss. It is an inductor and low resistance.

high L, low R  LZ X Power 0» Þ =

LC - OSCILLATION

C
L

Q=CV
+

RESONANCE IN SERIES LCR CIRCUIT
At resonance
• XL = XC or VL = VC

• Z = R = min Þ 
V

i max
R

= =

• Power factor 
R

cos 1
Z

æ öf = =ç ÷
è ø

• Angle (or phase defference) Between v and i = 0°
• VR = VSource

Resonating frequency 0
1

LC
w =

ww0

Z

ww0

i

R2

R1

R > R1 2

Sharpnessµ quality factor = 0L fX 1 L
R R C B and width

= =
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• Q value = 
Resonance frequency

Band width

i

ff2f0f1

E.M.W
Maxwell's equations

1.
0

Q
E dA× =

eò
uuurr

Ñ (Gauss's law of electricity)

2. B dA 0× =ò
uuurr

Ñ (Gauss's law of magnetism)

3. Ed
E d

dt
f

× = -ò
uurr

lÑ (Faraday is law)

4.
E

0 c 0

d
B d i

dt
fé ù× = m + eê úë ûò

uurr

lÑ  (Empere – maxwell law)

DISPLACEMENT CURRENT

0

Q
EAf = =

e

0

d 1 dQ
dt dt
f

=
e   Þ E

d 0

d
i

dt
f

= e

Electromagnetic wave :
Ex = E0 sin(kz – wt)
By = B0 sin(kz – wt)

0

00 0

E1
C

B
= =

m e

Direction of propagation of light ˆ ˆE B´ .

Poynting vector 
0

1
S (E B)= ´

m

r r r

Electric field energy density = 2
0

1
E

2
e ;

Magnetic field energy density = 
2

0

B
2m

Total energy density = 
22

2 2 0
0 0 0

0 0

B1 B 1
E E

2 2 2 2
e + = e =

m m

If total energy transferred to a surface in time t is U, total
momentum delivered to this surface is p = U/c.

VC + VL =0  
2

2
d Q Q

L 0
Cdt

+ =

Q = Q0 cos wt  Þ i = –i0 sin wt    where i0 = Q0w

where 
1

LC
w =  frequency of oscillation
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KEY POINTS
• An alternating current of frequency 50 Hz becomes zero, 100 times in one second because alternating current

changes direction and becomes zero twice in a cycle.

• An alternating current cannot be used to conduct electrolysis because the ions due to their inertia, cannot follow
the changing electric field.

• Average value of AC is always defined over half cycle because average value of AC over a complete cycle is always
zero.

• AC current flows on the periphery of wire instead of flowing through total volume of wire. This known as skin
effect.
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Modern Physics
PHOTON

• Max plank said light is mode up of discrete packets
of energy called 'Photon' according to his quantum
theory.

• Energy of photon, E = hv, where h = Plank's
constant = 6.63 ×10–34 Fs and v = frequency of
light used.

• Effective mode of photon, =
2

E
m

C
; µ

l
1

m . So

effective mass of violet light is more then effective
mass of red light photon.

• Rest mass of a photon is zero.
• Linear momentum of photon

= = =
l

E hv h
P

C c
INTENSITY OF LIGHT

=
´

Energy
Intensity

time Area

r
PPoint source

I = P 4pr2

where P = power of source
Infinite linear source

=
p l

P
I

2 r
Infinite planar source

I = constant (independent of distance)
I µ P

=
Nhv

I
At

, 
´

= =
N I A

n
t hv

=

No of photons incident per second
Force exerted by light on a surface

= + q
IA

F (1 r) cos
C

, where r = reflectivity

Incident light

Reflected light

q
q

Radiation Pressure (P)

= = + q2F I
P (1 r) cos

A C
Photo Electric Effect (PEE)

This experiment shows particle nature of light.
Electrons are emitted a metal surface when light is

incident upon it only when v ³ v0 ( Threshold frequency) and
P.E.E. is independant of intensity of light. This is shown as
ther is no time rag in emission of electron.
Einsten's Photoelectric Equation

hv = ft KEmax.
where f = work function which depends on metal
KEmax = maximum KE that an e– can have after

emission.
KEmax = eV0, where V0 = stopping potential or cut of

potential
So, hv = f + eV0

or
f

= -0

hv
V

e e
Graphs of Photo Electric Effect

(i) 

q
V0 V

V0

– /ef

tan = h/ef

(ii) 

i (photocurrent)

v(potential)

i1

i2

I1

I2

i1, i2 = Saturation currents
I2 > I1 (v = same)

(iii) v

v0

v0

v '0– /ef0

– '/ef0

Metal-1
Metal-2

v '>v0 0
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(iv)

I (Intensity)

i (Photocurrent)

Quantum efficiency
Quantum efficiency =

No. of electron emitted per second
Total no. of photon incident per second

l
=

IA
i n

hc
 (Saturation current)

Refer graph (iv)
Photocell : Works on PEE, Photocell light energy is
converted into electrical energy.

Matter waves theory
Light has dual nature
Experiments like reflection, refraction, interference

deffraction are explained only ont the basis of wave theory
of light.

Experiments the PEE and crompton effect, pair
production and positon axilation are explained on the basis
of particle nature of light.

Atomic Structure
Various Models for structure of Atom
(i) Dalton's Theory

(a) Thomson Model
(b) Rutherford  model

(Number of -particles
scattered at an angle )

a
q

Bohr  atomic  model

v

Nucleus
(+ze)

+

(i) Electron revolves circular orbit around nucleus

(ii) =
p

nh
mvr

2
So electron has discrete angular momentum
and is allowed to be present in certain fixed
orbits only (called as stationary energy levels
or shells.)

(iii) Electrons denot radiate energy when in shells
but energy is radiated or aborbed when an electrons
jumps to lower or higher orbit respectively.

 Mathematical Analysis of Bohr's Theory
(i) v = 2.2 × 106   2/n  m/s

(ii) r = 0.53 
2n

Å
z

(iii) Total energy of electron in nth orbit,

 = -
2

n 2

z
E 13.6 eV

n

(iv)
-æ ö

= ´ç ÷
è ø

3
16

2

n
T 1.51 10 s

z

(v)
æ ö

= ´ç ÷
è ø

2
15

3

z
f 6.6 10 Hz

n

(vi)
é ù

= -ê úl ë û
2

2 2
1 2

1 1 1
Rz

n n ,

RH = Rydberg constant = 
-´ 31.097 10

Å
(For stationary nucleus)

=
+

HR
R '

1 m / M
    (If nuceus is not stationary)

i.e. mass of nucleus and revolving particle are
comparable)
where m = mass of revolving particle
M = mass of nucleus
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S.No. Series Observed Value of n1 Values of n2 Position in the Spectrum

1. Lyman Series 1 2, 3, 4 ..... ¥ Ultra Violet

2. Balmer Series 2 3, 4, 5 ..... ¥ Visible

3. Paschen Series 3 4, 5, 6 ..... ¥ Infra-red

4. Brackett Series 4 5, 6, 7 ..... ¥ Infra-red

5. Pfund Series 5 6, 7, 8 ..... ¥ Infra-red

De Broglie Hypothesis
He said there wave nature of very particle just the
light has dual nature.

l = =D

h h
p 2mK 2

,

where lD = De-Broglie wvaelength of any particle.

l =D

h

2mqV ; if particle has charger and is

accelerated by V

l =electron

12.27

V

l =Pr oton

0.286
Å

V

l =Deutron

0.202
Å

V

a-l =Particle

0.101
Å

V

Bohr's quantigation

=
p

nh
mvr

2

Total emission spectral lines

From n1 = n to n2 = 1 state  = n(n 1)
2
-

From n1 = n to n2 = m state is = ( ) ( )n m n m 1

2

æ ö- - +
ç ÷è ø

= n–m C2

Excitation potential of  atom

n2 n1
1 2

E E
n n

electron charge

-
® =

Ionization  energy of hydrogen atom

It is the energy required to remove an electron
from an atom

ex I.E.of Hydrogen = 0 – ( – 13.6)  =  13.6  eV.

Ionization   Potential

It is the potential required correspongin to ionization
energy in order to remove the electron fro the atom

= 
nE

electronic charge

-

X - RAYS
Produced by  bombording high speed electrons on a target of high atomic weight and high melting point. The we
basically highly magnetic photons.

Soft X–ray Hard X–ray
Wavelength 10 Å to 100 Å 0.1 Å – 10 Å

Energy
12400

l
 eV–Å

12400
l

 eV–Å

Penetrating power Less More
UseRadio photography Radio therapy

• Intensity of X-ray × current flowing through filament
• Rentetrating power × Applied Potential difference.
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• Continous X-ray – Produce when electron while they hit the target
• Cutt-off wavelength – Mininum wavelength of continuous X-rays which appears when as electron loosses

all its KE. in its first collision only. Hence producing photon of maximum energy and of  minimum wavelength.

min

12400
Å

V
l = , where V is applied potential difference

• Characteristic X-ray – Produce when electron hitting the metal target ejects on electron from shell
and that vacant space when occupied by an electron from upper shell, produces a photon.

From Bohr Model

n1 = 1, n2 = 2, 3, 4.......K series   N

M

L

K

O

L seriesLaLb Lg

MaMbMg

NaNb

4

3

2

1
KaKbKg Kd

K series

M series

N series

n1 = 2, n2 = 3, 4, 5.......L series

n1 = 3, n2 = 4, 5, 6.......M series

First line of series = a

Second line of series = b

Third line of series = g

Transition Wave– Energy Energy Wavelength
length difference

 L ® K lKa hnKa –(EK–EL)      lKa = 
K L

hc
(E E )-

              

0.02 0.04 0.06 0.08 0.10 0.12

1

2

3

R
el

at
iv

e 
in

te
ns

ity

wavelength (nm)

X-ray from a molybdenum 
target at 35 kVKb

Ka

Lb

La

Bremsstrahlung
continuum

Characteristic X-ray

(2 ®1) = hnKa = 
K L

12400
(E E )-

 eVÅ

 M ® K lKb hnKb –(EK–EM) lKb = 
K M

hc
(E E )-

(3 ®1) = hnKb = 
K M

12400
(E E )-

 eVÅ

 M ® L lLa hnLa –(EL–EM) lLa = 
L M

hc
(E E )-

 (3 ®2) = hnLa = 
L M

12400
(E E )-

 eVÅ

MOSELEY'S LAW

n  µ (Z – b) where v = frequancy of characteristic x-ray
Z = atomic number of target                  

Z

n

Kb

Ka

n = frequency of characteristic spectrum
b = screening constant (for K– series b=1, L series b=7.4)
a = proportionality constant

n = RcZ2 2 2
1 2

1 1
n n

é ù
-ê ú

ë û
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Bohr model Moseley's correction
1. For single electron species 1. For many electron species

2. DE = 13.6Z2
2 2
1 2

1 1
n n

é ù
-ê ú

ë û
eV 2. DE = 13.6 (Z–1)2 2 2

1 2

1 1
n n

é ù
-ê ú

ë û
eV

3. n = RcZ2
2 2
1 2

1 1
n n

é ù
-ê ú

ë û
3. n = Rc(Z–1)2 2 2

1 2

1 1
n n

é ù
-ê ú

ë û

4.
1
l

 = RZ2
2 2
1 2

1 1
n n

é ù
-ê ú

ë û
4. 1

l
 = R (Z – 1)2 2 2

1 2

1 1
n n

é ù
-ê ú

ë û

• For X–ray production, Moseley formulae are used because heavy metal are used.

When target is same 

2 2
1 2

1
1 1
n n

l µ
-

When transition is same 
2

1

(Z b)
l µ

-

ABSORPTION OF X–RAY

I = I0e
–mx

where I0 = Intensity of incident X–ray

I = Intensity of X–ray after passing through x distance

m = absorption coefficient of material

•  Intensity of X–ray decrease exponentially.

x

I0

I

•  Maximum absorption of X–ray ®Lead

•  Minimum absorption of X–ray ® Air

Half thickness (x1/2)

It is the distance travelled by X–ray when intensity become half the original value x1/2 = 2n
m

l

DIFFRACTION OF X–RAY

2d sinq = nl

where, d = spacing of crystal plane or lattice constant or f
q q

d
distance between adjacent atomic plane

q = Bragg's angle or glancing angle

f = Diffracting angle n = 1, 2, 3 .......

For Maximum Wavelength

sin q = 1, n = 1 Þ   lmax = 2d

so if l > 2d diffraction is not possible i.e. solution of Bragg's equation is not possible.
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NUCLEAR PHYSICS
BINDING ENERGY
• Binding energy of a nucleus = Dmc2

where Dm = mass defect = [Zmp + (A–Z)mn] – mnuc

= Totall mass of nucleus mass of nucleus.

• Binding energy per nucleus = =
B.E. B.E.

mass number A

B.E.
Stability 

A
µ

•
B.E.
A

 is maximum for A =62 (Ni), It is 8.79460 ± 0.00003 MeV/nucleon

NUCLEAR FISSION
When heavy nuclei achieve stability by braking into two smaller nuclei, then it is called as nuclear fission reaction.

small mass 
numbers

large mass 
number

NUCLEAR FUSSION
When lighter nuclei achieve stability by combining and resulting into heavy nucleus and this reaction is called fusion
reaction.

small mass 
numbers

large mass 
number

Q VALUE
It is teh theory released after trhe nuclei avhieve stability through nuclear fissiion or fussion reactions

It is always positive when the reaction occurs towards achieving more stability.

It Q value of a reaction is negative, it means taht reaction cannot occur as the products in that case will be more
constable than the reaction.

NUCLEAR FISSION OF U235

U235 + 0n
1 ®  Ba + Kr + 30n

1 + 200 MeV or U235 + 0n
1 ® Xe + Sr + 20n

1 + 200 MeV

and many other reactions are possible.
• The average number of secondary neutrons is 2.5.
• Nuclear fission can be explained by using "liquid drop model" also.
• Dm is about 0.1% of mass of fissioned nucleus
• About 93% of released energy (Q) is appear in the form of kinetic energies of products and about 7% part in the form of

g – rays.

NATURAL URANIUM :
It is mixture of U235 (0.7%) and U238 (99.3%).
U235 is easily fissionable, by slow neutron (or thermal neutrons) having K.E. of the order of 0.03 eV. But U238 is fissionable
with fast neutrons.
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ENRICHED URANIUM
It contains 97% U238 and 3% U235.

CRITICAL SIZE (OR MASS) :
It is minimum mass of  uranium required to sustain a chain reacter.

REPRODUCTION FACTOR  :

(K) = 
rate of productionof neutrons

rate of loss of neutrons

(i) If K = 1; chain reaction is steady or sustained (As in nuclear reaction)
(ii) If K > 1;  chain reaction will accelerate resulting in a explosion (As in atom bomb)
(iii) If K < 1; chain reaction will retard and will stop.

NUCLEAR REACTOR (K = 1) :
• Nuclear Fuel : U235 , Pu239 .Pu239 is the best. Its critical size is less than that of U235. But Pu239 is not naturally available.

So U235 is used in most of the reactors.
• Moderator : They are used  to slow down the fast secondary neutrons D2O,  Graphite etc.
• Control rods : They are used absorbs slow neutrons e.g. Boron and Cadmium.
• Coolant : It is used to absorb heat and transfers it to water for further use.
FAST BREADER REACTORS

It is the atomic reactor in which fresh fissionable fuel (Pu239) is produced along with energy. The amount of produced fuel
(Pu239) is more than consumed fuel (U235)

• Fuel : Used in this reactor Natural uranium.
• Process :

92U
238 + 0n

1 ¾¾®
 92U

239 2 -b¾¾¾®
 94Pu239 (best fuel of fission)

• Moderator : Are not used in these reactors.
• Coolant : Liquid sodium
REQUIRED CONDITION FOR NUCLEAR FUSION
• High temperature
• High Pressure (or density)
HYDROGEN BOMB

Based on nuclear fusion and produces more energy than an atom bomb (based on nuclear fission).
PAIR PRODUCTION

e– and e+ pair is produced when in g-photon having energy >, 1.02 MeV strikes a nucleus.
PAIR ANMIHILATION

When electron and positron combines, 2 g-photon are formed, reach photon having energy >, 0.5 MeV.

RADIOACTIVITY
Radioactive Decays
• a decay : Occurs in nucleus having A>210
• b decay :

• A type
(N/Z)A > (N/Z) stable
To achieve stability, it increases Z by conversion of neutron into proton

0n
1 ®  1p

1 + e–1 + n ,  ZX
A ®  Z+1Y

A + ( )
1

 particle
e-

b
+ n

This decay is called b–1 decay.

Kinetic energy available for e–1 and n  is, Q K Kb n= +
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• B type
(N/Z)B < (N/Z) stable

To achieve stability it decreases Z by the conversion of a proton into neutron. That is,

( ) ( )positron neutrino
p n e+® + + n , 

( )
A A

Z Z 1
particle

X Y e
+

+
-

b
® + + n

• g decay : When daughter nucleus in higher energy state comes to ground state. by emitting a photon or photons. a r

photon is released.

e.g.  ( )

67 67
27 28

higher energy state
Co Ni * -® + b + n , 

67 67
28 28Ni* Ni photon® + g

Properties of a, b and g rays
Features a–particles b–particles g–rays

Identity Helium nucleus or doubly Fast moving electrons Electromagnetic wave

ionised helium atom ( 2He4 ) ( –b
0  or b–) (photons)

Charge Twice of proton (+2e) » 4mp Electronic (– e) Neutral

Mass (rest mass of b) rest mass = 0

mp–mass of proton = (rest mass of electron)

Speed 1.4 × 107 m/s. to 1% of c to 99% of c Only c = 3 ×  108 m/s

2.2 × 107 m/s. (All possible values g–photons come out with

(Only certain value between this range) same speed from all

between this range). b–particles come out with types of nucleus.

Their speed depends on different speeds from the So, can not be a

nature of the nucleus. same type of nucleus. characteristic speed.

So that it is a So that it can not

characteristic speed. be a characteristic speed.

K.E. » MeV » MeV » MeV

Energy Line and discrete Continuous Line and discrete

spectrum (or linear) (or linear)

Ionization 10,000 times 100 times of g–rays

power (a>b>g) of g–rays  (or 
1

100
times of a) 1 (or 

1
100

times of b)

Penetration
1

10000
 times of g–rays

1
100

 times of g–rays 1(100 times of b)

power (g>b>a) (100 times of a)

Effect of electric Deflection Deflection (More than a) No deflection

or magnetic field

Explanation By Tunnel effect By weak nuclear With the help of energy

of emission (or quantum mechanics) interactions levels in nucleus



E

no
de

06
\B

0A
I-B

0\
Ko

ta
\J

EE
(A

dv
an

ce
d)

\L
ea

de
r\

Ph
y\

Sh
ee

t\
H

an
d 

bo
ok

 (E
+L

)\
En

g\
21

_M
od

er
n 

ph
ys

ics
.p

65

ALLEN

121

Physics HandBookC H A P T E R

Laws of Radioactive Decay
Rate of decay µ  number of nuclei.

dN
N

dt
= -l

where l is called the decay constant. This equation may be expressed in the form 
dN

dt
N

= -l .

N = N0e
–lt

N0

N0
e

N0

2

0.37N =0

N=N e0
– tl

N'=N (1–e0
– tl )

timeTh Ta

0.63N0

(0,0)

N

• Half life (Th) : Time during which number of active nuclei reduce to half of initial value.

Th = 
( )n 2

l
l

• Mean or Average Life (Ta) : It  is the average of age of all active nuclei i.e.

 Ta = 
sum of timesof existanceof all nuclei ina sample

initial number of activenuclei in that sample
= 

1
l

ACTIVITY OF A SAMPLE (A OR R) (OR DECAY RATE)

dN
R N

dt
= - = l  or  R = R0e

–lt

SI UNIT of R : 1 becquerel  (1 Bq)= 1 decay/sec
Other Unit is curie : 1 Ci = 3.70 × 1010 decays/sec
1 Rutherford : (1 Rd) =106 decays/s
Specific activity : Activity of 1 gm sample of radioactive substance. Its unit is  Ci/gm
e.g. specific activity of  radium (226) is 1 Ci/gm.

• Parallel radioactive disintegration

Þ ( )A
1 2 A

dN
N

dt
= - l + l

A

B

C

b

a
l1

l2

Þ eff 1 2l = l + l

Þ
1 2

eff
1 2

t t
t

t t
=

+

Radioactive Disintegration with Successive Production

( )rate of production A Ba l
a=¾¾¾¾¾¾¾® ¾¾®
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A
A

dN
N

dt
= a = l ....(i)

when NA in maximum A
A

dN
0 N 0

dt
= = a-l = , NA  or max = 

a
l

      R

t

a

( )
t t

tA
A

A0 0

dN
dt, Number of nuclei is N 1 e

N
-la

= = -
a - l lò ò

Soddy and Fajan's Group Displacement Laws :
(i) a–decay : After emission of one a–particle reduces the mass number by 4 units and atomic number by

    2 units.  ZX
A ® Z–2Y

A–4 + 2He4(a)

(ii) b–decay : Mass number remains same and atomic bumber increases by 1. ZX
A ® Z+1Y

A + b + n
(iii) g–decay :  Both mass number and atomic number remains same, only energy  is released in the form of g–photons.

b
a

g

+ve potential

Lead

(electromagnetic
radiation)

-ve potential
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Ray Optics & Optical Instruments
REFLECTION

LAWS  OF  REFLECTION

The  incident ray  (AB),  the  reflected ray (BC) and normal
(NB) to the surface (SS') of reflection at the point of incidence
(B) lie in the same plane. This plane is called the plane of
incidence (also plane of reflection).

The  angle  of  incidence  (the  angle  between normal and
the incident ray) and  the  angle of  reflection (the angle
between the reflected ray and the normal) are equal

i rÐ = Ð

ref
lec

ted
rayincident ray

normal

e rn

NA C

B
S S'

ri

In vector form ( )ˆ ˆ ˆ ˆ ˆ-r = e 2 e.n n

OBJECT :

• Real : Point from which rays actually diverge.

• Virtual: Point towards which rays appear to converge

IMAGE :

• Image is decided by reflected or refracted rays only.
The point image for a mirror is that point towards
which the rays reflected from the mirror, actually
converge (real image).

OR
• From which the reflected rays appear to diverge (virtual

image) .

CHARACTERISTICS  OF  REFLECTION
BY  A  PLANE  MIRROR  :
• The size of the image is the same as that of the object.

• For a real object the image is virtual and for a virtual
object the image is real.

• For a  fixed  incident  light ray, if the mirror be rotated
through an angle q the reflected ray turns through an
angle 2q in the same sense.

Number of images (n) in inclined mirror

Find 
360

m=
q

r If m even, then n = m – 1, for all positions of object.

r If m odd , then n = m, If object not on bisector  and n
= m – 1, If  object at bisector

VELOCITY OF IMAGE OF MOVING OBJECT
(PLANE MIRROR)

O
I

X

Y

M

VO,X

VO,Y

(i) Velocity component along X-axis

= -
r r

I,M O,MV V

Þ = -
r r r

I,X M,X O,XV 2V V

(ii) Along Y-axis

=
r r

I,Y O,YV V
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PARAXIAL RAYS :

Rays which forms very small angle with princiapl axis
are called paraxial rays. All formulae are valid for paraxial
ray only.

SIGN CONVENTION :

• We follow cartesian co-ordinate system convention
according to which the pole of the mirror is the origin.

• The direction of the incident rays is considered as
positive x-axis. Vertically up is positive y-axis.

• All distance are measured from pole.

Note : According to above convention radius of
curvature and focus of concave mirror is negative and
of convex mirror is positive.

MIRROR  FORMULA :

1 1 1
f v u

= + .

f = x- coordinate of focus

u = x-coordinate of object

v = x-coordinate of image

Note : Valid only for paraxial rays.

TRANSVERSE MAGNIFICATION  :

2

1

h v
m

h u
= = -

h2 = y co-ordinate of image

h1 = y co-ordinate of the object

(both perpendicular to the principal axis of mirror)

Magnification Image
|m|> 1 enlarged
|m| < 1 diminished
m < 0 inverted
m > 0 erect

SPHERICAL  MIRRORS

P
qC

M
spherical
surface concave mirror convex mirror

principal
axis

spherical
mirror

M' \\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\ \\\
\\\

\ \\
\\\

\ \\
\\\

\\\
\\\

\\\
\\\

\\\

C CF FP P

M' M'

M M

i
r

LONGITUDINAL MAGNIFICATION

2 1
L

2 1

v vlength of image
m

length of object u u

-
= =

-

u2v1
u1

objectimage

v2

\\\\\\\\\\ \\\ \\\ \\\ \ \\ \\\\\\\\\\\\\\\\\\\\\\\\\

For small objects only : L

dv
m

du
= -  = m2

SUPERFICIAL MAGNIFICATION

Linear magnification i i

o o

h w
m

h w
= =

ho

wo

h=
m

h
i

ow =mw
i

o

2
s

area of image (ma) (mb)
m m

area of object (a b)
´

= = =
´

VELOCITY OF IMAGE OF MOVING OBJECT

(SPHERICAL MIRROR)

Velocity component along axis (Longitudinal velocity)

M

O

M'

/ // // /////// // // ///// //// / ////////////////////////////////

When an object is coming from infinite towards the
focus of concave mirror
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Q

1 1 1
v u f

+ =       \ 2 2

1 dv 1 du
0

dt dtv u
- - =

2
2

IM ox OM2

v
v v m v

u
Þ = - = -

r r r

• IM

dv
v

dt
= = velocity of image with respect to mirror

• OM

du
v

dt
= = velocity of object with respect to mirror..

(b) Velocity component perpendicular to axis
(Transverse velocity)

m = I

0

h v f
h u f u

= - =
-

 Þ hI = 0

f
h

f u
æ ö
ç ÷-è ø

Idh
dt

 = 
0 0

2

dh f hf du
f u dt (f u) dt

æ ö +ç ÷- -è ø
 ;

2
0

oyiy ox

m h ˆv mv v j
f

é ù
= +ê ú

ë û

rr r

rI

ro

dh
velocity of image to principal-axis

dt
dh

velocity of object to principal-axis
dt

é ù= ^ê ú
ê ú
ê ú= ^ê úë û

Note :  Here principal axis has been taken to be along x–
axis.

NEWTON'S  FORMULA  :

Applicable  to a pair of  real  object and real  image
position only . They are called conjugate positions or
foci, X1, X2 are the distance along the principal axis of
the real object and real image respectively from the
principal focus

2
1 2X X f=

OPTICAL POWER :

Optical power of a mirror (in Diopters) = – 
1
f

where  f = focal length (in meters) with sign .

REFRACTION - PLANE SURFACE

LAWS  OF  REFRACTION  (at  any  refracting
surface)

Laws of Refraction
(i) Incident ray, refracted ray and normal always lie in the

same plane.

e

m1

m2

n

r

i

r

In vector form ˆ ˆ ˆ(e n).r 0´ =

(ii) The product of refractive index and sine of angle of
incidence at a point in a medium is constant.
m1 sin i = m2 sin r (Snell's law)

Snell's  law  : 
2 1 1

1 2
1 2 2

vSin i
Sin r v

m l
= m = = =

m l

In vector form  ˆ ˆ ˆ ˆm m1 2e ×n = r ×n

Note : Frequency of light does not change during
refraction .

DEVIATION OF A RAY DUE TO REFRACTION

d

ii

r

rarer

denser

angle of deviation,   = i rd -

REFRACTION  THROUGH  A PARALLEL SLAB
Emergent ray is parallel to the incident ray, if medium is same
on both sides.

r

i
B

N 
A

N'
t

AIR

GLASS

90°

i
x

D

C

Lateral shift  
t sin(i r)

x
cos r

-
= ; t = thickness of slab

Note : Emergent ray will not be parallel to the incident ray if
the medium on both the sides are different.
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APPARENT DEPTH OF SUBMERGED OBJECT
(h¢ < h)  µ1 > µ2

m2

m 1

h'
h

x

O

For near normal incidence 
2

1

h h
m

=¢
m

Note : h and h' are always measured from surface.

m=1
m=1

m

t

O O'
Dx

Dx = Apparent normal shift = 
1

t 1
æ ö-ç ÷è mø

Note : Shift is always in direction of incidence ray.

CRITICAL ANGLE & TOTAL INTERNAL
REFLECTION (TIR)

CONDITIONS
• Angle of incident > critical angle [i > qc]
• Light should travel from denser to rare medium

Þ Glass to air, water to air, Glass to water
Snell's Law at boundary xx', mD sin qC = mR sin 90°

Þ R
C

D

sin
m

q =
m

Graph between angle of deviation (d) and angle
of incidence (i) as rays goes from denser to
rare medium

• If i < qc µDsini = µR sin r; 
1 D

R

r sin sin i- æ öm
= ç ÷mè ø  so

1 D

R

r i sin sin i i- æ öm
d = - = -ç ÷mè ø

• If i > qc ; d = p – 2i

SOME ILLUSTRATIONS OF TOTAL
INTERNAL REFLECTION

• Sparkling of diamond : The sparkling of diamond
is due to total internal reflection inside it. As refractive
index for diamond is 2.5 so C= 24°. Now the cutting of
diamond are such that i > C. So TIR will take place
again and again inside it. The light which beams out
from a few places in some specific directions makes it
sparkle.



E

no
de

06
\B

0A
I-B

0\
Ko

ta
\J

EE
(A

dv
an

ce
d)

\L
ea

de
r\

Ph
y\

Sh
ee

t\
H

an
d 

bo
ok

 (E
+L

)\
En

g\
22

_R
ay

 o
pt

ics
 &

 O
pt

ica
l I

ns
tru

m
en

ts.
p6

5

ALLEN

127

Physics HandBookC H A P T E R

• Optical Fibre : In it light through multiple total internal reflections is propagated along the axis of a glass fibre of radius
of few microns in which index of refraction of core is greater than that of surroundings (cladding)

m 1

m 1 2> m

light pipe

• Mirage and looming : Mirage is caused by total internal reflection in deserts where due to heating of the earth, refractive
index of air near the surface of earth becomes lesser than above it. Light from distant objects reaches the surface of earth
with i > q C  so that TIR will take place and we see the image of an object along with the object as shown in figure.

hot surface
hot air

cold air

Similar to 'mirage' in deserts, in polar regions 'looming' takes place due to TIR. Here m decreases with height and so the
image of an object is formed  in air if (i>qC) as shown in figure.

rarer

denser

sky
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REFRACTION  THROUGH  PRISM

P

A

r r'
d

Q R

i i'
 

dmin

i=ig i=e
angle of 
incidence

dmax

e=ig
e=90° i=90°

angle of 
deviation

• d = (i + i¢) – (r + r¢)

• r + r¢ = A

• There is one and only one angle of incidence for which
the angle of deviation is minimum.

When d = dm then i = i¢  &  r = r¢ , the ray passes
symetrically about the prism, & then

A m
2

A
2

sin
n

sin

+ dé ù
ë û=

é ùë û
, where  n = w.r.t. surroundings R.I.

of glass.

• For a thin prism ( A £10o) ; d=(n–1)A

• Dispersion  Of  Light  : The  angular splitting of a
ray of white light into a number of components when
it is refracted in a medium other than air is called
Dispersion of Light.

• Angle of Dispersion : Angle between the rays of
the extreme colours in the refracted (dispersed) light is
called Angle of Dispersion.

q = dv
 – dr

• Dispersive power (w) of the medium of the material of
prism.

angular dispersion
deviation of mean ray (yellow)

w =

q
q

r

mean ray
v

dr
dn

dv

For small angled prism ( A £10o );

    
v R v R

y

n n

n 1

d - d -
w = =

d -  ; v Rn n
n

2

+
=

nv, nR & n are  R. I. of material for violet, red & yellow
colours respectively .

COMBINATION  OF  TWO  PRISMS

• Achromatic  Combination :

It  is used for deviation without dispersion . Condition
for this (nv

 - nr) A +(n¢v
 - n¢r) A¢=0

 wd + w¢d¢ = 0 where w, w¢ are dispersive powers for
the two prisms & d , d¢ are the mean deviation.
Net mean deviation

=
v Rv R

n nn n
1 A 1 A

2 2

+¢ ¢é ù+é ù
- + - ¢ê úê úë û ë û

• Direct Vision Combination :
It is used for producing disperion  without deviation
condition for  this

v R v Rn n n n
1 A 1 A

2 2

+ +¢ ¢é ù é ù
- = - - ¢ê ú ê ú

ë û ë û

Net angle of dispersion = (nv – nr) A + (nv¢ – nr¢) A¢.

• 2 1 2 1

v u R

m m m - m
- =       

m1 m2

O P C I
+ve

v, u & R are to be

kept with sign as

v = PI
u = –PO

R = PC

(Note : Radius is with sign)

•
1

2

v
m

u
m

=
m

• Lens Formula :

• 
1 1m

+ve
  

1 1 1
v u f

- =

• ( )
1 2

1 1 1
1

f R R

æ ö
= m - -ç ÷è ø        • 

v
m

u
=

• Power of Lenses
Reciprocal of focal length in meter is known as power
of lens.

• SI unit : dioptre (D)

• Power of lens : 
1 100

P dioptre
f(m) f(cm)

= =
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Combination of Lenses
Two thin lens are placed in contact to each other

Power of combination. P = P1 + P2 Þ 
1 2

1 1 1
f f f

= +

f2f1

Use sign convention when solving numericals

Newton's Formula

F1 F2 IO

    1 2f x x=

x1 = distance of object from focus
x2 = distance of image from focus

Displacement Method
It is used for determination of focal length of convex lens in
laboratory. A thin convex lens of focal length f is placed
between an object and a screen fixed at a distance D apart.

object sc
re

en

u v=(D u)-

D

(i) For D<4f: u will be imaginary hence physically no
position of lens is possible

(ii) For D = 4f : 
D

u 2f
2

= = so only one position of

lens is possible and since v = D – u = 4f – 2f = u

(iii) For D > 4f :

1

D D( D 4 f )
u

2

- -
=  and 2

D D(D 4f )
u

2

+ -
=

So there are two positions of lens for which real image will
be formed on the screen.(for two distances u1 and u2 of the
object from lens)

object I2

I1

If the distance between two positions of lens is x then
x = u2 – u1

   = 
( ) ( )D D D 4f D D D 4f

2 2

+ - - -
- = ( )D D 4f-

Þ x2 = D2 
 – 4 Df Þf = 

2 2D x
4D

-

Distance of image corresponds to two positions of the lens :

1 1

2 1 2

1
v D u D [D D(D 4f)]

2
1

  = [D + D (D 4f) ] = u v u
2

= - = - - -

- Þ =

2 2

1 2 1

1
v D u D [D + D(D 4f)]

2
1

  = [D D(D 4f) ] = u v u
2

= - = - -

- - Þ =

Distances of object and image are interchangeable. for the
two positions of the lens. Now
x = u2 – u1 and  D = v1 + u1 = u2 + u1  [Qv1 = u2]

so 1 2

D x
u v

2
-

= = and u2 = v1 = 
D x

2
+

;

    m1 = 
1 1

1

I v D x
O u D x

+
= =

-  and m2 = 
-

= =
+

2 2

2

I v D x
O u D x

Now 1 2
1 2 1 22

I ID x D x
m m 1 O I I

D x D x O
+ -

´ = ´ Þ = Þ =
- +

Silvering of one surface of lens

 Peff = 2PL1 + 2PL2 + PM

eff L1 L2 M

1 2 2 1
f f f f

= + -                               

\\\\\\\\\\\\\\\

L1

L2

When plane surface is silvered  f = 
R

2( 1)m -  O

When convex surface is silvered  f =
R
2m    O

\\\ \\\\\\\\\\\\\\\ \\ \ \ \\ \\ \\ \\\ \\ \\ \ \\ \\\ \\\ \\ \\\\ \\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
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IMPORTANT NOTES
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Wave Nature of Light & Wave Optics

Huygen's in 1678 assumed that a body emits light
in the form of waves.

• Each point source of light is a centre of
disturbance from which waves spread in all
directions. The locus of all the particles of the
medium vibrating in the same phase at a given
instant is called a wavefront.

• Each point on a wave front is a source of new
disturbance, called secondary wavelets. These
wavelets are spherical and travel with speed
of light in that medium.

• The forward envelope of the secondary
wavelets at any instant gives the new wavefront.

• In homogeneous medium, the wave front is
always perpendicular to the direction of wave
propagation.

A B

A' B'

Plane wavefront Spherical wavefront

Primary 
source

Secondary 
source

secondary 
   wave

COHERENT SOURCES :

Two sources will be coherent if and only if they
produce waves of same frequency (and hence
wavelength) and have a constant initial phase
difference.

INCOHERENT SOURCES :

Two sources are said to be incoherent if they
have different frequency and initial phase
difference is not constant w.r.t. time.

• Resultant intensity for coherent sources

= + + f1 2 1 2 0I I I 2 I I cos

• Resultant intensity for incoherent sources I=I1+I2
• Intensity µ width of slit µ (amplitude)2

Þ = =
2

1 1 1
2

2 2 2

I W a
I W a

( )
( )

+ +æ ö
Þ = = ç ÷-è ø-

1

2
2

1 2max 1 2
2

min 1 2
2

I II a a
I a aI I

• Distance of  nth bright fringe n

n D
x

d
l

=

d

S1

S2

q

dsinq

Path difference = nl  where n =0, 1, 2, 3, .....

• Distance of mth dark fringe 
( )

m

2m 1 D
x

2d
+ l

=

Path difference=(2m+1)
l
2

where m= 0,1,2, 3,.....

• Fringe width 
l

b =
D
d

• Angular fringe width =
b l

=
D d

• Fringe visibility =
max min

max min

I I
100

I I
-

´
+ %

• If a transparent sheets of referactive index m and
thickness t is introduced in one of the paths of
interfering waves, optial path will becomes 'mt' instead
of 't'. Entire fringe pattern is displaced by

( ) ( )
é ùm - bë û = m -

l
D 1 t

1 t
d

 towards the side in which

the thin sheet is introduced without any change in
fringe width.

HUYGEN'S WAVE THEORY INTERFERENCE : YDSE
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SHIFTING OF FRINGES

S1

S2

P

y

• Path difference produced by a slab Dx = (m–1)t

• Fringe shift, ( ) ( )D
x t t1 1

d
b

D = =m - m -
l

• Number of fringes shift

=
shift

fringe width
( ) ( )t D/ d t-1 1

=
D / d

m m -
=

l l

• For reflected Light :

Maxima ® 2mt cosr = (2n+1)
2
l

Minima® 2mt cosr = nl
• For transmitted light :

Maxima ®2mt cosr =nl

Minima ®2mt cosr =(2n+1)
2
l

(t =thickness of film, m=R.I. of the film)IN
T
ER

EF
ER

EN
C

E 
IN

 T
H

E 
FI

LM

• Newton's Ring : When a lens of large Radius of

curvature is placed on a plane glass plate, an air film is

formed between lower surface of the lens and the upper

surface of the plate. It this film is illuminated by sodium

light, due to interference concentric bright and dark rings

called Newton's Rings are seen.

• If the film is wedge shaped. The fringes will be straight

lines parallel to the edge of apex with minimum at the

apex and fringe width 
l

b =
mq2  where q =

t
x

.

 • If case of Newton's rings the centre is dark spacing

between rings goes on decreasing as we move away from

centre and radius of dark rings is proportional to the

square root of all natural number while bright rings 1.0

the square root of odd numbers.

• Llayd's Mirror :

Mirror

P
Screen

Real source

d

S

S

The position of dark and bright fringes are reversed

relative to the pattern of two real sources because there

is a 1800 phase change produced by reflection.



E

no
de

06
\B

0A
I-B

0\
Ko

ta
\J

EE
(A

dv
an

ce
d)

\L
ea

de
r\

Ph
y\

Sh
ee

t\
H

an
d 

bo
ok

 (E
+L

)\
En

g\
23

_W
av

e N
at

ur
e 

of
 lig

ht
 &

 W
av

e O
pt

ics
.p

65

ALLEN

133

Physics HandBookC H A P T E R

• Fresnel's diffraction : In Fresnel's diffraction, the
source and screen are placed close to the aperture or the
obstacle and light after diffraction appears converging
towards the screen and hence no lens is required to
observed it. The incident wave fronts are either spherical
or cylindrical.

• Fraunhofer's diffraction : The source and screen are
placed at large distances from the aperture or the
obstacle and converging lens is used to observed the
diffraction pattern. The incident wavefront is planar one.
r For minima   : a sinqn = nl

r For maxima : a sinqn = (2n + 1) 
2
l

r Linear width of central maxima : Wx = 2 D
a
l

r Angular width of central maxima Wq = 
2
a
l

r Intensity of maxima
       where I0 = Intensity of central maxima

( ) 2

0

sin /2
I I

/2

é ùb
= ê úbë û

 and 
p

b = q
l
2

a sin

DIFFRACTION

S1

A

d

d

d
d

S1

x

d

A
a b

Region of intercference

Screen

x = ad

Fresnel's Biprism

Seperation between coherent sources d = 2ad = 2aA(µ – 1)
Seperation between slit plane and screen D = a + b

Frindge width on screen 
( )

( )
l +

b = =
m -

a bAD
d 2aA 1

Frillet split lens as a limiting case of YDSE

f

a b

S2

S1

x
x

Dv

O

Screen

Region of interference

from lens

formula =
-
af

v
a f

D = a + b – |V|

d = 2x + 2
v

x
u

d = 2x 
æ ö

+ç ÷
è ø

v
1

u

Frindge width b = 
lD
d
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KEY POINTS

• The law of conservation of energy holds good in the phenomenon of interference.

• Fringes are neither image nor shadow of slit but locus of a point which moves such a way that its path difference
from the two sources remains constant.

• In YDSE the interference fringes for two coherent point sources are hyperboloids with axis S1S2.

• If the interference experiment is repeated with bichromatic light, the fringes of two wavelengths will be coincident
for the first time when

( ) ( ) ( )b = + b
longer shorter

n n 1

• No interference pattern is detected when two coherent sources are infinitely close to each other, because b µ
1
d

• If maximum number of maximas or minimas are asked in the question, use the fact that value of sinq or cosq

can't be greater than 1.       nmax = 
l
d

 Total maxima = 2nmax +1

• Limit of resolution for microscope  = 
l

=
q

1.22 1
2asin resolving power

• Limit of resolution for  telescope = 
1.22 1

a resolving power
l

=

POLARISATION OF LIGHT

If the vibrations of a wave are present in just one direction
in a plane perpendicular to the direction of propagation, the
wave is said to be polarised or plane polarised. The
phenomenon of restricting the oscillations of a wave to just
one direction in the transverse plane is called polarisation of
waves.

MALUS LAW
The intensity of transmitted light passed through an
analyser is I=I0cos2q
(q=angle between transmission directions of polariser
and analyser)

POLARISATION BY REFLECTION
Brewster's Law : The tangent of polarising angle of
incidence at which reflected light becomes completely plane
polarised is numerically equal to refractive index of the
medium. m=tan ip;

ip =Brewster's angle and ip+rp=90°

POLARISATION BY SCATTERING
If we look at the blue portion of the sky through a polaroid
and rotate the polaroid, the transmitted light shows rise and
fall of intensity.

S
ca

tt
er

ed
 li

gh
t

(p
o
la

ris
ed

)

Incident sunlight
(Unpolarised)

Nitrogen 
molecule

The scattered light screen in a direction perpendicular to the
direction of incidence is found to be plane polarised.
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IMPORTANT NOTES
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Errors

Error

Random
(Cann't be removed
but minimized)
No fixed sign

Syotematic
(Can be removed)
Ex- zero error, Bench error
Fixed sign

Absolute Error : Expressed in absolute term ex-least
count

Relative/ Fractional Error : 
Absolute error

Size of measurement

1. Addition and subtraction rule :
The absolute random errors add.
Thus if R = A + B, r = a + b and if R =
A – B, r = a + b

2. Product and quotient rule :
The relative random errors add.

Thus if R = AB,   
R
r

 = B
b

A
a

+

and if R = B
A

, then also 
R
r

 = 
B
b

A
a

+

3. Power rule :
When a quantity Q is raised to a power P, the relative
error in the result is P times the relative error in Q.

This also holds for negative powers. If R = QP, 
R
r

 =

Q
qP´

4. The quotient rule is not applicable if the numerator
and denominator are dependent on each other.

e.g  if R = 
YX

XY
+

. We cannot apply quotient rule to

find the error in R. Instead we write the equation as

follows    Y
1

X
1

R
1

+= . Differentiating both the

sides, we get 222 Y
dY

X
dX

R
dR

--=- .

Thus 222 Y
y

X
x

R
r

+=

Significant Digits
Rules for determining the number of
significant digits in number with indicated
decimals.

• All nonzero digits (1-9) are to be counted as

significant.

• Zeros that have any nonzero digits anywhere to the

LEFT of them are considered significant zeros.

• All other zeros not covered in rule (2) above are

NOT be considered significant digits.

Determining the number of significant digits
in number is not having an indicated
decimals.

Express in ecientific notation

Rule for expressing the correct number of
significant digits in an addition or
substraction :
A sum or difference can have no more indicated positions

to the right of the decimal as the number involved in the

operation with the LEAST indicated positions to the

right of its decimal.

Rules for rounding off digits
  There are a set of conventional rules for rounding off.

• Determine according to the rule what the last

reported digit should be.

• Consider the digit to the right of the last reported

digit.

• If the digit to the right of the last reported digit is

less than 5 round it and all digits to its right off.

• If  the digit to the right of the last reported digit is

greater than 5 round it and all digits to its right off

and increased the last reported digit by one.

• If the digit to the right of the last reported digit is a

5 followed by either no other digits or all zeros,

round it and all digits to its right off and if the last

reported digit is odd round up to the next even

digit. If the last reported digit is even then leave it

as is.
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Vernier Callipers

0 1 2 15
V

P

C

Q

D

S

N
M

1

Vernier Callipers

Main Scale
Vernier Scale

     
Main scale (S)

Vernier scale (V)

0 1 2 cm

0 5 10

Principle of Vernier

Least count of Vernier Callipers
The least count or Vernier constant (v. c) is the minimum value of correct estimation of length without eye estimation.
If N division of vernier coincides with (N-1) division of main scale, then

N (VS) = (N – 1) ms    Þ  1VS = N
1N -

 ms

Vernier constant = 1 ms – 1 vs = ÷
ø
ö

ç
è
æ -

-
N

1N1 ms = N
ms1

, which is equal to the value of the smallest division on the

main scale divided by total number of divisions on the vernier scale.
Zero error:

0 001 11

0 005 5510 1010
Vernier scale Vernier scaleVernier scale

Main scale Main scaleMain scale

(ii)(i)
without zero error with positive zero error with negative zero error

4 division
coinciding

th

Positive zero error (+0.04 cm)
and its correction

0 1

50 10

                                   

6 division
coinciding

th

Negative zero error = ( 0.04 cm)
and its correction

-

0 1

50 10

Negative zero error = – [Total no. of vsd – vsd coinciding] × L.C.



E

no
de

06
\B

0A
I-B

0\
Ko

ta
\J

EE
(A

dv
an

ce
d)

\L
ea

de
r\

Ph
y\

Sh
ee

t\
Ha

nd
 b

oo
k (

E+
L)

\E
ng

\2
4_

Er
ro

r &
 m

ea
su

re
m

en
ts.

p6
5

138

Physics HandBook ALLEN
C H A P T E R

Screw Gauge

Spindle

P Q S
T M

Sleeve

5
0
95

Thimble

R

E
Screw Gauge

                  

Screw head

Direction
of motion

Pitch

Nut
Pitch

Principle of a micrometer

P Q S

T
M

Thin sheet
40
450 1

E

R

                 

P Q S
T M 5

0
95

Spindle Sleeve Thimble

R

E
Screw gauge with no zero error

5

96

Negative zero error
(3 division error) i.e., - 0.003 cm

P Q S
T M

R

0
95

E

Line of
graduation

         

zero of the circular
scale is above the
zero of main scale

Circular scale

10
5
00
95
90
85

Main scale
reference line

S
T M

5
0

R

Line of
graduation

PQ

E
Positive zero error

(2 division error) i.e., + 0.002 cm

                

Circular scale

Zero of the circular
scale is below the
zero of main scale

Main scale
reference line

15
10
5
0
95
90

0

Constants of the Screw Gauge

(a) Pitch
(b) Least count
(c) Measurement of length by screw gauage
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Semiconductor & Digital Electronics
COMPARISON BETWEEN CONDUCTOR, SEMICONDUCTOR AND INSULATOR

w Number of electrons reaching from valence band  to conduction band : 
Eg

3/2 2kTn AT e
D

-
=

w CLASSIFICATION OF SEMICONDUCTORS :

Extrinsic semiconductor 
(doped semicondutor)

(pure form of Ge, Si)
n =n =ne h i N-type 

pentavalent impurity 
(P, As, Sb etc.)

donor impurity (N )
n >> n

D

e h

P-type
trivalent impurity 

(Ga, B, In, Al)
acceptor impurity (N )

n >> n
A

h e

Intrinsic 
semiconductor

SEMICONDUCTOR

w MASS-ACTION LAW  : 2
i e hn n n= ´

r For N-type semiconductor ne ;  ND r For P-type semiconductor  nh ;  NA

Intrinsic semiconductor P - type N - type
ne  = nh nh >> ne ne >> nh

J = ne [ ve + vh] (Current density) J  @ e nh vh J  @ e ne ve

1
s =

r   
=  en [µe + µh] (Conductivity)          

1
s =

r  @   e nh  mh

1
s =

r
 @   e ne   me

CONDUCTION IN SEMICONDUCTOR

Properties Conductor Semiconductor Insulator 
Resistivity 10–2 – 10–8 Wm 10–5 – 106 Wm 1011 – 1019 Wm 
Conductivity 102 – 108 mho/m 10-6 – 105 mho/m 10–19 – 10–11 mho/m 
Temp. 
Coefficient of 
resistance (a) 

Positive Negative Negative 

Current Due to free electrons Due to electrons and holes No current 
Energy band 
diagram 

O
ve

rla
pp

in
g 

re
gi

on

Conductor

Valence Band

No gap

Conduction Band

E
le

ct
ro

n 
E
ne

rg
y

 
Semi conductor

E
le

ct
ro

n
E
ne

rg
y

Conduction Band

Valence Band

Forbidden E  1evg @Gap

 

E
le

ct
ro

n
E
ne

rg
y

Forbidden
Gap

Insulator

E  3eVg ³

Valence Band

Conduction Band

 
Forbidden 
energy gap 

@ 0eV @ 1eV ³ 3eV 

Example Pt, Al, Cu, Ag Ge, Si, GaAs, GaF2 Wood, plastic, 
Diamond, Mica 
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P-N JUNCTION
(At equilibrium condition)

COMPARISON BETWEEN
FORWARD BIAS AND REVERSE BIAS

 

Forward Bias Reverse Bias 
P N

V

+ –  

P N

V
+–  

1 Potential Barrier reduces 1 Potential Barrier increases. 
2 Width of depletion layer 

decreases 
2 Width of depletion layer 

increases. 
3 P-N jn.  provide  very  small  

resistance 
3 P-N jn. provide high 

resistance 
4 Forward current flows in 

the circuit 
4 Very small current flows. 

5 Order of forward current 
is milli ampere. 

5 Order of current is micro 
ampere  for  Ge  or  Nano  
ampere for Si. 

6 Current flows mainly due 
to majority carriers. 

6 Current flows mainly due 
to minority carriers. 

7 Forward characteristic 
curves. 

7 Reverse characteristic 
curve 

 

0

if
(mA)

V (volt)f

knee 
voltage

 

 

break down
voltage

V (volt)r

Ir ( A)m

Reverse 
saturation
current

 
8 Forward Resistance :  

f
f

f

V
R 100

I
D

= @ W
D

 

8 Reverse Resistance 

: 6r
r

r

V
R 10

I
D

= @ W
D

 

9 Order  of  knee  or  cut  in  
voltage 

9 Breakdown voltage 

Ge® 0.3 V Ge ® 25 V 
Si ® 0.7 V Si ® 35 V 
Special point : Generally  

3r

f

R
 = 10 : 1 for Ge

R  

4r

f

R
 = 10 : 1 for Si

R  

Direction of diffusion current :  P to N side

and drift current :  N to P side

If there is no biasing then diffusion current

= drift current. So total current is zero

In junction N side is at high potential relative

to the P side. This potential difference tends

to prevent the movement of electron from

the N region into the P region. This

potential difference called a barrier

potential.

p n

hole free electron

– +

el
ec

tr
ic

po
te

nt
ia

l

distance

V0

holefree
electron

negative
acceptor
ion

positive
donor ion

CB

VB

Intrinsic Semiconductor N-type (Pentavalent impurity) P-type (Trivalent impurity)

CB

VB

donor

level

CB

VB

acceptor
impurity
level

Mainly due to electrons

n << n (N   n )h  e D e

I   Ie

Majority  Electrons 
Minority  Holes

Mainly due to holes

n >>n  (N )h e A       nh

I    Ih

Current due to electron and hole

n = n = n

I = I + I

Entirely neutral

e h i

e h

Quantity of electrons and 
holes are equal

Entirely neutral Entirely neutral

Majority  Holes
Minority - Electrons
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APPLICATION OF DIODE

• Zener diode : It is highly doped p-n junction diode used as a voltage regulator.

• Photo diode : A p-n junction diode use to detect light signals operated in reverse bias.

• LED : A p-n junction device that emits optical radiation under forward bias conditions

• Solar cell : Generates emf of its own due to the effect of sun radiations.

BREAKDOWN ARE OF TWO TYPES

Zener Break down Avalanche Break down
Where covalent bonds of depletion layer, itself Here covalent bonds of depletion layers are broken

break, due to high electric field by collision of "Minorities" which aquire high kinetic

energy from high electric field

This phenomena take place in This phenomena takes place in

(i) P – N junction having "High doping" (i) P – N junction having "Low doping"

(ii) P – N junction having thin depletion layer (ii) P – N junction having thick depletion layer

Here P – N junction does not damage permanently Here P – N junction damages permanentaly

"In D.C voltage stabilizer zener phenomena is used". due to abruptly increment of minorities

during repeatative collisions.

RIPPLE  FACTOR : ac

dc

I
r

I
=

r For HWR     r = 1.21
r For  FWR     r = 0.48

RECTIFIER EFFICIENCY:  
2

dc dc L
2

ac rms F L

P I R
P I (R R )

h = =
+

For HWR  : 
F

L

40.6
%

R
1

R

h =
+

 & FWR  
F

L

81.2
%

R
1

R

h =
+

HALF WAVE RECTIFIER

ideal diode

v=V sin tm w

+

-

V0

V

t

t

V0

FULL WAVE BRIDGE
REACTIFIER

D D1 2 D D3 4 D D1 2 D D3 4

Vin

CENTRE – TAP FULL
WAVE RECTIFIER

D1 D2 D1 D2 D1 D2 D1 D2 D1 D2

V0

V0

2
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COMPARATIVE STUDY OF TRANSISTOR CONFIGURATIONS

1. Common Base (CB)          2. Common Emitter (CE)   3. Common Collector (CC)

 CB CE CC 

 
CB

E C

BB

IE

B B
IB

IC

 

CE
B C

EE

E

C
IC

E
I E

IB
B

 

CC
B E

CC

C

E

ICC

IE
IB

B

 
Input Resistance Low (100 W ) High (750 W ) Very High @ 750 kW 
Output 

resistance 
Very High High Low 

(AI or a) (AI or b) (AI or g ) 
Current Gain 

C

E

I 1
I

a = <

 

C

B

I 1
I

b = >

 

E

B

I
1

I
g = >

 

o C L
V

i E i

V I R
A

V I R
= =

 

o C L
V

i B i

V I R
A

V I R
= =

 

o E L
V

i B i

V I R
A

V I R
= =

 Voltage Gain 

L
v

i

R
A = 150

R
a @

 

L
v

i

R
A = 500

R
b @

 

L
v

i

R
A =  1

R
g <

 

Power Gain 2o L
p

i i

P R
A

P R
= = a

 

2o L
p

i i

P R
A

P R
= = b

 

2o L
p

i i

P R
A

P R
= = g

 

Phase difference 

(between output 

and input) 

same phase opposite phase same phase 

Application For High Frequency For Audible frequency For Impedance 

Matching 

 

FOR TRANSISTOR
IE = IB + IC

(a)
E

B PNP

VBC

VEB

+

(b)
E

B NPN

VCB

VBE

+

C C
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TRANSISTOR IN CE CONFIGURATION

TRANSISTOR CHARACTERISTICS

r Current amplification factor

     • For CE(n-p-n)
CE constant

C
ac

B V

l

l
=

Dæ ö
b = ç ÷Dè ø

     • For CB (p-n-p)
CB constant

C
ac

E V

l

l
=

Dæ ö
a = ç ÷Dè ø

r Input resistance (r1)
CE constan t

BE

B V

V
l

=

Dæ ö
ç ÷Dè ø

r Output resistance (r0)
B cons tan t

CE

C I

V
l

=

Dæ ö
ç ÷Dè ø

r Relation between a and b :  
1

a
b =

- a
 & 

1
b

a =
+ b

Appyling Kirchof's voltage Law

B
C

E

IE

VCVBB

VI
V0

RB

RC

Vi = VBB = IBRB + VBE              ....(i)
And V0 = VCE = VCC – ICRC             ....(ii)
When Vi is less then Knee voltage, the trnasistor will  be in
cut off state and current IC will be zero

So DVi = RBDIB + DVBE (DVBE is negligible)
From equation (i) & (ii)

and DV0 = – RCDIC (Q VCC = constant)

Vi

V0

Active region

Saturation
region

Cut of region

Voltage gain  D
=

D
0

V
i

V
A

V

\ Voltage gain 
D

= -
D

C C
V

B B

R I
A

R I

= -b C
V ac

B

R
A

R

Feeedback amplifier and transistor oscillator

Transistor
amplifierInput

Feedback
network

Output

T1

T2

1

2

3

4 

C

S1

Mutual
Inductance

Output

Working

   

IC

t x

y

z
  

IE

t x

y

z

Initially surge of collector current (IC) flows through T2. This
current increases from x to y. By innductive coupling between
coils T2 and T1 causes a current in emitter. It is the feedback
from input  to output. As soon as field becomes static and
there will be not feed back. Without feedback, the emitter
current begins to fall. So collector current decreases and it will
further, untill transistor reaches at cut-off region. The whole
process repeat it self. The frequency of tuned circuit at which

oscillator will oscillate is =
p

1
f

2 LC
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APPLICATIONS OF TRANSISTORS

r Transistor as a Switch
A transistor can be used as a switch if it is
operated in its cutoff and saturation states only.

r Transisot as an Oscillator
An oscillator is a generator of an ac signal using
positive feedback

Frequency of oscillations if 
1

f
2 LC

=
p

r Relation between a, b and g :

          
1

, 1 ,  
1 1

a
b = g = + b g =

- a - a

There are three regions of transistor operation:

r Cut off region * Active region * Saturation
region

r Transistor as Voltage amplifier

* To operate it as an amplifer we need to fix its
operating voltage somewhere in active region
where it increases the strength of input ac signal
and produces an amplified output signal.

* Voltage gain 
0 out

V ac
i in

V R
A

V R
= = -b

* Power gain P V acA A= ´ b
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SUMMARY OF LOGIC GATES
Names Symbol Boolean Truth table Electrical Circuit diagram

Expression analogue (Practical Realisation)

OR

A

B

Y 
Y = A + B

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

AND

A

B

Y" Y
 Y = A. B

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

1

NOT or YA Y = A A Y
0 1
1 0

Inverter

NOR

A

B

Y 
Y A B= +

A B Y
0 0 1
0 1 0
1 0 0
1 1 0

(OR +NOT)

NAND
A

B

Y" Y
Y A B= .

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

(AND+NOT)

XOR A

B

Y
Y A B= Å

A B Y
0 0 0
0 1 1
1 0 1
1 1 0

(Exclusive or

  OR) Y A.B AB= +

XNOR
A

B

Y Y = A ¤ B
A B Y
0 0 1
0 1 0
1 0 0
1 1 1

(Exclusive or
NOR) Y A B A B= +. .

or

Y A B= Å

DE MORGAN'S THEOREM

A B A B, A B A B+ = = +g g

OR AND NOT 
A + 0 = A A. 0 = 0 A A 1+ =  
A + 1 = 1 A. 1 = A A A 0× =  
A + A = A A . A = A 

A A A× =  
 



E

no
de

06
\B

0A
I-B

0\
Ko

ta
\J

EE
(A

dv
an

ce
d)

\L
ea

de
r\

Ph
y\

Sh
ee

t\
Ha

nd
 b

oo
k 

(E
+L

)\
En

g\
25

_S
em

ico
nd

uc
to

r.
p6

5

146

Physics HandBook ALLEN
C H A P T E R

IMPORTANT TERMS USED IN COMMUNICATION

Communication System

BASIC COMPONENTS OF A COMMUNICATION SYSTEM

Information
source

Transmitter Channel Receiver
User of 

information
Message
signal

Transmitted Received
signal signal

Message
signal

Noise

• Transmitter : Transmitter converts the message signal produced by information source into a form (e.g.
electrical signal) that is suitable for transmission through the channel to the receiver.

• Communication channel : Communication channel is a medium (transmission line, an optical fibre or
free space etc) which connects a receiver and a transmitter. It carries the modulated wave from the transmitter
to the receiver.

• Receiver : It receives and decode the signal into original form.

• Transducer. Transducer is the device that converts one
form of energy into another. Microphone, photo
detectors and piezoelectric sensors are types of
transducer.

• Signal  Signal is the information converted in electrical
form. Signals can be analog or digital. Sound and picture
signals in TV are analog.

It is defined as a single–valued function of time which
has a unique value at every instant of time.

• Analog Signal :– A continuously varying signal
(Voltage or Current) is called an analog signal. A
decimal number with system base 10 is used to deal
with analog signal.

• Digital Signal :–  A  signal  that  can  have  only
discrete stepwise values is called a digital signal. A
binary number system with base 2 is used to deal
with digital signals. (See Fig. 1)

• Noise : There are unwanted signals that tend to disturb
the transmission and processing of message signals. The
source of noise can be inside or outside the system.

• Attenuation : It is the loss of strength of a
signals while propagating through a medium. It
is like damping of oscillations.

• Amplification : It is the process of increasing
the amplitude (and therefore the strength) of a
signal using an electronic circuit called the
amplifier. Amplification is absolutely necessary
to compensate for the attenuation of the signal
in communication systems.

• Range : It is the largest distance between the
source and the destination upto which the signal
is received with sufficient strength.

• Repeater : A repeater acts as a receiver and
a transmitter. A repeater picks up the signal
which is coming from the transmitter, amplifies
and retransmits it with a change in carrier
frequency. Repeaters are necessary to extend
the range of a communication system as shown
in figure A communication satellite is basically
a repeater station in space. (See Fig. 2)

Faithful transmission of information from one place to another place is called communication.

V (+5V)max

V

0

V ( 5V)min -

An analog signal

V

0

1
t

A Digital Signal

Mountain

Use of repeater station to increase the range of communication

Fig.1 Fig.2
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BANDWIDTH

(i) Bandwidth for analog signals :

Bandwidth for some analog signals are listed below

Bandwidth required

3100-300 =2800 Hz

4.2 MHz

High frequencies produced 
by musical instrument audible 
range =20 Hz - 20 kHz

Contains both voice 
and picture

Frequency range

300-3100 HzSpeech

Picture 

Signal

Music 20 kHz

TV 6 MHz

(ii) Bandwidth for digital signal :

Basically digital signals are rectangular waves and
these can be splited into a superposition of sinusoidal
waves of frequencies n0, 2n0, 3n0, 4n0, nn0,  where
n is an integer extending to infinity. This implies that
the infinite band width is required to reproduce the
rectangular waves. However, for practical purposes,
higher harmonics are neglected for limiting the
bandwidth

BANDWIDTH OF TRANSMISSION MEDIUM
Different types of transmission media offer different band width of which some are listed below

Service Frequency range Remarks

1 Wire (most common : 
Coaxial Cable)

750 MHz (Bandwidth) Normally operated below 18 GHz

2 Free space (radio waves) 540 kHz-4.2 GHz

(i) Standard AM 
broadcast

540 kHz to 30 MHz

(ii) FM 88-108 MHz

(iii) Television 54-72 MHz
76-88 MHz

174-216 MHz
420-890 MHz

VHF (Very high frequencies) TV
UHF (Ultra hight frequency) TV

(iv) Cellular mobile radio 896-901 MHz
840-935 MHz

Mobile to base Station
Base station to mobile

(v) Satellite   
     Communication

5.925-6.425 GHz
3.7 - 4.2 GHz

Uplinking
Downlinking

3 Optical communication 
using fibres

1THz-1000 THz
(microwaves- ultra violet)

One single optical fibre offers 
bandwidth > 100 GHz

(a) The  radio  waves  which  travel  through
atmosphere following the surface of earth are
known as ground waves or surface waves and
their propagation is called ground wave
propagation or surface wave propagation.
These waves are vertically polarised in order to
prevent short-circuiting of the e lectric
component. The electrical field due to the wave
induce charges in the earth's surface. As the
wave travels, the induced charges in the earth
also travel along it. This constitutes a current
in the earth's surface. As the ground wave passes
over the surface of the earth, it is weakened
as a result of energy absorbed by the earth. Due
to these losses the ground waves are not suited
for very long range communication. Further
these losses are higher for high frequency.

Hence, ground wave propagation can be sustained
only at low frequencies (500 kHz to 1500 kHz).

(b) The ground wave transmission becomes weaker with
increase in frequency because more absorption of
ground waves takes place at higher frequency during
propagation through atmosphere.

(c) The ground wave propagation is suitable for low and
medium frequency i.e. upto 2 MHz only.

(d) The ground wave propagation is generally used for
local band broadcasting and is commonly called
medium wave.

(e) The maximum range of ground or surface wave
propagation depends on two factors :

(i) The frequency of the radio waves and (ii) Power
of the transmitter

BANDWIDTH OF SIGNALS
Different signals used in a communication system such as voice, music, picture, computer data etc. all have different
ranges of frequency. The difference of maximum and minimum frequency in the range of each signal is called
bandwidth of that signal. Bandwidth can be of message signal as well as of transmission medium.

GROUND WAVE PROPAGATION
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(d) Height of transmitting Antenna :
The transmitted waves, travelling in a straight line,
directly reach the received end and are then picked
up by the receiving antenna as shown in figure.

R R

P

dd

Q

90°

h

S T

O
Due to finite curvature of the earth, such waves cannot
be seen beyond the tangent points S and T.

(R+h)2 =  R2 +  d2

As R>>h,  So  h2 +  2Rh =  d2 d 2RhÞ =
Area covered for TV transmission :

A = pd2 =  2pRh
Population covered=population density ×area covered
If height of receiving antenna is also given in the
question then the maximum line of sight

M T Rd 2Rh 2Rh= +

hT hR

dM

dT

Line of sight communication by space waves

de

where ;
R=radius of earth (approximately 6400 km)
hT = height of transmitting antenna
hR = height of receiving antenna

SKY WAVE PROPAGATION

(a) The sky waves are the radio waves of frequency
between 2 MHz to 30 MHz.

(b) The ionospheric layer acts as a reflector for a
certain range of frequencies (3 to 30 MHz).
Therefore it is also called has ionospheric
propagation or short wave propagation.
Electromagnetic waves of frequencies higher than
30 MHz penetrate the ionosphere and escape.

(c) The highest frequency of radio waves which when
sent straight (i.e. normally) towards the layer of
ionosphere gets reflected from ionosphere and
returns to the earth is called critical frequency. It

is given by c maxf 9 N= , where N is the number

density of electron/m3.

SPACE WAVE PROPAGATION

(a) The space waves are the radio waves of very high
frequency (i.e. between 30 MHz. to 300 MHz or
more).

(b) The space waves can travel through atmosphere
from transmitter antenna to receiver antenna either
directly or after reflection from ground in the earth's
troposphere region. That is why the space wave
propagation is also called as tropospherical
propagation or line of sight propagation.

(c) The range of communication of space wave
propagation can be increased by increasing the
heights of transmitting and receiving antenna.

MODULATION

AM
(Amplitude 
Modulation)

FM
(Frequency 
Modulation)

PM
(Phase 

Modulation)

 Continuous wave Modulation

PAM
(Pulse 

Amplitude 
Modulation)

PWM
(Pulse Width 
Modulation)

PPM
(Pulse Position 
Modulation)

PTM
(Pulse Time 
Modulation)

PCM
(Pulse Code 
Modulation)

Pulse Wave Modulation

  Modulation
The phenomenon of

superposition of

information signal over a

high frequency carrier

wave is called

modulation. In this

process, ampitude,

frequency or phase angle

of a high frequency

carrier wave is modified

in accordance with the

instantaneous value of

the low frequency

information.
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AMPLITUDE MODULATION

Modulating Signal Carrier Signal AM Carrier Signal

Modulation factor, 
amplitude of modulating wave

m
amplitude of normal carrier wave

=

If m m mv V cos t= w  and c c cv V cos t= w  then m

c

V
m

V
=

• As amplitude of the carrier wave varies at signal frequency

fm so  the  amplitude  of  AM  wave  =  C C mV mV cos t+ w  &

frequency of AM wave = c

2
w

p

Therefore ( )
c m cv V 1 m cos t cos té ù= + w wë û

( ) ( )C C
C c C m C m

mV mV
v V cos t cos t cos t

2 2
Þ = w + w + w + w - w

POWER IN AM WAVE

• Power of carrier wave : 
2
C

C

V
P

2R
=  where R = resistance of

antenna in which power is dissipated.

• Total power of side bands : 
2 2

C
sidebands C

mV1 m
P 2 P

2R 2 2
æ ö

= ´ =ç ÷
è ø

• Total  power  of  AM wave  =  
2

C

m
P 1

2

æ ö
+ç ÷

è ø

• Fraction of total power carried by sidebands = 
2

2

m
2 m+

FREQUENCY MODULATION (FM)

When the frequency of carries wave is changed in accordance
with the instantaneous value of the modulating signal, it is
called frequency modulation.

Signal

Carrier

FM Wave

Normal
freq.

Max
freq.

Normal
freq.

Min
freq.

Normal
freq.

Max
freq.

Normal
freq.

Min
freq.

Normal
freq.

NEED FOR MODULATION

(i) To avoid interference:  If many

modulating signals travel directly

through the same transmission channel,

they will interfere with each other and

result in distortion.

(ii) To design antennas of practical
size : The minimum height of antenna

(not of antenna tower) should be l/4

where l is wavelength of modulating

signal. This minimum size becomes

impracticale because the frequency of

the modulating signal can be upto 5 kHz

which corresponds to a wavelength of

3 × 108/5 × 103 =  60  km.  This  will

require an antenna of the minimum

height of l/4 =  15  km.  This  size  of

an antenna is not practical.

(iii) Effective Power Radiated by an
Antenna :  A theoretical study of

radiation from a linear antenna (length

l)  shows  that  the  power  radiated  is

proportional to (frequency)2 i.e. (l/l)2.

For a good transmission, we need high

powers and hence this also points out

to the need of using high frequency

transmission.

(f -f )C m f +fC mfC

mV
  2

C

VC

side band frequency

FREQUENCY
SPECTRUM

OF
AM WAVE
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MODULATION FACTOR OR INDEX AND CARRIER SWING (CS)

• Modulation factor : 
m

max. frequency deviation f
m

Modulating frequency f
D

= =

 Df = fmax.–fc=fc–fmin. ; vFM = VCcos[wCt + mfcoswmt]

• Carrier Swing (CS)
The total variation in frequency from the lowest to the highest is called the carrier swing Þ CS = 2xDf

• Side Bands
FM wave consists of an infinite number of side frequency components on each side of the carrier frequency
fC,  fC ±  fm,  fC ±  2fm,  fC ±  3fm, & so on.

 Amplitude Modulation  Frequency Modulation  
1 The amplitude of FM wave is constant, 

whatever be the modulation index. 
1 The amplitude of AM signal varies 

depending on modulation index. 
2  It  require  much  wider  channel  (Band  width)  

[7 to 15 times] as compared to AM. 
2 Band width* is very small (One of the 

biggest advantage). 
3 Transmitters are complex and hence 

expensive. 
3 Relatively simple and cheap. 

4 Area of reception is small since it is limited 
to line of sight. (This limits the FM mobile 
communication over a wide area) 

4 Area of reception is Large. 

5 Noise can be easily minimised amplitude 
variation can be eliminated by using limiter. 

5 It is difficult to eliminate effect of noise. 

6 Power contained in the FM wave is useful. 
Hence full transmitted power is useful. 

6 Most of the power which contained in 
carrier is not useful. Therefore carrier 
power transmitted is a waste. 

7 The average power is the same as the 
carrier wave. 

7 The average power in modulated wave is 
greater than carrier power. 

8 No restriction is placed on modulation index 
(m). 

8 Maximum m = 1, otherwise over 
modulation (m > 1) would result in 
distortion. 

9 It is possible to operate several independent 
transmitter on same frequency. 

9 It is not possible to operate without 
interference. 

 
MODEM

The name modem is a contraction of the terms Modulator
and Demodulator. Modem is a device which can modulate
as well as demodulate the signal.

FAX ( Facsimile Telegraphy)

FAX is abbreviation for facsimile which means exact
reproduction. The electronic reproduction of a
document at a distance place is called Fax.

DETECTION OF AMPLITUDE MODULATION WAVE

Amplifier IF Stage Detector Amplifier Output

Receiving
antenna

Rectifier Envelop Detector Output
AM Wave m(t)

time     
time

     
time
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IMPORTANT NOTES
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