IONIC EQUILIBRIUM

1. INTRODUCTION

Ionic equilibrium deals with the equilibrium of any substance with its ions in solution. The substance producing ions are called electrolytes.

According to conductivity, substances are of two types:

(i) Non-Conductor:

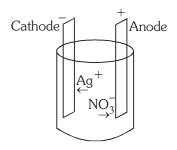
Those substances which do not show the flow of current or electricity.

Ex. Non - metals, plastic rubber, wood, etc.

Exception – Graphite is a non-metal but shows conductivity due to motion of free electrons.

(ii) Conductors:

Those substances which show conductivity or flow of current are called conductors. These are of 2 types:


(a) Metallic or electronic conductors:

Those conductor which show conductivity due to motion of free electrons. Resistance increases with temperature.

Ex. All metals, Graphite

(b) Ionic or electrolytic conductors:

Those conductors which show conductivity due to movement of free ions. Ions are in free state in the solutions of ionic compounds. On passing electric current through the solution, ions move towards oppositely charged electrodes, i.e., the cation moves towards cathode (negative electrode) and the anion moves towards anode (positive electrode).

The current flows through the solution due to the movement of the ions. Resistance decrease with temperature.

According to strength, ionic conductors are of two types:

(i) Strong electrolyte: Those ionic conductors which are completely ionized in aqueous solution are called as strong electrolyte.

For strong electrolyte the value of degree of dissociation is 100%.

i.e. :
$$\alpha = 1$$

- **Ex.** (a) Strong acid \rightarrow H₂SO₄, HCl, HNO₃ HClO₄, H₂SO₅, HBr, HI, HBrO₄, HIO₄, RSO₃H
 - (b) Strong base → KOH, NaOH, Ba(OH), CsOH, RbOH
 - (c) All soluble salts \rightarrow NaCl, KCl, CuSO₄......
 - (ii) Weak electrolytes: Those electrolytes which are partially ionized in aqueous solution are called as weak electrolytes. For weak electrolytes the value of α is less than one.
- Ex. (a) Weak acid: HCN, CH₃COOH, HCOOH, H₂CO₃, H₃PO₃, H₃PO₂, etc.
 - (b) Weak base: NH₄OH, Cu(OH)₂, Zn(OH)₂, Fe(OH)₃, Al(OH)₃, etc.

-BA\Kola\JEE(Advanæd)\Leader\Che\Sheef\lonicEquilibrium\Eng\01.Theory.p65

1.2 DEGREE OF DISSOCIATION / IONISATION

- When an electrolyte is dissolved in a solvent (H₂O), it spontaneously dissociates into ions.
- It may dissociate partially $(\alpha < 1)$ or sometimes completely $(\alpha \le 1)$
- The degree of dissociation (α) of an electrolyte is the fraction of mole of the electrolyte that has dissociated under the given conditions.

$$\alpha = \frac{\text{No. of moles dissociated}}{\text{No. of moles taken initially}}$$

1.3 FACTORS AFFECTING THE VALUE OF DEGREE OF DISSOCIATION:

- (i) **Dilution :** $\alpha \propto \sqrt{V}$. So on dilution, α increases
- (ii) **Temperature :** On increasing temperature, ionization increases so, α increases
- (iii) Nature of electrolyte:
 - (a) Strong electrolyte
 - $\alpha = 100 \%$

(b) Weak elecrolyte

$$\alpha << 100 \%$$

(iv) Nature of solvent:

If dielectric constant, μ , of solvent increases, then the value of α increases.

$$H_2O \rightarrow \mu = 81$$

$$D_2O \rightarrow \mu = 79$$

$$C_6 H_6 \to \mu = 2.5$$

$$CCl_4 \rightarrow \mu = 0$$

Ex.1 Which one has greater α_1 or α_2 for the following equation :

- (i) $NH_4OH + H_2O \rightarrow \alpha_1$
- (ii) $NH_{1}OH + D_{2}O \rightarrow \alpha$,

Sol. Dielectric constant of H_2O is more than that of D_2O , so $\alpha_1 > \alpha_2$

(v) Mixing of Ions:

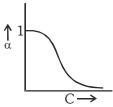
Common ion Effect	Odd ion Effect
$NH_4OH \Longrightarrow NH_4^+ + OH^-$	$NH_4OH \Longrightarrow NH_4^+ + OH^-$
On mixing NH ₄ Cl	On mixing HCl
$NH_4Cl \rightarrow NH_4^+ + Cl^-$	$HCl \rightarrow H^+ + Cl^-$
Due to mixing of common ion, concentration	Due to reaction of OH ⁻ ions with H ⁺ ion,
of ammonium ion will increase therefore	concentration of OH ⁻ will decrease
equilibrium will shift in backward direction	Equilibrium will shift in forward direction means
means α decreases.	α increases.

1.4 OSTWALD'S DILUTION LAW (FOR WEAK ELECTROLYTE)

• For a weak electrolyte $A^{\dagger}B^{-}$ dissolved in water, if α is the degree of dissociation then

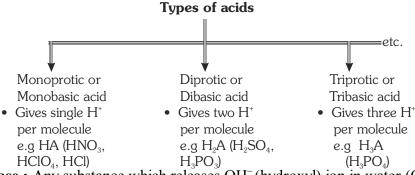
$$AB \iff A^+ + B^-$$
 initial conc.
$$CM \qquad 0 \qquad 0$$
 conc-at eq.
$$C(1-\alpha)M \qquad C\alpha M \qquad C\alpha M$$

Then according to law of mass action,

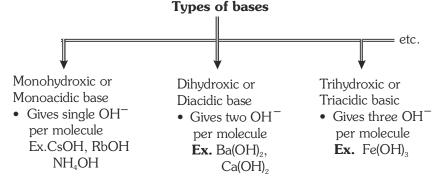

$$K_{diss} = \frac{[A^+][B^-]}{[AB]} = \frac{C\alpha \cdot C\alpha}{C(1-\alpha)} = \frac{C\alpha^2}{(1-\alpha)} = \text{dissociation constant of the weak electrolyte.}$$

$$C = \frac{1}{V}, \text{ then } V = 1/C \text{ (volume of solution in which 1 mole is present) is called dilution, so } K_{diss} = \frac{\alpha^2}{(1-\alpha)V}$$

If α is negligible in comparison to unity, $1-\alpha \simeq 1.$ so $K_{diss} = \alpha^2 C \Rightarrow \alpha = \sqrt{\frac{K_{diss}}{C}} = \sqrt{K_{diss}V}$


$$\alpha \propto \frac{1}{\sqrt{\text{concentration}}}$$

- As concentration increases $\Rightarrow \alpha$ decreases
- At infinite dilution α reaches its maximum value, unity.



2. ACIDS BASES AND SALTS

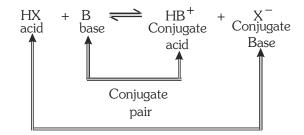
- 2.1 Arrhenius concept:
- (i) **Arrhenius Acid**: Substance which gives H⁺ ion on dissolving in water (H⁺ donor) **Ex.** HNO₃, HClO₄, HCl, HI, HBr, H₂SO₄, H₃PO₄ etc.

(ii) Arrhenius base: Any substance which releases OH⁻ (hydroxyl) ion in water (OH⁻ ion donor)

node06/B0BO-BA VK da V IEF (Advanced) V eader \ Che \ Sheel \ Innic Equilibrium \ End

(iii) Strength of Acid or Base:

- (a) Strength of acids or bases depends on the extent of its ionisation. Hence equilibrium constant K_a or K_b respectively of the following equilibria give a quantitative measurement of the strength of the acid or base.
- **(b)** $HA \rightleftharpoons H^+ + A^-;$


$$K_a = \frac{[H^+][A^-]}{[HA]} = \text{dissocation or ionisation constant of acid.}$$

(c) Similarly

BOH
$$\rightleftharpoons$$
 B⁺ + OH⁻;

$$K_b = \frac{[B^+][OH^-]}{[BOH]} = dissocation or ionisation constant of base$$

- (d) Larger the value of K_a or K_b , stronger is the acid or base respectively.
- 2.2 Bronsted Lowry concept : (Conjugate acid base concept) (Protonic concept)
- (i) Acid: substances which donate H⁺ are Bronsted Lowry acids (H⁺ donor)
- (ii) Base: substances which accept H⁺ are Bronsted Lowry bases (H⁺ acceptor)
- (iii) Conjugate acid base pairs : In a typical acid base reaction, $HX + B \Longrightarrow X^- + HB^+$

- Forward reaction Here HX being a proton donor is an acid
 B being a proton acceptor is a base.
- Backward reaction Here HB⁺ being a proton donor is an acid X⁻ being a proton acceptor is a base.

	Acid		Base		Conjuga Acid	nte	Conjugate Base
•	HC1	+	H_2O		H_3O^+	+	Cl ⁻
•	HSO ₄	+	NH ₃		NH_4^+	+	SO_4^{-2}
•	[Fe(H ₂ O)) ₆] ³⁺ +	Н,О		H_3O^+	+	[Fe(H ₂ O) ₅ (OH)] ²⁺

- Conjugate acid base pair differ by only one proton.
- Strong acid will have weak conjugate base and vice versa.

Acid	Conjugate base	Base	Conjugate acid
HC1	Cl ⁻	NH ₃	NH ₄ ⁺
H_2SO_4	HSO_{4}^{-}	$\mathrm{H_2O}$	H_3O^+
HSO ₄	SO_4^{2-}	RNH_2	RNH ₃ ⁺
H ₂ O	OH ⁻		

(iv) Amphoteric (amphiprotic): Substances which can act as acid as will as base are known as amphoteric

$$HCl + H_2O \Longrightarrow H_3O^+ + Cl^-$$

base

$$NH_3 + H_2O \implies NH_4^+ + OH^-$$
acid

(v) Classification of Bronsted - Lowery Acids and Bases :

Bronsted - Lowery acids and bases can be

- (i) Molecular
- (ii) Cationic and
- (iii) Anionic

Table - 1

Type	Acid	Base
Molecular	HCl, HNO ₃ , HClO ₄ ,	NH ₃ , N ₂ H ₄ , Amines,
	H ₂ SO ₄ , H ₃ PO ₄ , H ₂ O etc.	H ₂ O, Alcohol, Ethers, etc.
Cationic	NH ₄ ⁺ , N ₂ H ₅ ⁺ , PH ₄ ⁺ ,	[Fe(H ₂ O) ₅ OH] ²⁺
	$[Fe(H_2O)_6]^{3+}, [Al(H_2O)_6]^{3+} etc.$	$[Al(H_2O)_5OH]^{2+}$ etc.
Anionic	HS ⁻ , HSO ₃ ⁻ , H ₂ PO ₄ ⁻ ,HSO ₄ ⁻	Cl ⁻ , Br ⁻ , OH ⁻ , HSO ₄ ⁻ , CN ⁻ ,
	HCO_3^- , HPO_4^{2-} , etc.	CO ₃ ²⁻ ,SO ₄ ²⁻ ,NH ₂ ⁻ , CH ₃ COO ⁻ ,etc.
	all amphiprotic anions	all amphiprotic anions

2.3 Lewis concept (electronic concept):

- (i) Acid: An acid is a molecule/ion which can accept an electron pair with the formation of a coordinate bond.
- **Ex.** Electron deficient molecules: BF₃, AlCl₃, etc.

Cations: H⁺, Fe²⁺, Na⁺, etc.

Molecules with vacant orbitals: SF₄, PF₃

- (ii) Base: A base is any molecule/ion which has a pair of electrons which can be donated.
- **Ex.** Molecules with lone pairs: NH₃, PH₃, H₂O, CH₃OH

Anions : OH^- , H^- , NH_2^- , etc.

06\B0B0-BA\Kota\JEE(Advanæd)\Leader\Che\Shee\\lonic Equilibrium\Eng\01. Theory. p65

3. PROPERTIES OF WATER

Molar concentration / Molarity of water: **(i)**

Molarity = No. of moles/litre =
$$\frac{1000 \text{ g/litre}}{18 \text{ g/mole}}$$
 = 55.55 mole/litre = **55.55 M** (density = 1 g/cc)

(ii) **Ionic product of water:**

According to arrhenius concept, $H_2O \rightleftharpoons H^+ + OH^-$

So, ionic product of water, $K_w = [H^+][OH^-] = 10^{-14} \text{ at } 25^\circ \text{ (experimental)}$

Dissociation of water is endothermic, so on increasing temperature K_w increases.

Degree of dissociation of water: (iii)

$$H_2O \Longrightarrow H^+ + OH^- \Rightarrow \alpha = \frac{\text{decrease in concentration}}{\text{initially concentration}}$$

$$= \frac{10^{-7}}{55.55} = 18 \times 10^{-10} \text{ or } 1.8 \times 10^{-7}\%$$
 [at 25°C]

Dissociation or ionisation constant of water:

$$H_2O \iff H^+ + OH^- \qquad K_a = K_b = \frac{[H^+][OH^-]}{[H_2O]} = \frac{10^{-7} \times 10^{-7}}{55.55} = 1.8 \times 10^{-16}$$

So,
$$pK_a = pK_b = -\log(1.8 \times 10^{-16}) = 16 - \log 1.8 = 15.74$$

Ex.2. At dissociation constant of heavy water is 4×10^{-15} at $35^{\circ}C$. If its density is 1.04 g/mL. Calculate its ionic product & degree of dissociation.

Sol.
$$K_w = K_d [D_2 O] = \left(4 \times 10^{-15} \times \frac{1040}{20}\right) = 2.08 \times 10^{-13}$$

$$d = \sqrt{\frac{K_w}{C}} = \sqrt{\frac{2.08 \times 10^{-13}}{52}} = 12.64 \times 10^{-8}$$

Ex.3 Calculate ionic product of H_2O at $50^{\circ}C$.

Sol.
$$\Delta H = 13.7 \times 10^3 \text{ cal}$$

$$\log \frac{K_2}{10^{-14}} = \frac{13.7 \times 10^3}{2} \left(\frac{1}{298} - \frac{1}{323} \right)$$

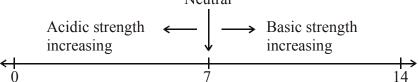
Ex.4 The hydronium ion conc. in an aq. H_2CO_3 solution is 4×10^{-4} M at $25^{\circ}C$ OH ion conc. in the solution is:

(B)
$$2.5 \times 10^{-10}$$

(C)
$$2.5 \times 10^3$$

(C)
$$2.5 \times 10^3$$
 (D) 2.5×10^{-11} M

Answer:(D)


Ex.5 Select the correct option from the following?

- (A) pK_w increases with increase of temperature
- (B) pK_{w} decreases with increase of temperature
- (C) $pK_w = 14$ at all temperatures
- (D) $pK_w = pH$ at all temperatures

4. Acidity and pH scale:

- (i) Acidic strength means the tendency of an acid to give H₃O⁺ or H⁺ ions in water. So greater then tendency to give H⁺, more will be the acidic strength of the substance.
- (ii) Basic strength means the tendency of a base to give OH⁻ions in water. So greater the tendency to give OH⁻ions, more will be basic strength of the substance.
- (iii) The concentration of H⁺ ions is written in a simplified form introduced by **Sorenson** known as pH scale. pH is defined as negative logarithm of activity of H⁺ ions.
- : $\mathbf{pH} = -\log a_{H^+}$ (where a_{H^+} is the activity of H^+ ions)
- (iv) Activity of H⁺ ions is the molar concentration of free H⁺ ions or H₃O⁺ ions in a dilute solution, but unitless.
- (v) Now pH = $-\log[H^+] = 7$ and pOH = $-\log[OH^-] = 7$ for water at 25°C (experimental) pH = 7 = pOH \Rightarrow neutral pH < 7 or pOH > 7 \Rightarrow acidic pH > 7 or pOH < 7 \Rightarrow Basic

 Neutral

4.1 pH Calculation of different Types of solutions:

(a) Strong acid solution:

- (i) If concentration of H^+ ions is greater than 10^{-6} M, H^+ ions coming from water can be neglected, So $[H^+]$ = normality of strong acid solution
- (ii) If concentration is less than 10^{-6} M, H⁺ ions coming from water cannot be neglected. So $[H^{+}]$ = normality of strong acid + H⁺ ions coming from water in presence of this strong acid

Ex.6 Calculate pH of 10^{-8} M HCl solution.

Sol.
$$H_2O \rightleftharpoons H^+ + OH^-$$

$$10^{-8} + x \qquad x$$

$$k_w = [H^+][OH^-]$$

$$10^{-14} = x(x+10^{-8})$$

$$\Rightarrow x^2 + x \times 10^{-8} - 10^{-14} = 0$$

$$x = \frac{-10^{-8} \pm \sqrt{10^{-16} + 4 \times 10^{-14}}}{2} = \frac{-10^{-8} + 10^{-7} \sqrt{4 + \frac{1}{100}}}{2} = \frac{(\sqrt{401} - 1)10^{-8}}{2} = 0.95 \times 10^{-7}$$

$$[H^+] = 10.5 \times 10^{-8} = 1.05 \times 10^{-7}$$

$$pH = -\log [H^+]$$

$$pH = 7 - \log 1.05 \approx 6.98$$

node06\B0B0-BA\Kola\JEE(Advanæd)\Leader\Che\Sheel\lonicEquilibrium\Eng\01.Theory.p6E

ALLEN

4.2 Strong base solution:

Calculate the $[OH^-]$ which will be equal to normality of the strong base solution and then use $K_{...} = [H^+] \times [OH^-] = 10^{-14}$, to calculate $[H^+]$

Ex.7 Calculate pH of 10^{-7} M of NaOH solution

Sol.
$$[OH^{-}]$$
 from NaOH = 10^{-7}

 $[OH^{-}]$ from water = x < 10^{-7} M (due to common ion effect)

$$H_2O \iff OH^- + H^+$$

$$- (x+10^{-7}) x$$

$$K_w = [H^+] [OH^-] = 10^{-14} = x (x+10^{-7})$$

$$x^2 + 10^{-7}x - 10^{-14} = 0$$

$$\Rightarrow x = \frac{\sqrt{5} - 1}{2} \times 10^{-7} = 0.618 \times 10^{-7} \qquad (\sqrt{5} = 2.236)$$

$$[OH^{-}] = 10^{-7} + 0.618 \times 10^{-7} = 1.618 \times 10^{-7}$$

$$pOH = 7 - \log(1.618) = 6.79$$

$$pH = 14 - 6.79 = 7.21$$

4.3 pH of mixture of two strong acids : If V_1 volume of a strong acid solution of normality N_1 is mixed with V_2 volume of another strong acid solution of normality N_2 , then

Number of H^+ ions from I-solution = N_1V_1

Number of H^+ ions from II-solution = N_2V_2

If final normality is N and final volume is V, then

$$NV = N_1V_1 + N_2V_2$$

[dissociation equilibrium of none of these acids will be disturbed as both are strong acid]

$$[H^+] = N = \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2}$$

$$\begin{bmatrix} \text{where} & N = M \times n \\ & n = \text{Basicity of acid} \end{bmatrix}$$

4.4 pH of mixture of two strong bases:

Similar to above calculation

$$[OH^-] = N = \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2} \qquad [H^+] = \frac{10^{-14}}{[OH^-]}$$

Ex.8 Calculate pH of mixture of (400 mL, $\frac{1}{200}MH_2SO_4$) + (400 mL, $\frac{1}{100}MHCl$) + (200 mL of water)

Sol.
$$N_1 V_1 = \frac{1}{200} \times \frac{400}{1000} \times 2 = \frac{4}{1000}$$
, $N_2 V_2 = \frac{4}{1000}$, H^+ ions from water will be neglected

$$N_1V_1 + N_2V_2 = 8 \times 10^{-3}$$
 $[H^+] = \frac{8 \times 10^{-3}}{1} = 8 \times 10^{-3}$
 $pH = 3 - \log 8 = 2.1$

Sol.
$$[OH^-] = \frac{500 \times 10^{-5} + 500 \times 2 \times 2.5 \times 10^{-5}}{1000} = 3 \times 10^{-5} M$$

$$M_1 = 3 \times 10^{-5} M$$

$$V_2 + V_1 = 1 L$$

$$V_F = 100 L$$
no. of moles of $[OH^-]$ initially = no. of moles of $[OH^-]$

$$3 \times 10^{-5} = M_2 \times 100$$

$$M_2 = 3 \times 10^{-7} < 10^{-6}$$

$$H_2O \Longrightarrow H^+ + OH^-$$

$$x \quad (x + 3 \times 10^{-7})$$

$$K_w = x (x + 3 \times 10^{-7})$$

$$K_w = x (x + 3 \times 10^{-7}) = 10^{-14}$$

$$\therefore x = \left(\frac{\sqrt{13} - 3}{2}\right) \times 10^{-7}$$

$$x = 0.302 \times 10^{-7}$$

$$[OH^-]_{Net} = 3.302 \times 10^{-7}$$

4.5 pH of mixture of a strong acid and a strong base:

- Acid Base neutralisation reaction will take place.
- The solution will be acidic or basic depending on which component has been taken in excess.
- If V_1 volume of a strong acid solution of normality N_1 is mixed with V_2 volume of a strong base solution of normality N_2 , then

Number of H^+ ions from I-solution = N_1V_1

Number of OH⁻ions from II-solution = N_2V_2

$$[H^+] = \frac{10^{-14}}{[OH^-]}$$

node06\B0B0-BA\Kola\JEE(Advanæd)\Leader\Che\Sheet\lonic Equilibrium\Eng\0

0

Ex.10Calculate pH of mixture of (400 mL, $\frac{1}{200}$ M Ba(OH)₂) + (400 mL, $\frac{1}{50}$ M HCl)+(200 mL of water)

Sol.
$$[H^+] = \frac{400 \times \frac{1}{50} - 400 \times \frac{1}{200} \times 2}{1000} = 4 \times 10^{-3}$$
, so $pH = 3 - 2 \log 2 = 2.4$

Ex.11 What will be the resultant pH when 150 mL of an aqueous solution of HCl (pH = 2.0) is mixed with 350 mL of an aqueous solution of NaOH (pH = 12.0)?

Sol.
$$pH ext{ of } HCl = 2$$

:.
$$[HC1] = 10^{-2} M$$

pH of NaOH = 12, pOH = 2 : [NaOH] =
$$10^{-2}$$
 M

$$HCl + NaOH \longrightarrow NaCl + H_2O$$

Meq. initial
$$150 \times 10^{-2}$$
 350×10^{-2} = 1.5 = 3.5

:.
$$[OH^{-}]$$
 from NaOH = $\frac{2}{500} = 4 \times 10^{-3} \text{ M}$

$$pOH = -\log[OH^{-}] = -\log(4 \times 10^{-3})$$

:.
$$pOH = 2.3979$$

$$\therefore$$
 pH = 14 - pOH = 14 - 2.3979 = 11.6021

4.6 pH of a weak acid or weak base (monoprotic) Solution:

- Weak acid does not dissociated 100 % therefore we have to calculate the percentage dissociation using K_a dissociation constant of the acid.
- We have to use Ostwald's Dilution law (as have been derived earlier)

$$HA \iff H^+ + A^-$$

$$t = 0 C 0 C$$

$$t_{eq} \hspace{1cm} C(1-\alpha) \hspace{0.5cm} C\alpha \hspace{0.5cm} C\alpha \hspace{0.5cm} K_a = \frac{[H^+][A^-]}{[HA]} = \frac{C\alpha^2}{1-\alpha}$$

If
$$\alpha << 1 \Rightarrow (1 - \alpha) \approx 1 \Rightarrow K_a \approx C\alpha^2 \Rightarrow \alpha = \sqrt{\frac{K_a}{C}}$$
 (is valid if $\alpha < 0.1$ or 10%)

$$[H^{+}] = C\alpha = C\sqrt{\frac{K_a}{C}} = \sqrt{K_a \times C}$$
 So $pH = \frac{1}{2}(pK_a - logC)$

On increasing the dilution $\Rightarrow C \downarrow = \alpha \uparrow$ and $[H^+] \downarrow \Rightarrow pH \uparrow$

Ex.12 Calculate pH of : (a) 10^{-1} M CH₃COOH (b) 10^{-3} M CH₃COOH (c) 10^{-6} M CH₃COOH Take $K_a = 2 \times 10^{-5}$

Sol. (a)
$$CH_3COOH \Longrightarrow CH_3COO^- + H^+$$

$$C(1-\alpha)$$

$$C\alpha$$
 C

$$K_{_{a}} = \frac{C\alpha^{^{2}}}{1-\alpha} \, \Rightarrow \, \alpha = \sqrt{\frac{K_{_{a}}}{C}} \, = \sqrt{\frac{2\times 10^{^{-5}}}{10^{^{-1}}}} \, = \sqrt{2\times 10^{^{-4}}} \hspace{0.5cm} (\alpha << 0.1)$$

So,
$$[H^+] = 10^{-1} \times \sqrt{2} \times 10^{-2} \Rightarrow pH = 3 - \frac{1}{2} \log 2 = 2.85$$

(b)
$$\alpha = \sqrt{\frac{K_a}{C}} \Rightarrow \alpha = \sqrt{\frac{K_a}{C}} = \sqrt{\frac{2 \times 10^{-5}}{10^{-3}}} = \sqrt{2 \times 10^{-2}}$$
 $(\alpha > 0.1)$

So we have to do the exact calculations

$$\begin{split} K_{a} &= \frac{C\alpha^{2}}{1-\alpha} \Rightarrow \ 2 \times 10^{-5} = \frac{10^{-3} \times \alpha^{2}}{1-\alpha} \ \Rightarrow \ \alpha = 13.14 \ \% \\ [H^{+}] &= 10^{-3} \times 0.1314 = 1.314 \times 10^{-4} \ \Rightarrow \ pH = 4 - log(1.314) \approx 3.8 \end{split}$$

(c) If approximation is used the,
$$\alpha = \sqrt{\frac{2 \times 10^{-5}}{10^{-6}}} = \sqrt{20} > 1$$
,

So we have to do the exact calculation,
$$2 \times 10^{-5} = 10^{-6} \frac{\alpha^2}{1-\alpha} \Rightarrow \alpha \approx 0.95$$
 or 95% $[H^+] = 0.95 \times 10^{-6} = 9.5 \times 10^{-7} \Rightarrow pH = 7 - log(9.5) = 6.022$

• At very low concentration (at infinite dilution) weak electrolyte will be almost 100% dissociate, so behave as strong electrolyte.

(pH) of 10^{-6} M HCl \simeq pH of 10^{-6} M CH₃COOH \simeq 6)

Ex.13 K_a for acid HA is 2.5×10^{-8} calculate for its decimolar solution at 25° C.

(i) % dissociation (ii) pH (iii) OH ion concentration

Sol.
$$HA \rightleftharpoons H^+ + A^-$$

$$C(1-\alpha)$$
 $C\alpha$ $C\alpha$

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} \Rightarrow K_{a} = \frac{C\alpha.C\alpha}{C(1-\alpha)} = \frac{C\alpha^{2}}{(1-\alpha)} \approx C\alpha^{2}$$

(i)
$$\alpha = \sqrt{\frac{K_a}{C}} = \sqrt{\frac{2.5 \times 10^{-8}}{1/10}} \text{ (C = 1/10 M)}$$

= $5 \times 10^{-4} = 0.05\%$

(ii)
$$[H^+] = C\alpha = \frac{1}{10} \times 5 \times 10^{-4} = 5 \times 10^{-5} \text{ mol/L}$$

So
$$pH = 5 - \log 5 = 4.30$$

(iii)
$$[H^+][OH^-] = 1 \times 10^{-14}$$

$$\therefore \qquad [OH^{-}] = \frac{10^{-14}}{5 \times 10^{-5}} = 2 \times 10^{-10} \, \text{mol/L}$$

206\B0B0-BA\Kota\JEE(Advanæd)\Leader\Che\Sheet\lonic Equilibrium\Eng\01.Theory

Ex.14 Determine the degree of dissociation of 0.05 M NH₂OH at $25^{\circ}C$ in a solution of pH = 10.

Sol.
$$NH_4OH \Longrightarrow NH_4^+ + OH^-$$

Given, pH = 10

$$[H^+] = 10^{-10}$$

$$[H^+][OH^-] = 1 \times 10^{-14}$$

$$\therefore \quad [OH^{-}] = \frac{1 \times 10^{-14}}{10^{-10}} = 10^{-4} = C\alpha$$

$$\therefore \qquad \alpha = \frac{[OH^{-}]}{C} = \frac{10^{-4}}{0.05} = 2 \times 10^{-3} \text{ or } 0.2 \%$$

Ex.15 The concentration of $[H^+]$ and $[OH^-]$ of the 10^{-1} M aqueous solution of 2% ionised weak acid is:

(A)
$$2 \times 10^{-3} M$$
 and $5 \times 10^{-12} M$

(B)
$$1 \times 10^{-3} M$$
 and $3 \times 10^{-11} M$

(C)
$$2 \times 10^{-4} M$$
 and $5 \times 10^{-11} M$

(D)
$$3 \times 10^{-2} M$$
 and $4 \times 10^{-13} M$

Sol. (A)

$$[H^+] = C\alpha = 2 \times 10^{-3} \, M \ \, \text{or} \ \, [OH^-] = \frac{10^{-14}}{[H^+]} = 5 \times 10^{-12} \, M$$

Ex.16 When a 0.1 N solution of an acid at 25°C has a degree of ionisation of 4%, the concentration of OH present is:

$$(A) 2.5 \times 10^{-3}$$

(A)
$$2.5 \times 10^{-3}$$
 (B) 2.5×10^{-11} (C) 2.5×10^{-12} (D) 2.5×10^{-13}

(C)
$$2.5 \times 10^{-12}$$

$$(D) \ 2.5 \times 10^{-13}$$

Sol. (C)

$$[H^{+}] = C\alpha = 0.1 \times 4 \times 10^{-2} = 4 \times 10^{-3} \,\text{M}$$
 or $[OH^{-}] = \frac{10^{-14}}{[H^{+}]} = 2.5 \times 10^{-12} \,\text{N}$

$$[OH^{-}] = \frac{10^{-14}}{[H^{+}]} = 2.5 \times 10^{-12} \,\mathrm{N}$$

Ex.17 The degree of dissociation of acetic acid in a 0.1 M solution is 1.32×10^{-2} . Calculate dissociation constant of acid and its pK_a value :

Sol.

$$CH_3COOH \rightleftharpoons CH_3COO^- + H^+$$

$$^{\circ}$$
 CH₃COO⁻ + H¹

Initially

0.1

at equilibrium

0.1(1-0.0132) 0.1×0.0132 0.1×0.0132

$$K_a = \frac{[CH_3COO^-][H^+]}{[CH_3COOH]} = \frac{0.1 \times 0.0132 \times 0.1 \times 0.0132}{0.1(1-0.0132)} = 1.76 \times 10^{-5}$$

$$pK_a = -\log K_a = -\log (1.76 \times 10^{-5}) = 4.75$$

4.7 pH of a mixture of weak acid (monoprotic) and a strong acid solution:

- Weak acid and Strong acid both will contribute H⁺ion.
- For the first approximation we can neglect the H⁺ions coming from the weak acid solution and calculate the pH of the solution from the concentration of the strong acid only.
- To calculate exact pH, we have to take the effect of presence of strong acid on the dissociation equilibrium of the weak acid.
- If $[SA] = C_1$ and $[WA] = C_2$, then $[H^+]$ from $SA = C_1$ the weak acid will dissociate as follows.

HA
$$\Longrightarrow$$
 H⁺ + A⁻
 C_2 0 0
$$C_2(1-\alpha) \quad C_2\alpha + C_1 \quad C_2\alpha \qquad K_a = \frac{(C_2\alpha + C_1)C_2\alpha}{C_2(1-\alpha)} \quad (\alpha <<<1)$$

(The weak acids dissociation will be further suppressed because of presence of strong acid, common ion effect)

$$K_a = (C_2\alpha + C_1)\alpha$$

Total H⁺ ion concentration = $C_1 + C_2 \alpha$

• If the total $[H^+]$ from the acid is more than 10^{-6} M, then contribution from the water can be neglected, if not then we have to take $[H^+]$ from the water also.

4.8 pH of a mixture of two weak acid (both monoprotic) solution:

- Both acids will dissociate partially.
- Let the acid are HA₁ & HA₂ and their final concentrations are C₁ & C₂ respectively, then

(Since α_1 , α_2 both are small in comparision to unity)

$$K_{a_1} = (C_1 \alpha_1 + C_2 \alpha_2) \alpha_1 \; ; \; K_{a_2} = (C_1 \alpha_1 + C_2 \alpha_2) \alpha_2 \quad \Rightarrow \quad \frac{K_{a_1}}{K_{a_2}} = \frac{\alpha_1}{\alpha_2}$$

$$\begin{split} [H^{+}] &= C_{1}\alpha_{1} + C_{2}\alpha_{2} = \frac{C_{1}K_{a_{1}}}{\sqrt{C_{1}K_{a_{1}} + C_{2}K_{a_{2}}}} + \frac{C_{2}K_{a_{2}}}{\sqrt{C_{1}K_{a_{1}} + C_{2}K_{a_{2}}}} \Rightarrow \qquad [H^{+}] \\ &= \sqrt{C_{1}K_{a_{1}} + C_{2}K_{a_{2}}} \end{split}$$

• If the dissociation constant of one of the acid is very much greater than that of the second acid then contribution from the second acid can be neglected.

So,
$$[H^+] = C_1 \alpha_1 + C_2 \alpha_2 \approx C_1 \alpha_1$$

0-BA\Kola\JEE(Advanæd)\Leader\Che\Shee\\lonic Equilibrium\Eng\01.Theory.p6

Ex.18 Calculate pH of solution obtained by mixing equal vol. of 0.02 M HOCl & 0.2 M CH3COOH solution given that $K_{a_1}(HOCl) = 2 \times 10^{-4}$, $K_{a_2}(CH_3COOH) = 2 \times 10^{-5}$

Also calculate OH, OCI, CH, COO

Sol. Final solution volume become double

$$C_{1} = 0.01, \qquad C_{2} = 0.1$$

$$[H^{+}] = \sqrt{K_{a_{1}}C_{1} + K_{a_{2}}C_{2}} = \sqrt{2 \times 10^{-4} \times 0.01 + 2 \times 10^{-5} \times 0.1}$$

$$= \sqrt{2 \times 10^{-6} + 2 \times 10^{-6}} = 2 \times 10^{-3}$$

$$pH = 3 - \log 2 = 3 - 0.3010 = 2.69$$

$$\alpha_{1} = \frac{2 \times 10^{-4}}{2 \times 10^{-3}} = 10^{-1} \quad \alpha_{2} = \frac{2 \times 10^{-5}}{2 \times 10^{-3}} = 10^{-2}$$

$$HOCL \longrightarrow H^{+} + OCL \longrightarrow CH CC$$

HOC1
$$\rightleftharpoons$$
 H⁺ + OCI⁻
 $C_1(1 - \alpha_1)$ $C_1\alpha_1 + C_2\alpha_2$ $C_1\alpha_1$
[OCI⁻] = $C_1\alpha_1$
= 0.01×10^{-1}
= 1×10^{-3}

$$[OH^{-}] = \frac{K_w}{[H^{+}]} = \frac{10^{-14}}{2 \times 10^{-3}} = 0.5 \times 10^{-11} = 5 \times 10^{-12} M$$

$$[HOCl] = 10^{-2} (1 - 0.1) = 9 \times 10^{-3} M$$

$$[CH_3COOH] = 10^{-1} (1 - 0.01) \approx 10^{-1}$$

pH of a solution of a polyprotic weak acid: 4.9

Diprotic acid is the one, which is capable of giving 2 protons per molecule in water. Let us take a weak diprotic acid (H₂A) in water whose concentration is c M.

In an aqueous solution, following equilbria exist.

If

 α_1 = degree of ionization of H₂A in presence of HA⁻ K_{a_1} = first ionisation constant of H₂A

 α_2 = degree of ionisation of HA⁻ in presence of H₂A

 K_{a_2} = second ionisation constant of H_2A

I step II step

$$(\mathbf{K}_{eq})_{1}[\mathbf{H}_{2}\mathbf{O}] = \frac{[\mathbf{H}_{3}\mathbf{O}^{+}][\mathbf{H}\mathbf{A}^{-}]}{[\mathbf{H}_{2}\mathbf{A}]} = \mathbf{K}_{\mathbf{a}_{1}}$$

$$(\mathbf{K}_{eq})_{2}[\mathbf{H}_{2}\mathbf{O}] = \frac{[\mathbf{H}_{3}\mathbf{O}^{+}][\mathbf{A}^{2-}]}{[\mathbf{H}\mathbf{A}^{-}]} = \mathbf{K}_{\mathbf{a}_{2}}$$

$$\mathbf{K}_{\mathbf{a}_{1}} = \frac{(c\alpha_{1} + c\alpha_{1}\alpha_{2})[c\alpha_{1}(1 - \alpha_{2})]}{c(1 - \alpha_{1})}$$

$$\mathbf{K}_{\mathbf{a}_{2}} = \frac{(c\alpha_{1} + c\alpha_{1}\alpha_{2})[c\alpha_{1}\alpha_{2})]}{c\alpha_{1}(1 - \alpha_{2})}$$

$$= \frac{[c\alpha_{1}(1 + \alpha_{2})][\alpha_{1}(1 - \alpha_{2})]}{1 - \alpha_{1}} \dots (i)$$

$$= \frac{[c\alpha_{1}(1 + \alpha_{2})]\alpha_{2}}{1 - \alpha_{2}} \dots (ii)$$

Knowing the values of K_{a_1} , K_{a_2} and c, the values of α_1 and α_2 can be calculated using equations (i) and (ii) After getting the values of α_1 and α_2 , $[H_3O^+]$ can be calculated as

$$[\mathbf{H}_3\mathbf{O}^+]_{\mathbf{T}} = \mathbf{c}\alpha_1 + \mathbf{c}\alpha_1\alpha_2$$

Finally, for calculation of pH

- If the total $[H_3O^+] < 10^{-6} M$, the contribution of H_3O^+ from water should be added.
- If the total $[H_3O^+] > 10^{-6} M$, then $[H_3O^+]$ contribution from water can be ignored. Using this $[H_3O^+]$, pH of the solution can be calculated.

***** Approximation:

For diprotic acids, $\mathbf{K}_{\mathbf{a}_2} \ll \mathbf{K}_{\mathbf{a}_1}$ and α , would be even smaller than α_1

$$\therefore$$
 1 - $\alpha_2 \approx 1$ and 1 + $\alpha_2 \approx 1$

Thus, equation (i) can be reduced to
$$\mathbf{K}_{\mathbf{a_1}} = \frac{\mathbf{C}\alpha_1 \times \alpha_1}{1 - \alpha_1}$$

This is expression similar to the expression for a weak monoprotic acid.

• Hence, for a diprotic acid (or a polyprotic acid) the $[H_3O^+]$ can be calculated from its first equilibrium constant expression alone provided $\mathbf{K}_{\mathbf{a}_2} << \mathbf{K}_{\mathbf{a}_1}$.

Ex.19 Calculate pH of [HS⁻], [S²⁻], [Cl⁻] in a solution which is 0.1 M HCl & 0.1 M H₂S given that $K_{a_1}(H_2S) = 10^{-7}$, $Ka_2(H_2S) = 10^{-14}$ also calculate α_1 & α_2 .

Sol. HCl + H₂S
0.1 0.1
C₁ = C₂ = 0.1
∴ pH = 1 (most of [H⁺] comes from HCl]
H₂S
$$\Longrightarrow$$
 H⁺ + HS⁻
0.1(1 - α_1) 10⁻¹ C α_1 = 0.1 α_1
Ka₁ = $\frac{C\alpha_1 \times 10^{-1}}{C(1-\alpha_1)}$ = $\frac{10^{-7}}{10^{-1}}$ = α_1 (∵ 1 - α_1 = 1)
⇒ α_1 = 10⁻⁶
HS⁻ \Longrightarrow S²⁻ + H⁺
C α_1 (1 - α_2) C α_1 α_2 0.1
10⁻¹⁴ = 0.1 × α_2
⇒ α_2 = 10⁻¹³
[S²⁻] = C α_1 α_2
= 10⁻⁶ × 10⁻¹ × 10⁻¹³ = 10⁻²⁰ M

node06\B0B0-BA\Kola\JEE(Advanæd)\Leader\Che\Shee\\lonicEquilibrium\Eng\01.The

4.10 ISOHYDRIC SOLUTIONS

- (i) Solutions of electrolytes are said to be isohydric if the concentration of the common ion present in them is the same and on mixing such solutions, there occurs no change in the degree of dissociation of either of the electrolyte.
- (ii) Let the isohydric solution is made by HA₁ and HA₂ acids, then [H⁺] of both acids should be equal i.e.

$$\sqrt{K_{a_1}C_1} = \sqrt{K_{a_2}C_2}$$

$$\frac{K_{a_1}}{K_{a_2}} = \frac{C_2}{C_1}$$

4.11 RELATIVE STRENGTH OF WEAK ACIDS AND BASES

For two acids of equimolar concentrations.

$$\frac{\text{Strength of acid (I)}}{\text{Strength of acid (II)}} = \sqrt{\frac{K_{a_1}}{K_{a_2}}}$$

Similarly for bases,
$$\frac{\text{Strength of base (I)}}{\text{Strength of base (II)}} = \sqrt{\frac{K_{b_1}}{K_{b_2}}}$$

The modern method is to convert K_a as a power of 10 and express acid strength by power of 10 with sign changed and call this new unit pK_a . Thus, if K_a for acid is equal to 10^{-4} , $pK_a = 4$. So higher pK_a value means lower acid strength, that is, $pK_a = -\log K_a$

Also,
$$pK_b = -\log K_b$$

5. SALTS

- (i) Salts are the ionic compounds formed when its positive part (Cation) come from a base and its negative part (Anion) come from an acid.
- (ii) Salts may taste salty, bitter or sweet or tasteless.
- (iii) Solution of salts may be acidic, basic or neutral.
- (iv) Fused salts and their aqueous solutions conduct electricity and undergo electrolysis.
- (v) The salts are generally crystalline solids.

5.1 Classification of salts:

The salts may be classified into following categories.

- (a) Normal salt:
- (i) The salt formed by the loss of all possible protons (replaceable H⁺ ions)
- Ex. NaCl, NaNO₃, K₂SO₄, Ca₃(PO₄)₂, Na₃BO₃, Na₂HPO₃, NaH₂PO₂ etc.
- (b) Acid salts:
- (i) Salts formed by incomplete neutralisation of polybasic acids. Such salts contain one or more replaceable H atom.
- Ex. NaHCO₃, NaHSO₄, NaH₂PO₄, Na₂HPO₄ etc.
- (ii) Above salts when neutralized by base form normal salts.

- (c) Basic salts:
- (i) Salts formed by in complete neutralisation of poly acidic bases are called basic salts. These salt contain one or more hydroxyl groups.

Ex. Zn(OH)Cl, Mg(OH)Cl, Fe(OH), Cl, Bi(OH),Cl etc.

(ii) Above salts when neutralised by acids form normal salts.

5.2 HYDROLYSIS OF SALTS

Salt hydrolysis is defined as the process in which water reacts with cation or anion or both of a salt to change the concentration of H⁺ and OH⁻ ions of water.

Salt hydrolysis is reverse process of neutralization.

Water + Salt
$$\Longrightarrow$$
 Acid + Base; $\Delta H = +ve$

5.2.1 Hydrolysis of strong acid - weak base [SA - WB] type salt -

$$NH_4Cl + H_2O \implies NH_4OH + HCl$$

$$NH_4^++Cl^-+H_2O \Longrightarrow NH_4OH+H^++Cl^-$$

Net reaction: $NH_4^+ + H_2O \implies NH_4OH + H^+$

- (i) In this type of salt hydrolysis, cation reacts with H₂O, therefore called as *cationic hydrolysis*.
- (ii) Solution is acidic in nature (SAWB) as [H⁺] is increased.
- (iii) pH of the solution is less than 7.
- (iv) Relation between K_h , K_w & K_h

$$NH_{4}^{+} + H_{2}O \Longrightarrow NH_{4}OH + H^{+}$$

Hydrolysis constant
$$K_h = \frac{[NH_4OH][H^+]}{[NH_4^+]}$$
(i)

For weak Base $NH_4OH \rightleftharpoons NH_4^+ + OH^-$

$$K_{b} = \frac{\left[NH_{4}^{+}\right]\left[OH^{-}\right]}{\left[NH_{4}OH\right]} \qquad(ii)$$

For water $H_2O \Longrightarrow H^+ + OH^ K_w = [OH^-][H^+]$ (iii)

Now multiplying Eq. (1) & (2) = Eq. (3)

$$\frac{\left[NH_4OH \right] \! \left[H^+ \right]}{\left[NH_4^+ \right]} \times \frac{\left[NH_4^+ \right] \! \left[OH^- \right]}{\left[NH_4OH \right]} = \left[H^+ \right] \left[OH^- \right]$$

i.e.
$$K_h \times K_b = K_w$$

$$K_{\rm h} = \frac{K_{\rm w}}{K_{\rm b}}$$

5\B0B0-BA\Kola\JEE(Advanced)\Leader\Che\Sheel\lonic Equilibrium\Eng\01.Theo

(v) **Degree of hydrolysis** – (Represented by h)

$$NH_4^+ + H_2O \Longrightarrow NH_4OH + H^+$$
 $C \qquad 0 \qquad 0$ (initial concentration at equilibrium)

Ch

$$\boldsymbol{K}_{h} = \frac{\left[\boldsymbol{N}\boldsymbol{H}_{4}\boldsymbol{O}\boldsymbol{H}\right]\!\!\left[\boldsymbol{H}^{+}\right]}{\left\lceil\boldsymbol{N}\boldsymbol{H}_{4}^{+}\right\rceil} = \frac{\boldsymbol{C}\boldsymbol{h}^{2}}{\left(1-\boldsymbol{h}\right)}$$

Since h <<<< 1

then
$$(1-h) \approx 1$$

$$K_h = Ch^2$$

$$\Rightarrow$$
 $h = \sqrt{\frac{K_h}{C}}$

$$\therefore \quad \Rightarrow \qquad h = \sqrt{\frac{K_{w}}{K_{b}}} \qquad \qquad \Rightarrow \qquad \boxed{h = \sqrt{\frac{K_{w}}{K_{b} \times C}}}$$

(vi) pH of the solution:

$$pH = -\log[H^+]$$

$$\Rightarrow \qquad [H^{^{+}}] = \sqrt{\frac{K_{_{w}} \times C}{K_{_{b}}}}$$

On taking – log on both sides

$$pH = -\log\left(\frac{K_w \times C}{K_b}\right)^{\frac{1}{2}}$$

$$pH = -\frac{1}{2} \log K_{w} - \frac{1}{2} \log C - \frac{1}{2} (-\log K_{b})$$

$$pH = 7 - \frac{1}{2}pK_b - \frac{1}{2}logC$$

Ex.20 Find out the K_h of centi normal $[10^{-2} \, N]$ solution of NH_4Cl (SA - WB) if dissociation constant of NH_4OH is 10^{-6} and $K_w = 10^{-14}$. Find out degree of hydrolysis and also find $[H^+]$ and pH of solution?

(Given: $K_w = 10^{-14}$; $K_b = 10^{-6}$)

Sol. (1)
$$K_h = \frac{K_w}{K_b} = \frac{10^{-14}}{10^{-6}} = 10^{-8}$$

(2)
$$h = \sqrt{\frac{K_h}{C}} = \sqrt{\frac{10^{-8}}{10^{-2}}} = \sqrt{10^{-6}} = 10^{-3}$$

$$(3) \quad [H^+] = Ch$$

$$= 10^{-2} \times 10^{-3} = 10^{-5}$$

(4)
$$pH = -\log [H^+] = -\log [10^{-5}] = +5 \log 10 = +5 \times 1 = 5$$

Ex.21 How many grams of NH₄Cl should be dissolved per litre of solution to have a pH of 5.13? K_b for NH₃ is 1.8×10^{-5} .

Sol. NH₄Cl is a salt of strong acid and weak base for solutions of such salts.

$$\begin{split} pH = & \frac{1}{2} \ [pK_W - log \ C - pK_b] \\ \Rightarrow & 10.26 = 14 - log \ C - 4.74 \\ \Rightarrow & log \ C = 9.26 - 10.26 = -1.0 \\ \therefore & C = 10^{-1} \ M \\ & [NH_4Cl] = 10^{-1} \ M \\ & W_{NH_4NO_3} = 10^{-1} \times 53.5 \ gL^{-1} \\ & = 5.35 \ gL^{-1} \end{split}$$

5.2.2 Hydrolysis of [WA – SB] type salt :

$$Na^+ + CN^- + H_2O \implies Na^+ + OH^- + HCN$$

$$CN^- + H_2O \Longrightarrow HCN + OH^-$$

- In this type of salt hydrolysis anion reacts with water therefore called as anionic hydrolysis. (i)
- Solution is basic in nature as [OH⁻] increases. (ii)
- (iii) pH of the solution is greater than 7.

Relation between K_{b} , K_{w} , K_{a} (iv)

$$\begin{array}{l} CN^{-} + H_{2}O \Longrightarrow HCN + OH^{-} \\ K_{h} = \dfrac{ \left[HCN \right] \left[OH^{-} \right] }{ \left[CN^{-} \right] } & (i) \\ \\ \dfrac{ \left[HCN \right] \left[OH^{-} \right] }{ \left[CN^{-} \right] \left[HCN \right] } = \left[H^{+} \right] \left[OH^{-} \right] \\ K_{h} = \dfrac{K_{w}}{K_{a}} \end{array}$$

(v) Degree of hydrolysis:

$$\begin{array}{cccc} CN^- + H_2O & \Longrightarrow & HCN & + & OH^- \\ C & & 0 & & 0 \\ C - Ch & & Ch & & Ch \end{array}$$
 Initial concentration at equlibrium

$$K_{\rm h} = \frac{\left[HCN\right]\!\!\left[OH^{-}\right]}{\left[CN^{-}\right]}$$

$$K_h = \frac{Ch^2}{(1-h)}$$

Since
$$h \le < < 1$$
, therefore $(1 - h) \approx 1$
 $K_h = Ch^2$

$$K_h = Ch^2$$

$$h^2 = \frac{K_h}{C}$$

$$h^2 = \frac{K_h}{C} \qquad \qquad \Longrightarrow \qquad \boxed{h = \sqrt{\frac{K_h}{C}}}$$

$$h = \sqrt{\frac{K_w}{K_a \times C}}$$

(vi) pH of the solution

$$[OH^-] = Ch$$

$$\left[OH^{\scriptscriptstyle{-}}\right] = \sqrt{\frac{K_{\scriptscriptstyle{w}} \times C}{K_{\scriptscriptstyle{a}}}}$$

$$\left[H^{+}\right] = \frac{K_{w}}{\sqrt{\frac{K_{w} \times C}{K_{a}}}} \implies \left[H^{+}\right] = \sqrt{\frac{K_{w} \times K_{a}}{C}}$$

On taking – log on both sides

$$pH = -\frac{1}{2} [log K_w + log K_a - log C]$$

$$pH = 7 + \frac{1}{2}pK_a + \frac{1}{2}logC$$

Ex.22 Calculate the pH and degree of hydrolysis of 0.01 M solution of NaCN, K_a for HCN is 6.2×10^{-12} .

Sol. NaCN is a salt of strong base NaOH and weak acid HCN. Na⁺ does not react with water whereas CN⁻ reacts with water as here under

$$CN^- + H_2O \Longrightarrow HCN + OH^-$$

$$K_h = \frac{[HCN][OH^-]}{[CN^-]} = \frac{K_w}{K_a} = \frac{10^{-14}}{6.2 \times 10^{-12}} = 1.6 \times 10^{-3}$$

Let, x moles of salt undergo hydrolysis then concentrations of various species would be

$$[CN^{-}] = (0.01 - x) \approx 0.01, [HCN] = x$$

 $[OH^{-}] = x$

$$K_h = \frac{x.x}{0.01} = 1.6 \times 10^{-3}$$

$$x^2 = 1.6 \times 10^{-5}$$

$$\therefore \qquad x = 4 \times 10^{-3}$$

$$[OH^{-}] = x = 4 \times 10^{-3} M$$

$$[H_3O^+] = \frac{K_W}{[OH^-]} = \frac{10^{-14}}{4 \times 10^{-3}} = 0.25 \times 10^{-11}$$

$$pH = -\log(0.25 \times 10^{-11}) = 11.6020$$

Degree of hydrolysis =
$$\frac{x}{0.01} = \frac{4 \times 10^{-3}}{0.01} = 4 \times 10^{-1}$$

Ex.23. Calculate for 0.01 N solution of sodium acetate -

- (i) Hydrolysis constant
- (ii) Degree of hydrolysis
- (iii) pH

Given K_a of $CH_3COOH = 1.9 \times 10^{-5}$.

Sol. For CH₃COONa + H₂O
$$\Longrightarrow$$
 CH₃COOH + NaOH

Initial C

0

0

After C(1-h)

Ch

Ch

(i)
$$K_h = \frac{K_w}{K_a} = \frac{10^{-14}}{1.9 \times 10^{-5}} = 5.26 \times 10^{-10}$$

(ii)
$$h = \sqrt{\frac{K_{_h}}{C}} = \sqrt{\frac{5.26 \times 10^{-10}}{0.01}} = 2.29 \times 10^{-4} M$$

(iii) [OH⁻] from NaOH, a strong base = Ch =
$$0.01 \times 2.29 \times 10^{-4} = 2.29 \times 10^{-6}$$
 M pOH = 5.64

$$\therefore$$
 pH = 14 - 5.64 = 8.36

5.2.3 Hydrolysis of (WA - WB) type salt :

Ex.
$$NH_4CN$$
, $CaCO_3$, $(NH_4)_2CO_3$, $ZnHPO_3$

$$NH_4CN + H_2O \Longrightarrow NH_4OH + HCN$$

$$NH_4^+ + CN^- + H_2O \Longrightarrow NH_4OH + HCN$$

Solution is almost neutral but it may be acidic or basic depending upon the nature of acid & base & pH of the solution is near to 7.

For WA - WB types of salt:

	$K_a > K_b$	$K_b > K_a$	$K_a = K_b$
1. Hydrolysis	Cationic-anionic	Anionic-cationic	Neutral hydrolysis
2. Nature	Acidic	Basic	Neutral
3. pH	pH < 7	pH>7	pH=7

ode06\B0B0-BA\Kota\JEE(Advanæd)\Leader\Che\Sheet\tonic Equilibrium\Eng\01.Theor

(i) Relation between K_h , K_w , K_a & K_b

$$NH_{4}^{+} + CN^{-} + H_{2}O \Longrightarrow NH_{4}OH + HCN$$

$$K_{h} = \frac{[NH_{4}OH][HCN]}{[NH_{4}^{+}][CN^{-}]} \qquad(i)$$

$$\frac{\left[NH_{4}OH\right]\left[HCN\right]}{\left\lceil NH_{4}^{+}\right\rceil \left\lceil CN^{-}\right\rceil} \times \frac{\left[NH_{4}^{+}\right]\left[OH^{-}\right]}{\left\lceil NH_{4}OH\right\rceil} \times \frac{\left[H^{+}\right]\left[CN^{-}\right]}{\left[HCN\right]} = \left[H^{+}\right]\left[OH^{-}\right]$$

$$K_h \times K_b \times K_a = K_w$$

$$K_{h} = \frac{K_{w}}{K_{a} \times K_{b}}$$

(ii) Degree of Hydrolysis:

Initial concentration at equilibrium

$$\boldsymbol{K}_{h} = \frac{\left[\boldsymbol{N}\boldsymbol{H}_{4}\boldsymbol{O}\boldsymbol{H}\right]\!\left[\boldsymbol{H}\boldsymbol{C}\boldsymbol{N}\right]}{\left[\boldsymbol{N}\boldsymbol{H}_{4}^{+}\right]\!\left[\boldsymbol{C}\boldsymbol{N}^{-}\right]}$$

Since h <<<< 1

Then $(1-h) \approx 1$

$$\therefore \qquad \boxed{K_h = h^2} \qquad \qquad \text{or} \qquad \qquad h^2 = \frac{K_W}{K_a \times K_b}$$

$$h = \sqrt{\frac{K_{\text{W}}}{K_{\text{a}} \times K_{\text{b}}}}$$

.... (v)

Ch

(iii) pH of the solution

From eq. (iii)

$$K_{_{a}} = \frac{\left \lceil H^{^{+}} \right \rceil \left \lceil CN^{^{-}} \right \rceil}{\left \lceil HCN \right \rceil}$$

$$\left[H^{\scriptscriptstyle +}\right] = \frac{K_{\scriptscriptstyle a} \times \left[HCN\right]}{\left\lceil CN^{\scriptscriptstyle -}\right\rceil}$$

$$\left[H^{\scriptscriptstyle +}\right] = \frac{K_{\scriptscriptstyle a} \times Ch}{C - Ch} = \frac{K_{\scriptscriptstyle a} \times h}{1 - h}$$

Since $h <<<<1, (1-h) \approx 1$

 $[H^{+}] = K_a \times h$ [Now put the value of h from eq. (5)]

$$\,=\, K_{_{a}} \times \sqrt{\frac{K_{_{w}}}{K_{_{a}} \times K_{_{b}}}}$$

$$[H^+] = \sqrt{\frac{K_w \times K_a}{K_b}}$$

Ε

On taking – log on both sides

$$-\log [H^{+}] = -\log \left(\frac{K_{w} \times K_{a}}{K_{b}}\right)^{1/2}$$

$$pH = -\frac{1}{2} [log K_w + log K_a - log K_b]$$

$$pH = 7 + \frac{1}{2} pK_a - \frac{1}{2} pK_b$$

Note: Degree of hydrolysis of [WA-WB] type salt does not depend on the concentration of salt.

Ex.24 Salt of weak acid and weak base

(i) Calculate pH of the mixture (25 mL of 0.1 M NH₄OH + 25 mL of 0.1 M CH₃COOH). Given that K_a : 1.8×10^{-5} , and $K_b = 1.8 \times 10^{-5}$

Sol.

$$NH_4OH + CH_3COOH \rightarrow CH_3COONH_4 + H_2O$$

Initial milli moles

$$25 \times 0.1$$

$$25 \times 0.1$$

= 2.5

Final milli moles

2.5

2.5

0

As salt is formed (salt of weak acid and weak base) and pH will be decided by salt hydrolysis

$$pH = \frac{pK_w + pK_a - pK_b}{2} = \frac{1}{2} \left(-\log 10^{-14} - \log 1.8 \times 10^{-5} + \log 1.8 \times 10^{-5} \right) = 7$$

Ex.25 In the following which one has highest/maximum degree of hydrolysis.

(1)
$$0.01 M - NH_{1}Cl$$

(2)
$$0.1 M - NH_{1}Cl$$

Sol. [3]

$$\left(h = \sqrt{\frac{K_h}{C}}\right) \qquad \text{if } C \text{ decreases, } h \text{ increases}$$

Ex.26 In the following which one has lowest value of degree of hydrolysis.

$$(1) 0.01 M - CH_3COONH_4$$

$$(2) 0.1 M - CH_{2}COONH_{4}$$

(3)
$$0.001 M - CH_{2}COONH_{4}$$

Sol. [4]

Ex.27 Find out the concentration of [H⁺] in 0.1M CH₃COONa solution ($K_a = 10^{-5}$)

Sol. Salt is [WA – SB] type

$$\therefore \quad [H^+] = \sqrt{\frac{K_w \times K_a}{C}} = \sqrt{\frac{10^{-14} \times 10^{-5}}{10^{-1}}} = \sqrt{10^{-19} \times 10^{+1}} = \sqrt{10^{-18}} = 10^{-9}$$

node06\B0B0-BA\Kota\JEE{Advanæd}\Leader\Che\Sheef\lonic Equilibrium\

Ex.28 Calculate the degree of hydrolysis of a mixture containing 0.1N NH₂OH and 0.1N HCN

$$K_a = 10^{-5}$$
 & $K_b = 10^{-5}$

Sol. Salt is [WA - WB]

$$h = \sqrt{\frac{K_w}{K_a \times K_b}} = \sqrt{\frac{10^{-14}}{10^{-5} \times 10^{-5}}}$$
$$= \sqrt{10^{-14} \times 10^{+10}} = \sqrt{10^{-4}} = 10^{-2}$$

5.2.4 Hydrolysis of [SA – SB] type salt :

Ex. NaCl, BaCl₂, Na₂SO₄, KClO₄ etc.

$$Na^+ + Cl^- + H_2O \Longrightarrow Na^+ + OH^- + H^+ + Cl^-$$

$$H_2O \rightleftharpoons H^+ + OH^-$$
 (It is not salt hydrolysis)

- (1) Hydrolysis of salt of [SA SB] is not possible
- (2) Solution is neutral in nature (pH = pOH = 7)
- (3) pH of the solution is 7

5.2.5 Hydrolysis of Amphiprotic Anion:

NaHCO₃, NaHS, etc., can undergo ionisation to from H⁺ ion and can undergo hydrolysis to from OH⁻(Na⁺ ion is not hydrolysed)

(a) (i)
$$HCO_3^- + H_2O \rightleftharpoons CO_3^{2-} + H_3O^+$$
 (acid)

(ii)
$$HCO_3^- + H_2O \xrightarrow{hydrolysis} H_2CO_3 + OH^-$$
 (base)

$$pH(HCO_{3}^{-}) = \left(\frac{pK_{a_{1}} + pK_{a_{2}}}{2}\right)$$

(b) Similarly for $H_2PO_4^-$ and HPO_4^{2-} amphiprotic anions.

$$pH_{(H_2PO_4^-)} = \left(\frac{pK_{a_1} + pK_{a_2}}{2}\right) \hspace{1cm} and \hspace{1cm} pH_{(HPO_4^{2^-})} = \left(\frac{pK_{a_2} + pK_{a_3}}{2}\right)$$

$$NaHCO_3 \longrightarrow Na^+ + HCO_3^-$$

$$HCO_3^- + H_2O \xrightarrow{Kw/Ka_1} H_2CO_3 + OH^-$$

$$HCO_3^- + H_2O \xrightarrow{Ka_2} CO_3^{-2} + H_3O^+$$

∴ H⁺ and OH⁻ also react

:. We can safely assume that both reactions have nearly same degree of dissociation

$$\therefore \left[H_2 CO_3 \right] \approx \left[CO_3^{-2} \right] \qquad \qquad \dots \dots (1)$$

$$\frac{K_W}{Ka_1} = \frac{\left[H_2CO_3\right][OH^-]}{\left[HCO_3^-\right]} \Rightarrow \frac{1}{Ka_1} = \frac{\left[H_2CO_3\right]}{\left[H^+\right]\left[HCO_3^-\right]} \qquad(2)$$

$$\frac{\left[\operatorname{CO}_{3}^{-2}\right]\left[\operatorname{H}^{+}\right]}{\left[\operatorname{HCO}_{3}^{-}\right]} = \operatorname{Ka}_{2} \qquad \dots(3)$$

Divide (2) by (3)

$$[H^{+}] = \sqrt{Ka_{1}Ka_{2}} \implies pH = \frac{pKa_{1} + pKa_{2}}{2}$$

Ex.29 Calculate the pH of 0.5 M Na,PO, in aqueous solution?

$$PO_4^{3-} + H_2O \Longrightarrow HPO_4^{2-} + OH^-; K_b(PO_4^{-3}) = 2.4 \times 10^{-2}$$

 $PO_4^{3-} + H_2O \Longrightarrow HPO_4^{2-} + OH^-; K_b(PO_4^{-3}) = 2.4 \times 10^{-2}$ Sol. HPO_4^{2-} and PO_4^{-3} are conjugate acid and base so $K_a \times K_b = 10^{-14}$

$$K_a(HPO_4^{2-}) = \frac{10^{-14}}{2.4 \times 10^{-2}} = 4.17 \times 10^{-13}$$

$$pK_a = -\log K_a = 12.38$$

or
$$pH = 7 + \frac{1}{2} pK_a + \frac{1}{2} \log C$$

$$pH = 13.04$$

DO YOUR SELF-1

Q.1 Hydrogen ion concentration in mol/L in a solution of pH = 5.4 will be - [AIEEE-2005]

(A)
$$3.88 \times 10^6$$

(B)
$$3.98 \times 10^8$$

(C)
$$3.98 \times 10^{-6}$$

- (D) 3.68×10^{-6}
- Q.2 In aqueous solution the ionization constants for carbonic acid are

$$K_1 = 4.2 \times 10^{-7}$$
 and $K_2 = 4.8 \times 10^{-11}$

[AIEEE-2010]

Select the correct statement for a saturated 0.034 M solution of the carbonic acid:

- (A) The concentration of H⁺ is double that of CO₃²⁻
- (B) The concentration of CO_3^{2-} is 0.034 M
- (C) The concentration of CO₃²⁻ is greater than that of HCO₃⁻
- (D) The concentrations of H^+ and HCO_3^- are approximately equal

6 **BUFFER SOLUTIONS**

A solution that resists change in pH value upon addition of small amount of strong acid or base or when solution is diluted is called buffer solution.

The capacity of a solution to resist alteration in its pH value is known as buffer capacity and the mechanism of buffer solution is called buffer action.

6.1 **Types of buffer solutions**

(A) Simple buffer solution

(B) Mixed buffer solution

SIMPLE BUFFER SOLUTION: 6.2

A salt of weak acid and weak base in water e.g. CH₃COONH₄, HCOONH₄, AgCN, NH₄CN.

Buffer action of simple buffer solution

Consider a simple buffer solution of CH₃COONH₄, since it is a salt will dissociated completely.

$$CH_3COONH_4 \longrightarrow CH_3COO^- + NH_4^+$$

If a strong acid such as HCl is added then

$$HCl \longrightarrow H^+ + Cl^-$$

The H⁺ ions from the added acid (HCl) combine with CH₃COO⁻ ions to form CH₃COOH, which is a weak acid so will not further ionized.

Thus there is no rise in H⁺ ion concentration and the pH remains constant.

If a strong base is added as NaOH

$$NaOH \longrightarrow Na^{+} + OH^{-}$$

$$NH_{4}^{+} + OH^{-} \Longrightarrow NH_{4}(OH)$$
 (Weak base)

Thus change in OH^- ion concentration is resisted by NH_4^+ ions by forming NH_4OH which is a weak base. So it will not further ionized and pH remains constant.

pH of a simple buffer solution:-

$$pH = 7 + \frac{1}{2}pk_a - \frac{1}{2}pk_b$$

6.3 MIXED BUFFER SOLUTIONS:

6.3.1 Acidic buffer solution:

An acidic buffer solution consists of solution of a weak acid and its salt with strong base. The best known example is a mixture of solution of acetic acid and its salt with strong base (CH₃COONa). Other example:

$$HCN + KCN, (H_2CO_3 + NaHCO_3) \longrightarrow blood$$

$$CH_3COOH \rightleftharpoons CH_3COO^- + H^+$$
 (Weakly ionised)

$$CH_3COONa \longrightarrow CH_3COO^- + Na^+$$
 (Highly ionised)

When a few drops of an acid (HCl) are added to it, the H⁺ ions from the added acid (HCl) combine with the CH₃COO⁻ ions to form CH₃COOH. Thus there is no rise in H⁺ ion concentration and the pH of solution remains constant. On the other hand, when a few drops of base(NaOH) are added, the OH⁻ of the added base reacts with acetic acid to form unionise water and acetate ions.

$$\mathrm{CH_{3}COOH} + \mathrm{OH^{\scriptscriptstyle{-}}} \Longrightarrow \mathrm{H_{2}O} + \mathrm{CH_{3}COO^{\scriptscriptstyle{-}}}.$$

Thus there is no increase in OH⁻ ion concentration and hence the pH of the solution remains constant.

pH of a acidic buffer solution (Henderson equation):

Consider a buffer mixture (acidic buffer)

$$HA + NaA$$
 ($CH_3COOH + CH_3COONa$)

where
$$A = CH_3COO$$
, $A^- = CH_3COO^-$

$$HA \Longrightarrow H^+ + A^-$$

 $NaA \longrightarrow Na^+ + A^-$

Applying law of mass action to dissociation equilibrium of HA

$$K_a = \frac{[H^+][A^-]}{[HA]}$$
; so $[H^+] = \frac{K_a[HA]}{[A^-]}$

$$\log [H^{+}] = \log K_{a} + \log \frac{[HA]}{[A^{-}]}$$

$$-\log [H^{+}] = -\log K_{a} - \log \frac{[HA]}{[A^{-}]}$$

$$pH = pK_{a} + \log \frac{[A^{-}]}{[HA]}$$

[A-] = Initial concentration of salt as it is mainly comes from salt.

[HA] = Initial concentration of the acid.

$$pH = pK_a + log \frac{[Salt]}{[Acid]}$$
 (it is known as Henderson-Hasselbalch equation.)

Note: A solution can act as buffer only if ratio of concentration of salt to acid is between 0.1 to 10.

CH₃COOH : CH₃COONa
1 10
$$pH = pK_a + 1$$

10 $pH = pK_b - 1$

Thus pH range of an acidic buffer solution is $(pK_a + 1)$ to $(pK_a - 1)$

pH range =
$$pK_a \pm 1$$

Maximum buffer action will be only when ratio of concentration of acid and salt is 1. So for maximum buffer action, pH = pK

Ex.30 How much volume of 0.2 M solution of acetic acid should be added to 100 mL of 0.2 M solution of sodium acetate to prepare a buffer solution of pH = 6.00? (pK_a for acetic acid is 4.74)

Sol.
$$pH = pK_a + log \frac{[Salt]}{[Acid]}$$

$$log \frac{[Salt]}{[Acid]} = pH - pK_a = 6.00 - 4.74 = 1.26$$
 : $\frac{[Salt]}{[Acid]} = 18.2$

Moles of CH_3COONa in solution $\frac{100 \times 0.2}{1000} = 0.02$

Let, volume of 0.2 acetic acid added = V mL

$$\therefore \qquad \text{Moles of acetic acid} = \frac{V \times 0.2}{1000}$$

$$\frac{0.02}{V \times \frac{0.2}{1000}} = 18.2$$

$$V = 5.49 \text{ mL}$$

Ex.31 Calculate the pH after the addition of 80 mL and 100 mL respectively of 0.1 N NaOH to 100 mL, 0.1 N CH₃COOH. (Given pK_a for CH₃COOH = 4.74)

Sol. If 80 mL of 0.1 N NaOH is added to 100 mL of 0.1 N CH₃COOH, acidic buffer will form as

node06\B0B0-BA\Kola\JEE(Advanæd)\Leader\Che\Sheel\lonic Equilibrium\Eng

If 100 mL of 0.1 N NaOH is added is added to 100 mL of 0.1 N CH₃COOH, complete neutralization takes place and the concentration of H_3 CCOONa = $\frac{0.1}{2}$ M = 0.05 M

Now,
$$pH = 7 + \frac{1}{2} pK_a + \frac{1}{2} log C = 8.72$$

Ex.32 Calculate the pH of a solution when 0.20 moles of HCl is added to one litre solution containing -

- (a) 1 M each of acetic acid and acetate ion?
- (b) 0.1 M each of acetic acid and acetate ion?

Given K_a for acetic acid is 1.8×10^{-5} .

Sol. (a) Initially [Acetic acid] = 1 M

[Acetate] = 1 M

Now 0.2 moles of HCl are added to it.

$$HCl$$
 + $CH_3COO^ \rightarrow$ CH_3COOH + Cl^-
Mole before reaction 0.2 1 1 0
Mole after reaction 0 0.8 1.2 0.2

 $\therefore New [CH_3COOH] = 1.2 ; [CH_3COO^-] = 0.8$

$$\therefore pH = pk_a + log \frac{[\text{conjugate}]}{[\text{acid}]}$$

$$\therefore pH = -\log 1.8 \times 10^{-5} + \log \frac{0.8}{1.2} = 4.5686$$

(b) In II case initially [Acetic acid] = 0.1 M

[Acetate] = 0.1 M

Now 0.2 mole of HCl are added to it

$$HCl$$
 + $CH_3COO^- \rightarrow CH_3COOH$ + Cl^-
Mole before reaction 0.2 0.1 0.1 0
Mole after reaction 0.1 0 0.2 0.1

 \therefore [H⁺] from free HCl = 0.1 M

 $\therefore pH = 1$

Note: CH_3COOH no doubt gives H^+ but being weak acid as well as in presence of HCl does not dissociate appreciably and thus, H^+ from CH_3COOH may be neglected.

6.3.2 Basic buffer solution:

A basic buffer solution consists of a mixture of a weak base and its salt with strong acid. The best known example is a mixture of NH₄OH and NH₄Cl.

$$NH_4OH \Longrightarrow NH_4^+ + OH^-$$
 (Weakly ionised)
 $NH_4Cl \to NH_4^+ + Cl^-$ (Highly ionised)

When a few drops of a base (NaOH) are added, the OH⁻ ions from NaOH combine with NH₄⁺ ions to form feebly ionised NH₄OH thus there is no rise in the concentration of OH⁻ions and hence the pH value remains constant.

$$NH_4^+ + OH^- \Longrightarrow NH_4OH$$

If a few drops of a acid (HCl) are added the H^+ from acid combine with NH_4OH to form H_2O and NH_4^+ ions.

$$NH_4OH + H^+ \Longrightarrow NH_4^+ + H_2O$$

Thus the addition of acid does not increase the H⁺ ion concentration and hence pH remains unchanged.

pH of basic buffer solution :

$$\begin{split} NH_4OH & \Longrightarrow NH_4^+ + OH^- \\ NH_4Cl & \to NH_4^+ + Cl^- \\ K_b & = \frac{\left\lceil NH_4^+ \right\rceil \left\lceil OH^- \right\rceil}{\left\lceil NH_4OH \right\rceil} \\ \left\lceil OH^- \right\rceil & = \frac{K_b \left\lceil NH_4OH \right\rceil}{\left\lceil NH_4^+ \right\rceil} = \frac{K_b \left\lceil Base \right\rceil}{\left\lceil Salt \right\rceil} \end{split}$$

(NH₄ mainly comes from salt)

taking -log on both side

$$\begin{split} -log \ OH^- &= -log \frac{K_b \big[Base \big]}{\big[Salt \big]} \Rightarrow pOH = -log \ K_b - log \ \frac{\big[Base \big]}{\big[Salt \big]} \\ \\ pOH &= pK_b + log \frac{\big[Salt \big]}{\big[Base \big]} \ \Rightarrow \ pH = 14 - pOH \end{split}$$

Orange Property Property

A solution can act as buffer solution only if ratio of concentration of salt to base is from 0.1 to 10.

So pOH range is $pK_b \pm 1$

Condition for maximum buffer action :

[NH₄OH] : [NH₄Cl]
$$1 1$$

$$pOH = pK_b + log \frac{1}{1}$$

$$pOH = pK_b and pH = 14 - pK_b$$

Maximum buffer action because pH remains constant.

Ex.33An organic base B has K_b value equal to 1×10^{-8} . In what amounts should 0.01 M HCl and 0.01 M solution of B be mixed to prepare 1 L of a buffer solution having pH = 7.0?

Sol.
$$B + H_2O \Longrightarrow BH^+ + OH^-$$

$$K_b = \frac{[BH^+][OH^-]}{[B]} = 1 \times 10^{-8}$$

$$pOH = pK_b + log \frac{[BH^+]}{[B]}$$

$$\Rightarrow 7 = -\log(10^{-8}) + \log\frac{[BH^+]}{[B]} \Rightarrow 7 = 8 + \log\frac{[BH^+]}{[B]}$$

$$\log \frac{[BH^+]}{[B]} = -1$$

$$\therefore \frac{[BH^+]}{[B]} = 10^{-1} = 0.1$$

Let, volume of HCl taken = xL

$$\therefore$$
 Volume of base taken = $(1 - x) L$

After the reaction, millimole of BH⁺ formed = $0.01 \times (x)$

Millimoles of base left = 0.01 (1 - 2x)

$$\therefore \frac{[BH^+]}{[B]} = \frac{x}{[1-2x]} = 0.1$$

$$\therefore$$
 x = 0.083 L = Volume of HCl

$$\therefore$$
 Volume of base = 0.917 L

Ex.34 Which of the following buffers containing NH₄OH and NH₄Cl show the lowest pH value?

	conc. of	conc. of
	$NH_4OH (mol L^{-1})$	$NH_4Cl \ (mol \ L^{-l})$
(A)	0.50	0.50
(B)	0.10	0.50
(C)	0.50	1.50
(D)	0.50	0.10

Sol. (B)
$$pOH = pk_b + log \frac{[salt]}{[base]}$$
 for $NH_4Cl = 0.5$ and $NH_4OH = 0.1$

pOH will be maximum and so pH will be minimum.

Sol. Case I:

$$\therefore pOH = -\log K_b + \log \frac{[BCI]}{[BOH]} \dots (i)$$

:
$$pH = 10.04$$
 so $pOH = 3.96$

$$\therefore$$
 3.96 = $-\log K_b + \log \frac{0.5}{(a-0.5)}$ (ii)

Case II:

$$\therefore \quad pOH = -\log K_b + \log \frac{[BCI]}{[BOH]} \quad(iii)$$

$$\therefore$$
 pH = 9.14 \therefore pOH = 4.86

:.
$$4.86 = -\log K_b + \log \frac{2}{(a-2)}$$
(iv)

Solving Eqs. (ii) and (iv), $K_b = 1.81 \times 10^{-5}$

7. INDICATORS

The stage of titration when complete reaction occur between the solution is called **equivalent point.** The stage of titration when sudden change in colour of solution is observed is called **end point.** A perfect indicator response sudden colour change exactly on completion of reaction. An **indicator** is a substance which response sudden change in colour of solution at the end point or neutral point of the acid-base titration. **At end point** $N_1V_1 = N_2V_2$

- (i) The indicators in acid-base titration changes colour on changing the pH of solution.
- (ii) All the acid-base indicators are either weak organic acid or base and having different colour for unionized and ionised form.
- (iii) A mixture of two colour is recognized in a single colour if the conc. of one is 10 times or more than that of others. (This 10 time is flexible)

$$HA \longrightarrow A^- + H^+$$
colour X colour Y

Diss. const. or (Ionisation const) =
$$K_a = K_{in} = \frac{[H^+][A]}{[HA]}$$

.Kola \JEE (Advanæd)\Leader\Che\Sheel\lonic Equilibrium\Eng\01 . Theory, p

$$pH = pK_{in} + log \frac{[A^{-}]}{[HA]}$$

- (a) The solution will appear only of colour Y, if $\frac{[A^-]}{[HA]} \ge 10$ $\Rightarrow pH \ge (pK + 1)$
- (b) The solution will appear only of colour X, if $\frac{[A^-]}{[HA]} \le \frac{1}{10} \Rightarrow pH \le (pK 1)$

pH of solution below and above which solution appears in a single colour is called pH range of indicator.

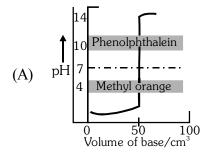
Indicator	pH range	Colour change	pK _a
		(acidic to basic medium)	
Methyl orange	3.2 - 4.5	Pink to yellow	3.7
Methyl red	4.4 - 6.5	Red to yellow	5.1
Litmus	5.5 – 7.5	Red to blue	7.0
Phenol red	6.8 - 8.4	Yellow to red	7.8
Phenolpthalein	8.3 - 10.5	Colourless to pink	9.6

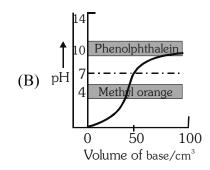
Ex.36 The disso. const. of a basic indicator is 2×10^{-7} . Calculate its pH range.

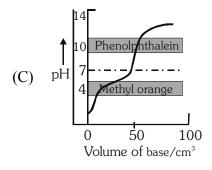
Sol.
$$5.7 - 7.7 = \text{pOH}$$
 : $\text{pH} = 6.3 - 8.3$

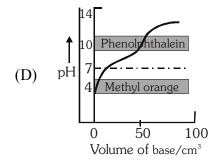
Ex.37 The pH range of an acidic indicator HIn is 4.0 - 5.2. Calculate dissociation constant. Also

calculate $\frac{\text{In}^-}{\text{HIn}}$ for the appearence of solution in single colour.


Sol. Diss. constant = 2.5×10^{-5} , 4


9.1 TITRATION OF STRONG ACID AGAINST STRONG ALKALI:


The graph (A) shows how pH changes during the titration of 50 cm³ of 0.1 M HCl with 0.1 M NaOH.


$$NaOH\left(aq\right) + HCl\left(aq\right) \longrightarrow NaCl\left(aq\right) + H_{2}O\left(\ell\right)$$

The pH of 0.1 M solution of HCl in the beginning would be 1. As alkali is added, the pH changes slowly in the beginning. However, at the equivalence point pH changes rapidly from about 3.5 to 10. It can be shown by simple calculations that pH of the solution is 3.7 when 49.8 cm³ of 0.1 M NaOH solution have been added. The pH suddenly changes to 10 after addition of 50.1 cm³ of the NaOH solution. Thus, any indicator having pH range between 3.5 to 10 will identify the equivalence point. This means that any one of phenolphthalein, methyl orange or bromothymol blue could be used as an indicator.

Titration curves: (A) strong base with strong acid; (B) weak base with strong acid; (C) strong base with weak acid; (D) weak base with weak acid.

7.2 TITRATION OF STRONG ACID AGAINST WEAK ALKALI:

The graph (B) shows how pH changes during titration of 50 cm³ of 0.1 M HCl with 0.1 M NH₃.

$$HCl(aq) + NH_4OH(aq) \longrightarrow NH_4Cl(aq) + H_2O(\ell)$$

In this case, the pH changes rapidly from 3.5 to 7.0 at the equivalence point. Methyl orange, methyl red and bromocresol green are suitable indicators for this type of titration. Phenolphthalein is unsuitable because its pH range lies outside the vertical portion of the curve.

7.3 TITRATION OF WEAK ACID AGAINST STRONG BASE:

The graph (C) shows how pH changes during titration of 50 cm³ of 0.1 M CH₃COOH with 0.1 M NaOH.

$$\label{eq:ch3} CH_3COOH~(aq) + NaOH~(aq) \longrightarrow CH_3COONa~(aq) + H_2O~(\ell)$$

The vertical portion of this titration curve lies between pH range 7 to 10.6. Phenolphthalein is suitable indicator for this titration. Methyl orange is not suitable for this titration because its pH range lies on the flat portion of the curve.

7.4 TITRATION OF WEAK ACID AGAINST WEAK BASE:

The graph (D) represents the titration curve obtained for titration of 50 cm³ of 0.1 M CH₃COOH with 0.1 M NH₃.

$$CH_3COOH$$
 (aq) + NH_4OH (aq) $\longrightarrow CH_3COONH_4$ (aq) + H_2O (ℓ)

For this type of titration there is no sharp increase in pH at the equivalence point. No indicator is suitable for this type of titration.

Ex.38 Bromophenol blue is an indicator with a value of $K_a = 6.84 \times 10^{-6}$. At what pH it will work as an indicator? Also report the % of this indicator in its basic form at a pH of 5.84.

Sol. HBPh
$$\rightleftharpoons$$
 H⁺ + BPh⁻

$$K_a = \frac{[H^+][BPh^-]}{[HBPh]}$$
, when $BPh^- = HBPh$, indicator will work. Thus

$$[H^+] = 6.84 \times 10^{-6}$$

$$\therefore$$
 pH = 5.165

Also if
$$pH = 5.84$$

or
$$[H^+] = 1.44 \times 10^{-6}$$
, then

$$K_a = \frac{[H^+][BPh^-]}{[HBPh]} \quad \text{ or } \quad 6.84 \times 10^{-6} = \frac{1.44 \times 10^{-6}.C\alpha}{C(1-\alpha)} \quad \text{ or } \quad \alpha = 0.83 \text{ or } 83 \text{ } \%$$

7.5 Titration of Poly protic acid v/s S.B.:

50 mL of 0.1 M H₃PO₄ agent 0.1 M NaOH. Calculate pH when vol. of NaOH added is

- (a) 0 mL
- (b) 25 mL
- (c) 50 mL
- (d) 75 mL
- (e) 100 mL

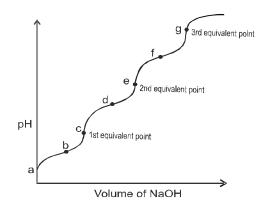
- (f) 125 mL
- (g) 150 mL
- (h) 200 mL
- (i) 90 mL

$$pK_{a1} = 3$$

$$pK_{a2} = 7$$
, $pK_{a3} = 11$

(a)
$$pH = 1/2 (pK_{a1} - log C) = 1/2 (3 + 1) = 2$$

(b)
$$H_3PO_4 + NaOH \implies NaH_2PO_4 + H_2O$$


- t = 0 5 Mmol
- 2.5 Mmol
- 0 -

- 2.5 M mol
- 0
- 2.5 M mol

$$pH = pK_{a1} + log \ 1/1 = pK_{a1} = 3$$

(c) Solution of H₂PO₄⁻ amphoteric species

$$pH = \frac{pK_{a_1} + pK_{a_2}}{2} = \frac{3+7}{2} = 5$$

$$(d) \quad NaH_2PO_4 \quad + \quad NaOH \quad \longrightarrow \quad Na_2HPO_4 \ + \ H_2O$$

$$t = 0.5 \text{ M mol}$$
 2.5 M mol 0 - 2.5 M mol 2.5 M mol 2.5 M mol - pH = log 1/1 + pK_{a2} = 7

$$pH = \frac{pK_{a_2} + pK_{a_3}}{2} = 9$$

(f)
$$Na_2HPO_4 + NaOH \longrightarrow Na_3PO_4 + H_2O$$

5 2.5 0 -
2.5 0 2.5 -
 $pH = pK_{a3} + log 1/1 = 0$

(g)
$$3^{rd}$$
 eq. pt Na_3PO_4 solution
 $[Na_3PO_4] = 5/200 = 1/40$
 $pH = 1/2\{pK_w + pK_{a3} + log C\} = 1/2(14 + 11 - 2 + 0.4) = 11.7$

hydrolysis of Na₃PO₄ can be neglected in presence of NaOH

$$[NaOH] = 5/250 = 1/50$$
 $pOH = 1.7$ $pH = 12.3$

$$\begin{array}{cccc} NaH_2PO_4 & + & NaOH & \longrightarrow & Na_2HPO_4 + H_2O \\ & 5 & & 4 & & 0 \\ & 1 & & 0 & & 4 \\ pH = pK_{a2} + log \ 4 = 7.6 \end{array}$$

10. SOLUBILITY (s) & SOLUBILITY PRODUCT (K_{sp})

10.1 SOLUBILITY:

At constant temperature, the maximum number of moles of solute which can be dissolved in a solvent to obtain 1 litre of saturated solution is called solubility.

Solubility depends on the following –

- (i) Temperature
- (ii) Presence of common ion
- (iii) Nature of solvent

36

10.2 SOLUBILITY PRODUCT (K_{sp}) :

When a sparingly soluble salt such as AgCl is put into water, a very small amount of AgCl dissolves in water and most of the salt remains undissolved in its saturated solution.

- A solution which remains in contact with undissolved solute is said to be saturated.
- The salt AgCl is an elecrolyte, its dissociation occurs in solution. Hence, the quantity of AgCl that dissolves in water dissociates into Ag⁺ and Cl⁻ ions. Thus, in the saturated solution of AgCl an equilibrium exists between undissolved solid AgCl and its ions, Ag⁺ and Cl⁻ ions.

$$AgCl_{(s)} \xrightarrow{\underline{\operatorname{Dissolution}}} Ag^+_{(aq)} + Cl^-_{(aq)}$$

according to law of mass action

$$K = \frac{\left[Ag^{+}\right].\left[Cl^{-}\right]}{\left[AgCl\right]}$$

Since, the concentration of undissolved solid AgCl is constant. Thus, the product K.[AgCl] gives another constant which is designated as K_{sn}

So,
$$K.[AgCl] = [Ag^+].[Cl^-]$$

 $\therefore K_{sp} = [Ag^+] \cdot [Cl^-]$

- \mathbf{K}_{sp} for \mathbf{CaCl}_2 $\mathbf{CaCl}_2(s)$ \Longrightarrow $\mathbf{Ca^{+2}(aq) + 2Cl^{-}(aq)}$ Solubility product in terms of concentration of ions $\mathbf{K}_{sp} = [\mathbf{Ca^{+2}}] [\mathbf{Cl^{-}}]^2$
- \mathbf{K}_{sp} for AlCl₃ (s) \Longrightarrow Al⁺³(aq) + 3Cl⁻(aq) Solubility product in terms of concentration of ions $\mathbf{K}_{sp} = [Al^{+3}] [Cl^{-}]^3$
- General form $A_x B_y(s) \iff x A^{+y}(aq) + y B^{-x}(aq)$ $K_{sp} = [A^{+y}]^x [B^{-x}]^y$

Thus, solubility product is defined as the product of concentrations of the ions raised to a power equal to the number of ions given by the dissociation of electrolyte at a given temperature when the solution is saturated.

10.3 APPLICATION OF SOLUBILITY PRODUCT (K_{sp}) :

10.3.1 To find out the solubility (S):

(i) K_{sp} of AB (Mono-mono, di-di, tri-tri valency) type salt –

Ex. NaCl, BaSO₄, CH₃COONa, CaCO₃, NaCN, KCN, NH₄CN, NH₄Cl etc.

AB(s)
$$\Longrightarrow$$
 A⁺(aq) + B⁻(aq)

a 0 0

(a–s) s s

K_{sp} = [A⁺] [B⁻]

K_{sp} = s² or s = $\sqrt{K_{sp}}$

(ii) K_{sn} of AB_2 or A_2B (Mono-di or di-mono valency) type salt –

 $\textbf{Ex.} \quad \text{CaCl}_2, \ \text{CaBr}_2, \ \text{K}_2\text{S}, \ (\text{NH}_4)_2\text{SO}_4, \ \text{K}_2\text{SO}_4, \ \text{K}_2\text{CO}_3 \ \text{etc.}$

$$K_{sp} = S \times (2S)^2 = S \times 4S^2 = 4S^3$$

$$s = \left(\frac{K_{sp}}{4}\right)^{\frac{1}{3}}$$

(iii) General form:

$$A_x B_y(aq) \iff xA^{+y}(aq) + yB^{-x}(aq)$$

$$a \qquad 0 \qquad 0$$

$$a-s \qquad xs \qquad ys$$

$$K_{sp} = [A^{+y}]^x \cdot [B^{-x}]^y$$

$$K_{sp} = (xs)^x \cdot (ys)^y$$

$$K_{sp} = x^x \cdot y^y \cdot s^{(x+y)}$$

10.4 COMMON ION EFFECT ON SOLUBILITY:

Solubility of substances always decreases in the presence of common ion. According to Le-Chatelier's principle, on increasing common ion concentration equilibrium shifts in backward direction until the equilibrium is reestablished so, the solubility of substances decreases.

Ex. Find out the solubility of AgCl in water and in the presence of CM – NaCl solution?

In NaCl solution

Let solubility of AgCl in the presence of NaCl solution is S' mol L⁻¹

$$AgCl \Longrightarrow Ag^{+} + Cl^{-}$$

$$S' \qquad S'+C$$

$$K_{sp} = [Ag^{+}]' [Cl^{-}]'$$

$$K_{sp} = S' (S' + C) = S'^{2+}S'C$$
 (Neglecting the higher power terms of S')
 $K_{sp} = S' C$

$$S' = \frac{K_{sp}}{C}$$

xdeO6\B0B0-BA\Kota\JEE(Advanæd)\Leader\Che\Sheef\lonicEquilibrium\Eng\01.Theor

E

10.5 SIMULTANEOUS SOLUBILITY:

When two sparingly soluble salts are added in water simultaneously, there will be two simultaneous equilibria in the solution.

10.6 SOLUBILITY IN APPROPRIATE BUFFER SOLUTIONS:

Appropriate buffer means that the components of buffer should not interfere with the salt or only H⁺ or OH⁻ ions should be interacting with the ions of the salt.

10.7 EFFECT ON SOLUBILITY BECAUSE OF COMPLEX FORMATION:

Solubility of AgCl in aqueous NH, is roughly 10,000 times as its solubility in water, due to complex formation.

$$\begin{split} AgCl(s) & \rightleftharpoons Ag^{^{+}}(aq) + Cl^{^{-}}(aq) \\ Ag^{^{+}}(aq) + 2NH_{_{3}}(aq) & \rightleftharpoons Ag(NH_{_{3}})_{_{2}}{}^{^{+}}(aq) \; ; \qquad K_{_{eq}} = K_{_{stability}} = K_{_{formation}} \\ and \quad \frac{1}{K_{_{stability}}} = K_{_{dissociation}} = K_{_{instability}} \end{split}$$

10.8 CONDITION OF PRECIPITATION /IONIC PRODUCT (IP OR Q_{SP}):

Ionic product (IP) of an electrolyte is defined in the same way as K_{sp} . The only difference is that ionic product expression contains the initial concentration of ions or the concentration at any time whereas the expression of K_{sp} contains only equilibrium concentration. Thus, for AgCl.

$$IP = [Ag^+]_i [Cl^-]_i$$
 and $K_{sp} = [Ag^+]_{eq} [Cl^-]_{eq}$

- Ionic product changes with concentration but K_{sp} does not.
- To decide whether an ionic compound will precipitate, its K_{sn} is compared with the value of ionic product. The following three cases arise:
 - The solution is unsaturated and precipitation will not occur. $IP < K_{sp}$
 - (ii) $IP = K_{sp}$: (iii) $IP > K_{sp}$: The solution is saturated and solubility equilibrium exists.
 - The solution is supersaturated and hence precipitation of the compound will

Thus, a salt is precipitated when its ionic product exceeds the solubility product of the salt.

10.9 SELECTIVE PRECIPITATION:

When the k_{sn} values differ then one of the salt can be selectively precipitated.

Q.1 Solid Ba(NO₃)₂ is gradully dissolved in a 1.0×10^{-4} M Na₂CO₃ solution. At what concentration of Ba²⁺ will a precipitate begin to form?

$$(K_{SP} \text{ for Ba CO}_3 = 5.1 \times 10^{-9})$$

[AIEEE-2009]

(A)
$$8.1 \times 10^{-8} \text{ M}$$
 (B) $8.1 \times 10^{-7} \text{ M}$

(B)
$$8.1 \times 10^{-7} \text{ M}$$

(C)
$$4.1 \times 10^{-5} \text{ M}$$

(D) $5.1 \times 10^{-5} \text{ M}$

DO YOUR SELF-2

Q.1 The solubility in water of a sparingly soluble salt AB_2 is 1.0×10^{-5} mol L^{-1} . Its solubility product will [AIEEE-2003]

(A)
$$1 \times 10^{-15}$$

(B)
$$1 \times 10^{-10}$$

(C)
$$4 \times 10^{-15}$$

(D)
$$4 \times 10^{-10}$$

Q.2 The solubility of Mg(OH)₂ is x mole/lit. then its solubility product is-

[AIEEE-2002]

- $(A) x^3$
- (B) $5x^3$
- (C) $4x^3$
- (D) $2x^2$
- Q.3 The molar solubility in mol L^{-1} of a sparingly soluble salt MX_4 is 's'. The corresponding solubility product is K_{SP} . 's' is given in terms of K_{SP} by relation : [AIEEE-2004]

(A)
$$s = (K_{SP} / 128)^{1/4}$$
 (B) $s = (128K_{SP})^{1/4}$ (C) $s = (256K_{SP})^{1/5}$ (D) $s = (K_{SP}/256)^{1/5}$

(C)
$$s = (256H)$$

(D)
$$s = (K_{SP}/256)^{1/2}$$

Q.4 The solubility product of a salt having general formula MX_2 , in water is : 4×10^{-12} . The concentration of M²⁺ ions in the aqueous solution of the salt is -[AIEEE-2005] (C) 4.0×10^{-10} M (D) 1.6×10^{-4} M (A) 1.0×10^{-4} M (B) 2.0×10^{-6} M Q.5 In a saturated solution of the sparingly soluble strong electrolyte AglO₃ (molecular mass = 283) the equilibrium which sets in is -[AIEEE-2007] $AglO_3 \longrightarrow Ag^+_{(aq)} + IO^-_{3(aq)}$ If the solubility product constant K_{sp} of AgIO₃ at a given temperature is 1.0×10^{-8} , what is the mass of AgIO₃ contained in 100 ml of its saturated solution? (A) 28.3×10^{-2} g (B) 2.83×10^{-3} g (C) 1.0×10^{-7} g (D) 1.0×10^{-4} g Q.6 The pK_a of a weak acid, HA, is 4.80. The pK_b of a weak base, BOH, is 4.78. The pH of an aqueous solution of the corresponding salt. BA, will be -[AIEEE-2008] (D) 9.22 (A) 9.58 (B) 4.79 Solubility product of silver bromide is 5.0×10^{-13} . The quantity of potassium bromide (molar mass taken as 120 g mol^{-1}) to be added to 1 litre of 0.05 M solution of silver nitrate to start the precipitation of AgBr is :-[AIEEE-2010] (B) 1.2×10^{-10} g (C) 1.2×10^{-9} g (A) 5.0×10^{-8} g (D) 6.2×10^{-5} g Q.8 At 25° C, the solubility product of $Mg(OH)_2$ is 1.0×10^{-11} . At which pH, will Mg^{2+} ions start precipitating in the form of $Mg(OH)_2$ from a solution of 0.001 M Mg^{2+} ions ?[AIEEE-2010] (D) 11 (C) 10 Ex. 39. (i) $Al_2(SO_4)_2(s) \Longrightarrow 2Al^{+3}(aq) + 3SO_4^{-2}(aq)$ $K_{sp} = 2^2 \times 3^3 \times (S)^{2+3} = 4 \times 27 \times S^5 = 108 S^5$ (ii) $Na_2KPO_4(s) \Longrightarrow 2Na^+(aq) + K^+(aq) + PO_4^{-3}(aq)$ $K_{cn} = 2^2 \times 1^1 \times 1^1 (S)^{2+1+1} = 4S^4$ $(iii) NaKRbPO_{A}(s) \Longrightarrow Na^{+}(aq) + K^{+}(aq) + Rb^{+}(aq) + PO_{A}^{-3}(aq)$ $K_{sp} = I^1 \times I^1 \times I^1 \times I^1 \times (S)^{I+I+I+I} = S^4$ Ex. 40. If solubility product of the base $M(OH)_3$ is 2.7×10^{-11} , the concentration of OH^- will be $(1) 3 \times 10^{-3}$ $(2) 3 \times 10^{-4}$ $(3) 10^{-3}$ (4) 10⁻¹¹ *Answer* :(3) Ex. 41. The solubility of BaSO₄ in water is 1.07×10^{-5} mol dm⁻³. Estimate its solubility product. Solubility equilibrium for BaSO₄ is $BaSO_{4(s)} \Longrightarrow Ba_{(aq)}^{2+} + SO_{4(aq)}^{2-}$

Now, $S = 1.07 \times 10^{-5} M$

E

Hence,
$$K_{sp} = (1.07 \times 10^{-5})^2 = 1.145 \times 10^{-10}$$

- Ex. 42. The solubility product of AgBr is 5.2×10^{-13} . Calculate its solubility in mol dm⁻³ and $g \, dm^{-3}$. (Molar mass of AgBr. = $187.8 \, g \, mol^{-1}$)
- Sol. The solubility equilibrium of AgBr is

$$AgBr_{(s)} \longrightarrow Ag^{+}_{(aq)} + Br^{-}_{(aq)}$$

The molar solubility S of AgBr is given by

$$S = \sqrt{K_{sp}} = \sqrt{5.2 \times 10^{-13}} = 7.2 \times 10^{-7} \text{ mol } dm^{-3}$$

The solubility in $g dm^{-3} = molar solubility (mol dm^{-3}) \times molar mass (g mol^{-1})$ = $7.2 \times 10^{-7} \times 187.8 = 1.35 \times 10^{-4} g dm^{-3}$

Ex. 43. What is the maximum volume of water required to dissolve 1 g of calcium sulphate at 25°C. For calcium sulphate, $K_{sp} = 9.0 \times 10^{-6}$.

Sol.
$$CaSO_4(aq) \Longrightarrow Ca^{2+}(aq) + SO_4^{2-}(aq)$$

If S is the solubility of $CaSO_4$ in moles L^{-1}

$$K_{sp} = [Ca^{2+}] \times [SO_4^{2-}] = S^2$$

$$S = \sqrt{K_{sp}} = \sqrt{9.0 \times 10^{-6}}$$

$$= 3 \times 10^{-3} \text{ mol } L^{-1}$$

$$= 3 \times 10^{-3} \times 136 \text{ g L}^{-1} = 0.408 \text{ gL}^{-1}$$

For dissolving 0.408 g of $CaSO_4$ water required = 1 L

$$\therefore$$
 For dissolving 1g CaSO₄ water required = $\frac{1}{0.408}$ L = 2.45 L

Ex. 44.Equal volumes of 0.04 M CaCl₂ and 0.0008 M Na₂SO₄ are mixed. Will a precipitate form? K_{sp} for $CaSO_4 = 2.4 \times 10^{-5}$

Sol.

$$CaCl_2$$
 + Na_2SO_4 \rightarrow $CaSO_4$ + $2NaCl$

Millimole added 0.04 V

$$0.0008 \times V$$

Suppose V mL of both are mixed

$$\therefore [Ca^{2+}] = \frac{0.04 \,\mathrm{V}}{2 \,\mathrm{V}}$$

$$[SO_4^{2-}] = \frac{0.0008 \text{V}}{2 \text{V}}$$

$$\therefore [Ca^{2+}][SO_4^{2-}] = \frac{0.04 \text{ V}}{2\text{V}} \times \frac{0.0008 \text{ V}}{2\text{V}} = 8 \times 10^{-6}$$

Thus, $[Ca^{2+}][SO_4^{2-}]$ in solution $< K_{sp}$

$$8 \times 10^{-6} < 2.4 \times 10^{-5}$$

 \therefore CaSO₄ will not precipitate.

Sol. Let the solubility of AgSCN be x and that of AgBr is y, then

$$AgSCN \Longrightarrow Ag^{+} + SCN^{-}$$

$$x + y \qquad x \qquad x + y \qquad y$$

$$10^{-12} = x (x + y) \qquad (i)$$

$$5 \times 10^{-13} = y(x + y) \qquad (ii)$$

$$On \ solving \ we \ get, \qquad x = 2y$$

$$So \qquad y = 4.08 \times 10^{-7} \quad and \quad x = 8.16 \times 10^{-7}$$

Ex. 46.What $[H^+]$ must be maintained in saturated $H_2S(0.1 M)$ to precipitate CdS but not ZnS, if $[Cd^{2+}] = [Zn^{2+}] = 0.1$ initially?

$$K_{sp} = (CdS) = 8 \times 10^{-27}$$

 $K_{sp} = (ZnS) = 1 \times 10^{-21}$
 $K_a = (H_2S) = 1.1 \times 10^{-21}$

Sol. In order to prevent precipitation of ZnS

$$[Zn^{2+}][S^{2-}] < K_{sp}(ZnS) = 1 \times 10^{-21}$$

(ionic product)
or (0.1) $[S^{2-}] < 1 \times 10^{-21}$
or $[S^{2-}] < 1 \times 10^{-20}$

This is the maximum value of $[S^{2-}]$ before ZnS will precipitate. Let $[H^+]$ to maintain this $[S^{2-}]$ be

x. Thus for $H_2S \Longrightarrow 2H^+ + S^{2-}$

$$K_a = \frac{[H^+]^2 [S^{2-}]}{[H_2 S]} = \frac{x^2 (1 \times 10^{-20})}{0.1} = 1.1 \times 10^{-21}$$

or
$$x = [H^+] = 0.1 M$$

 \therefore No ZnS will precipitate at a concentration of H^{\dagger} greater than 0.1 M

Ex. 47. What must be the concentration of aq. $NH_3(eq.)$ which must be added to a solution containing $4 \times 10^{-3} \, M \, Ag^+$ and 0.001 M NaCl, to prevent the precipitation of AgCl.

Given that $K_{sp}(AgCl) = 1.8 \times 10^{-10}$ and the formation constant of $[Ag(NH_3)_2]^+$ is $K_{formation} = \frac{10^8}{6}$.

Sol. Calculate silver ion concentration which can be allowed to remain in the solution,

$$1.8 \times 10^{-10} = [Ag^+][Cl^-]$$

$$[Ag^{+}] = \frac{1.8 \times 10^{-10}}{0.001} = 1.8 \times 10^{-7} M,$$

\text{NBOBO-BA\Kota\JEE}(Advanced)\Leader\Che\Sheet\tonic Equilibrium\Eng\01. Theory;

This quantity is so small that almost all the Ag⁺ ion will be consumed.

$$Ag^{+} + 2NH_{3} \iff [Ag(NH_{3})_{2}]^{+} \qquad K = \frac{10^{8}}{6}$$

$$4 \times 10^{-3} \qquad b \qquad 0$$

$$1.8 \times 10^{-7} \quad (b - 8 \times 10^{-3}) \qquad 4 \times 10^{-3} \qquad K = \frac{10^{8}}{6} = \frac{4 \times 10^{-3}}{1.8 \times 10^{-7} \times (b - 8 \times 10^{-3})^{2}}$$

$$\Rightarrow b = 0.0445$$

Ex. 48. 0.10 mol sample of $AgNO_3$ is dissolved in one litre of 2.00 M NH_3 . Is it possible to form AgCl(s) in the solution by adding 0.010 mol of NaCl?

$$(K_{sp(AgCl)} = 1.8 \times 10^{-10}, K_{f[Ag(NH_3)_2^+]} = 1.6 \times 10^7)$$

Sol.

$$Ag^{+}$$
 + $2NH_{3} \rightleftharpoons [Ag(NH_{3})_{2}^{+}]$
 $0.10 M$ 2.00 0
 $0.10-0.10$ (2-0.20 M) 0.10 M
= 0 = 1.80 M

It is assumed that all Ag^+ ions have been complexed and only x amount is left

$$K_f = \frac{[\text{Ag}(\text{NH}_3)_2^+]}{[\text{Ag}^+][\text{NH}_3]^2} \implies 1.6 \times 10^7 = \frac{0.10}{\text{x}(1.80)^2}$$

$$\therefore$$
 $x = 1.93 \times 10^{-9} M = [Ag^+]$ undisolved

$$[Cl^-] = 1.0 \times 10^{-2} M$$

$$\therefore [Ag^+][C\Gamma] = 1.93 \times 10^{-9} \times 1.0 \times 10^{-2} = 1.93 \times 10^{-11} < 1.8 \times 10^{-10} [K_{sp(AgCl)}]$$

Hence, AgCl (s) will not precipitate.

$$K_d(Ag[NH_3J_2^+) = 5.88 \times 10^{-8}; K_{sp}(AgCl) = 1.8 \times 10^{-10}.$$

Sol. Let us first assume that $0.01 \, \text{MAgNO}_3$ shall combine with $0.02 \, \text{NH}_3$ to form $0.01 \, \text{MAg(NH}_3)_2^+$ and the consider its dissociation.

Since x <<< 1

$$K_d = \frac{[Ag^+][NH_3]^2}{[Ag(NH_3)_2^+]} = 5.88 \times 10^{-8}$$

$$\therefore [Ag^+] = \frac{5.88 \times 10^{-8} \times 0.01}{(0.98)^2} = 6.12 \times 10^{-10} M$$

Further, ionic product of $AgCl = [Ag^+][Cl^-] = (6.12 \times 10^{-10})(0.01) = 6.12 \times 10^{-12}$ Because the ionic product is smaller than $K_{sp} = 1.8 \times 10^{-10}$, no precipitate should form.

ANSWERS

DO YOUR SELF-1

Q.1 Ans.(C)	Q.2 Ans.(D)	Q.3 Ans.(D)
	DO YOUR SELF-2	
Q.1 Ans.(C)	Q.2 Ans.(C)	Q.3 Ans.(D)
Q.4 Ans.(A)	Q.5 Ans.(B)	Q.6 Ans.(C)
Q.7 Ans.(C)	Q.8 Ans.(C)	

ode06\B0B0-BA\Kola\JEE(Advanæd)\Leader\Che\SheeNlonicEquilibrium\Eng\O1.Theory.p65

PREVIOUS YEARS MISCELLANEOUS QUESTION

Q.1 What will be the resultant pH when 200 ml of an aqueous solution of HCl (pH = 2.0) is mixed with 300 ml of an aqueous solution of NaOH (pH = 12.0)? [JEE '1998]

Ans.
$$pH = 11.3010$$

$$[H^{+}]=10^{-2}$$
 200 ml
 $[OH^{-}] = 10^{-2}$ 300 ml
 H^{+} + OH^{-} \Longrightarrow $H_{2}O$
 $t = 0 \text{ mm}$ 2 3 -
 $t \text{ mm}$ - 1 -

$$\begin{bmatrix}
OH^{-} \\
 \end{bmatrix} = \frac{1}{500}$$

$$\begin{bmatrix}
OH^{-} \\
 \end{bmatrix} = 2 \times 10^{-3}$$

$$pOH = 3 - \log 2$$

$$pH = 11 + \log 2$$

$$= 11.3010$$

Q.2 The pH of 0.1 M solution of the following salts increases in the order

[JEE 1999]

- (A) $NaCl < NH_4Cl < NaCN < HCl$
- (B) HCl < NH₄Cl < NaCl < NaCN
- (C) $NaCN < NH_4Cl < NaCl < HCl$
- (D) $HCl < NaCl < NaCN < NH_4Cl$

Ans. (B)

Sol.
 NaCl

$$pH = 7$$
 NH_4Cl
 $pH < 7$
 $NaCN$
 $pH > 7$
 HCl
 $pH < 7$
 $HCl < NH_4Cl < NaCl < NaCN$

Q.3 A buffer solution can be prepared from a mixture of

[JEE 1999]

- (A) sodium acetate and acetic acid in water
- (B) sodium acetate and hydrochloric acid in water
- (C) ammonia and ammonium chloride in water
- (D) ammonia and sodium hydroxide in water.

Ans. (A, B, C)

- Sol. (A) True
 - (B) $AcNa + HCl \rightarrow HAc + NaCl$ True
 - (C) True

Ans. (A) (B) & (C)

Q.4 The solubility of Pb(OH)₂ in water is 6.7×10^{-6} M. Calculate the solubility of Pb(OH)₂ in a buffer solution of pH = 8. [JEE '1999]

Ans. $s = 1.203 \times 10^{-3} M$

Q.5 The average concentration of SO₂ in the atmosphere over a city on a certain day is 10 ppm, when the average temperature is 298 K. Given that the solubility of SO₂ in water at 298 K is 1.3653 moles litre⁻¹ and the pK_a of H₂SO₃ is 1.92, estimate the pH of rain on that day. [**JEE 2000**]

[Given:
$$10^{-1.92} = 1.2 \times 10^{-2}$$
, $\sqrt{5.5678} = 2.5627$, $\log (1.2213) = 0.0868$]

Sol.
$$ppm = 10 = \frac{p_{SO_2}}{P_{Total}} \times 10^6$$

$$p_{SO_2=10^{-5}}$$

 $[H^+] = [H_2SO_3] = 1.3653 \times 10^{-5}$
 $pH = 4.86$

Q.6 For sparingly soluble salt ApBq, the relationship of its solubility product (L_s) with its solubility (S) is - [JEE 2001]

(A)
$$L_s = S^{p+q}$$
. p^p . q^q (B) $L_s = S^{p+q}$. p^p . q^p (C) $L_s = S^{pq}$. p^p . q^q (D) $L_s = S^{pq}$. $(p,q)^{p+q}$

Ans. (A)

$$ApBq \Longrightarrow pA^{+q} + qB^{-p}$$

$$L_{s} = (ps)^{p} (qs)^{q}$$

$$L_{s} = p^{p} q^{q} s^{p+q}$$

- Q.7 500 ml of 0.2 M aqueous solution of acetic acid is mixed with 500 mL of 0.2 M HCl at 25°C.
- (a) Calculate the degree of dissociation of acetic acid in the resulting solution and pH of the solution.
- (b) If 6 g of NaOH is added to the above solution, determine final pH. Assume there is no change in volume on mixing. K_a of acetic acid is 1.75×10^{-5} M. [JEE 2002]

Ans. (a) 0.0175%, (b) 4.757

Sol.
$$HAc \longrightarrow H^+ + Ac^-$$

$$HC1 \longrightarrow H^+_{.x+.1} + C1^-_{.1}$$

$$1.75 \times 10^{-5} = \frac{(.1)(x)}{(.1)}$$

$$x = 1.75 \times 10^{-5}$$

$$\alpha_{\text{HAc}} = \frac{1.75 \times 10^{-5}}{0.1} = 1.75 \times 10^{-4}$$

$$\%\alpha_{\rm HAc} = .0175$$

$$[H^{+}] = .1$$

$$pH = 1$$

(b)
$$HCl + NaOH \rightarrow NaCl + H_2O$$

$$t = 0 100 \frac{6}{40} \times 1000$$

$$t = 0 100 150$$

$$HAc + NaOH \rightarrow AcNa + H_2O$$

$$t = 0 100 50 - -$$

$$t 50 - 50 -$$

$$[pH = pKa = 5 - log 1.75]$$

$$[pH = 4.75]$$

E

Q.8 A solution which is 10^{-3} M each in Mn²⁺, Fe²⁺, Zn²⁺ and Hg²⁺ is treated with 10^{-16} M sulphide ion. If K_{sp} , MnS, FeS, ZnS and HgS are 10^{-15} , 10^{-23} , 10^{-20} and 10^{-54} respectively, which one will precipitate first?

[JEE 2003]

Ans. (C)

Sol. I.P =
$$[M^{+2}]$$
 $[S^{2-}]$ = (10^{-3}) (10^{-16}) = 10^{-19}

$$I.P > K_{SP}$$

HgS will ppt first

Q.9 Will the pH of water be same at 4°C and 25°C? Explain.

[JEE 2003]

Ans. No, it will be > 7 at 0° C.

Sol.
$$H_2O \Longrightarrow H^+ + OH^-$$

$$\Delta H = +Ve$$

On increasing temp reaction will move in forward direction hence [H⁺] will increase and pH will decrease

Q.10 0.1 M of HA is titrated with 0.1 M NaOH, calculate the pH at end point. Given Ka(HA) = 5×10^{-6} and $\alpha << 1$.

Ans. pH = 9

Sol.
$$pH = \frac{1}{2} \left[p^{Kw} + p^{Ka} + \log C_0 \right]$$

 $= \frac{1}{2} \left[14 + 6 - \log 5 + \log 0.1 \right]$
 $= \frac{1}{2} \left[20 - 1 - 0.7 \right]$
 $= \frac{1}{2} \left[18.3 \right]$

pH = 9.15

Q.11 HX is a weak acid ($K_a = 10^{-5}$). It forms a salt NaX (0.1 M) on reacting with caustic soda. The degree of hydrolysis of NaX is

(A) 0.01%

(B) 0.0001%

(C) 0.1%

(D) 0.5%

[JEE 2004]

Ans. (A)

Sol.
$$K_h = \frac{K_w}{K_a} = 10^{-9}$$

$$h = \sqrt{\frac{K_h}{C_0}} = \sqrt{10^{-8}} = 10^{-4}$$

$$%h = 10^{-2} = 0.01\%$$

Q.12 CH_3NH_2 (0.1 mole, $K_b = 5 \times 10^{-4}$) is added to 0.08 moles of HCl and the solution is diluted to one litre, resulting hydrogen ion concentration is

(A)
$$1.6 \times 10^{-11}$$

(B)
$$8 \times 10^{-11}$$

(C)
$$5 \times 10^{-5}$$

(D)
$$2 \times 10^{-2}$$
 [JEE 2005]

Ans. (**B**)

$$HCl \rightarrow$$

t = 0 mole t mole

$$pOH = pKb + log 4$$

$$pOH = 4 - \log 5 + \log 4$$

$$-\log\left[OH^{-}\right] = -\log\left[\frac{5}{4} \times 10^{-4}\right]$$

$$\left[OH^{-}\right] = \frac{5}{4} \times 10^{-4}$$

$$\left[H^{+}\right] = \frac{10^{-14}}{\frac{5}{4} \times 10^{-4}} = \frac{4}{5} \times 10^{-10} = 8 \times 10^{-11}$$
 Ans. [B]

Q.13 If $Ag^+ + NH_3 \rightleftharpoons [Ag(NH_3)]^+$; $K_1 = 1.6 \times 10^3$ and

[JEE 2006]

$$[Ag(NH_3)]^+ + NH_3 \rightleftharpoons [Ag(NH_3)_2]^+ ; K_2 = 6.8 \times 10^3 .$$

The formation constant of $[Ag(NH_3)_2]^+$ is:

(A)
$$6.08 \times 10^{-6}$$

(B)
$$6.8 \times 10^{-6}$$

(C)
$$1.6 \times 10^3$$

(D)
$$1.088 \times 10^7$$

(D) Ans.

The species present in solution when CO_2 is dissolved in water : Q.14

(A)
$$CO_2$$
, H_2CO_3 , HCO_3^- , CO_3^{2-}

[JEE 2006]

Ans. (A)

Q.15 2.5 mL of $\frac{2}{5}$ M weak monoacidic base ($K_b = 1 \times 10^{-12}$ at 25°C) is titrated with $\frac{2}{15}$ M HCl in water

at 25°C. The concentration of H⁺ at equivalence point is

[JEE 2008]

$$(K_w = 1 \times 10^{-14} \text{ at } 25^{\circ}\text{C})$$

(A)
$$3.7 \times 10^{-13}$$
 M (B) 3.2×10^{-7} M (C) 3.2×10^{-2} M (D) 2.7×10^{-2} M

(B)
$$3.2 \times 10^{-7}$$
 M

(C)
$$3.2 \times 10^{-2}$$
 M

(D)
$$2.7 \times 10^{-2}$$
 M

(D) Ans.

Sol. No. of geq of BOH = no. of geq of $HC\ell$

$$2.5 \times \frac{2}{5} = \frac{2}{15} \times V$$

$$v = 7.5 \text{ ml}$$

$$[\text{salt}] = \frac{1}{10} \,\text{M}$$

$$K_h = \frac{C_0 h^2}{1 - h} \Rightarrow 10^{-2} = \left(\frac{1}{10}\right) \frac{h^2}{1 - h}$$

$$1 - h = 10h^2$$

E

$$10h^2 + h - 1 = 0$$

$$h = \frac{-1 + \sqrt{1 + 40}}{20}$$

$$h = \left(\frac{\sqrt{41} - 1}{20}\right)$$

Solubility product constants (K_{SP}) of salts of types MX, MX $_2$ and M $_3$ X at temperature 'T' are 4.0×10^{-8} , 3.2×10^{-14} and 2.7×10^{-15} , respectively. Solubilities (mol dm $^{-3}$) of the salts at temperature 'T' are in the order:

(A)
$$MX > MX_2 > M_3X$$

(B)
$$M_3X > MX_2 > MX$$

[JEE 2008]

(C)
$$MX_2 > M_3X > MX$$

(D)
$$MX > M_3X > MX_2$$

Ans. **(D)**

Sol. MX
$$S_1^2 = 4 \times 10^{-8}$$

$$S_1 = 2 \times 10^{-4} \text{ M}$$

$$\begin{aligned} MX & S_1^2 &= 4 \times 10^{-8} & S_1 &= 2 \times 10^{-4} \text{ M} \\ MX_2 & 4S_2^3 &= 3.2 \times 10^{-14} & S_2 &= 8 \times 10^{-15} \text{ M} \end{aligned}$$

$$S_2 = 8 \times 10^{-15} \text{ M}$$

$$M_3X$$
 $27 S_3^4 = 27 \times 10^{-16}$ $S_3 = 10^{-4} M$

$$S_2 = 10^{-4} \text{ M}$$

$$S_1 > S_3 > S_2$$

$$S_1 > S_3 > S_2$$

 $MX > M_3X > MX_2$

The dissociation constant of a substituted benzoic acid at 25°C is 1.0×10^{-4} . The pH of a 0.01 M Q.17 solution of its sodium salt is [JEE 2009]

(8) Ans.

Sol.
$$K_h = \frac{K_w}{K_a} = \frac{10^{-14}}{10^{-4}} = 10^{-10}$$

$$h = \sqrt{\frac{K_h}{C_o}} = \sqrt{\frac{10^{-10}}{10^{-2}}} = 10^{-4}$$

$$pH = \frac{1}{2} [pKw + pKa + log Co]$$

$$pH = \frac{1}{2} [14 + 4 + \log 10^{-2}]$$

$$pH = \frac{1}{2}[16] = 8$$

- Aqueous solutions of HNO3, KOH, CH3COOH and CH3COONa of identical concentrations are Q.18 provided. The pair(s) of solutions which form a buffer upon mixing is(are) -
 - (A) HNO₃ and CH₃COOH
- (B) KOH and CH₂COONa
- (C) HNO₃ and CH₃COONa
- (D) CH₃COOH and CH₃COONa

Ans. $(\mathbf{C}),(\mathbf{D})$

EXERCISE-S-I

IONIZATION CONSTANTS AND pH

- Q.1 Calculate the number of H⁺ present in one ml of solution whose pH is 13. $[N_A = 6.022 \times 10^{23}]$ **IE0001**
- Q.2 (i) K_w for H_2O is 9×10^{-14} at $60^{\circ}C$. What is pH of water at $60^{\circ}C$. (log 3 = 0.47)
 - (ii) What is the nature of solution at 60°C whose

IE0003

- (a) pH = 6.7 (b) pH = 6.35
- Q.3 The value of K_w at the physiological temperature (37°C) is 2.56×10^{-14} . What is the pH at the neutral point of water at this temperature? (log 2 = 0.3)
- Q.4 Calculate pH of following solutions:
 - (a) 0.1 M HCl
 - (b) 0.1 M CH₃COOH ($K_a = 1.8 \times 10^{-5}$) (log $\sqrt{1.8} = 0.13$)
 - (c) $0.1 \text{ M NH}_4\text{OH } (K_b = 1.8 \times 10^{-5})$
 - (d) 10^{-8} M HCl $[\sqrt{401} = (20.02)]$ [log 1.051 = 0.03]
 - (e) 10^{-10} M NaOH
 - (f) $10^{-6} \text{ M CH}_3 \text{COOH} \quad (K_a = 1.8 \times 10^{-5})$ **IE0010**
 - (g) $10^{-8} \text{ M CH}_3 \text{COOH } (\text{K}_a = 1.8 \times 10^{-5}) \ [\sqrt{401} = (20.02)] \ [\log 1.051 = 0.03]$
 - (h) Decimolar solution of Baryta (Ba(OH)₂), diluted 100 times. (log2 = 0.3)
 - (i) 10^{-3} mole of KOH dissolved in 100 L of water.
 - (j) Equal volume of HCl solution (PH = 4) + 0.0019 N HCl solution
- Q.5 Calculate:
 - (a) K_a for a monobasic acid whose 0.10 M solution has pH of 4.50.
 - (b) K_b for a monoacidic base whose 0.10 M solution has a pH of 10.50.
- Q.6 Calculate the ratio of degree of dissociation (α_2/α_1) when an acetic acid solution is diluted 100 times. Assume $\alpha <<1$, even on dilution. [Given $K_a=10^{-5}\,\mathrm{M}$]
- Q.7 Calculate the ratio of degree of dissociation of acetic acid and hydrocyanic acid (HCN) in 1 M their respective solution of acids. [Given $K_{a(CH,COOH)} = 1.8 \times 10^{-5}$; $K_{a(HCN)} = 6 \times 10^{-10}$, $\sqrt{3} = 1.732$]
- Q.8 How many moles of HCl must be removed from 1 litre of aqueous HCl solution to change its pH from 2 to 3?

 IE0018
- Q.9 The pH of aqueous solution of ammonia is 10. Find molarity of solution. K_b (NH₄OH) = 10^{-5} . **IE0019**
- Q.10 The solution of weak monoprotic acid which is 0.01 M, has pH = 3. Calculate K_a of weak acid. **IE0020**
- Q.11 Boric acid is a weak monobasic acid. It ionizes in water as

$$B(OH)_3 + H_2O \implies B(OH)_4^- + H^+ : K_a = 8 \times 10^{-10}$$

Calculate pH of 0.5 M boric acid. [log 2 = 0.3]

IE0021

node06\B080-BA\Kota\JEE(Advanced)\Leader\Che\Shee\kniic Equilibrium\Eng\02.Ex.p6

MIXTURE OF TWO OR MORE ACIDS / BASES

- Q.12 The pH of the solution produced when an aqueous solution of strong acid pH 5 is mixed with equal volume of an aqueous solution of strong acid of pH 3 is :- [log 5.05 = 0.7] **IE0022**
- Q.13 Calculate pH of following solutions: [log 0.3 = -0.522](a) 0.1 M H₂SO₄ (50 ml) + 0.4 M HCl 50 (ml)

(b) 0.1 M HA + 0.1 M HB [K_a (HA) = 5×10^{-5} ; K_a (HB) = 4×10^{-5}]

Q.14 Calculate pH of a solution containing 0.1M HA ($Ka = 10^{-5}$) & 0.1 M HCl.

IE0024

POLYPROTIC ACIDS & BASES

Q.15 What are the concentration of H^+ , $H_2C_2O_4$, $HC_2O_4^-$ and $C_2O_4^{2-}$ in a 0.1 M solution of oxalic acid?

 $[K_1 = 10^{-2} \text{ M and } K_2 = 10^{-5} \text{ M }] \left[\sqrt{41} = 6.4 \right]$

Q.16 Calculate pH of $0.2 \text{ M} - \text{B(OH)}_2$ solution.

 $(K_{b_1} = 2 \times 10^{-5}; K_{b_2} = 4 \times 10^{-11}, \log 2 = 0.3)$

HYDROLYSIS

- Q.17 What is the OH⁻ concentration of a 0.18 M solution of CH₃COONa. $[K_a(CH_3COOH)=1.8\times10^{-5}]$ **IE0027**
- Q.18 Calculate the pH of a 2.0 M solution of NH₄Cl. $[K_h (NH_3) = 2 \times 10^{-5}]$ IE0028
- Q.19 0.25 M solution of pyridinium chloride $C_5H_6N^+Cl^-$ was found to have a pH of 2.699. What is K_b for pyridine, C_5H_5N ? (log2 = 0.3010)
- Q.20 Calculate the extent of hydrolysis & the pH of 0.02 M CH₃COONH₄. $[K_b (NH_3) = 1.8 \times 10^{-5}, K_a (CH_3COOH) = 1.8 \times 10^{-5}]$ **IE0030**
- Q.21 Calculate the percent hydrolysis in a 0.06 M solution of KCN. $[K_a(HCN) = 6 \times 10^{-10}]$ **IE0031**
- Q.22 What is the pH of 0.1M NaHCO₃? $K_1 = 5 \times 10^{-7}$, $K_2 = 5 \times 10^{-11}$ for carbonic acids. [log5 = 0.7] **IE0032**
- Q.23 The acid ionization (hydrolysis) constant of Zn^{2+} is 1.0×10^{-9} (a) Calculate the pH of a 0.001 M solution of $ZnCl_2$
 - (b) What is the basic dissociation constant of $Zn(OH)^+$?

IE0033

BUFFER SOLUTION

- Q.24 Calculate the pH of solution containing 0.1M HCN and 0.1M NaCN. Ka of HCN = 10^{-9} **IE0034**
- Q.25 Calculate the pH of solution containing 0.2 M NH₄OH and 0.1 M NH₄Cl. K_b of NH₄OH = 1.8×10^{-5} . (log2 = 0.3, log 1.8 = 0.26)
- Q.26 0.4 mole CH_3COONa is added in 500 ml 0.4 M $-CH_3COOH$ solutions. What is the pH of final solution ? K_a of $CH_3COOH = 1.8 \times 10^{-5}$. (log2 = 0.3, log 1.8 = 0.26).
- Q.27 A buffer of pH 9.26 is made by dissolving x moles of ammonium sulphate and 0.1 mole of ammonia into 100 mL solution. If pK_b of ammonia is 4.74, calculate value of x.
- Q.28 Determine [OH $^-$] of a 0.050 M solution of ammonia to which sufficient NH $_4$ Cl has been added to make the total [NH $_4^+$] equal to 0.100.[K $_{b(NH_3)}$ =1.8 × 10 $^{-5}$]
- Q.29 Calculate the pH of a solution containing 0.2 M HCO_3^- and 0.1 M CO_3^{2-} [$K_1(H_2CO_3^-) = 4 \times 10^{-7}$; $K_2(HCO_3^-) = 4 \times 10^{-11}$]

- Q.30 Calculate the pH of a solution prepared by mixing 50.0 mL of 0.200 M $HC_2H_3O_2$ and 50.0 mL of 0.100 M NaOH. [$K_{a(CH_3COOH)}=1.8\times10^{-5}$, $pK_a=4.74$]
- Q.31 50 mL of 0.1 M NaOH is added to 75 mL of 0.1 M NH₄Cl to make a basic buffer. If pK_a of NH₄⁺ is 9.26, calculate pH. [$\log 2 = 0.3$]
- Q.32 Calculate the pH of a solution which results from the mixing of 50.0 ml of 0.3 M HCl with 50.0 ml of 0.4 M NH₃. $[K_b (NH_3) = 1.8 \times 10^{-5}, pK_b = 4.74, log 3 = 0.477]$
- Q.33 In 100 ml buffer solution of $0.1 \text{M CH}_3 \text{COOH } \& 0.1 \text{M CH}_3 \text{COONa}$, how many millimoles of NaOH should be added to increase it's pH by 0.3. **IE0043 Given (log 2 = 0.3)**

ACID BASE REACTIONS & TITRATIONS

- Q.34 Calculate OH⁻ concentration at the equivalent point when a solution of 0.2 M acetic acid is titrated with a solution of 0.2 M NaOH. K_a for the acid = 10^{-5} .
- Q.35 Calculate the hydronium ion concentration and pH at the equivalence point in the reaction of 22.0 mL of 0.10M acetic acid, CH₃COOH, with 22.0 mL of 0.10 M NaOH. [$K_a = 2 \times 10^{-5}$, log2 = 0.3] **IE0045**
- Q.36 Calculate the hydronium ion concentration and the pH at the equivalence point in a titration of 50.0 mL of 0.40 M NH₃ with 0.40M HCl.[$K_h = 2 \times 10^{-5}$] **IE0046**
- Q.37 CH₃COOH (50 ml, 0.1 M) is titrated against 0.1 M NaOH solution. Calculate the pH at the addition of 0 ml, 10 ml 20 ml, 25 ml, 40 ml, 50 ml of NaOH. K_a of CH₃COOH is 2×10^{-5} . IE0047 [log 2 = 0.3010, log 3 = 0.4771]

INDICATORS

- Q.38 For the acid indicator thymol blue, pH is 3 when half the indicator is in unionised form. Find the % of indicator in unionised form in the solution with $[H^+] = 4 \times 10^{-3} \text{ M}$.
- Q.39 Bromophenol blue is an acid indicator with a K_a value of 6×10^{-5} . What % of this indicator is in its basic form at a pH of 5?
- Q.40 At what pH does an indicator change colour if the indicator is a weak acid with $K_{ind} = 4 \times 10^{-4}$. For which one(s) of the following neutralizations would the indicator be useful? Explain.
 - (a) $NaOH + CH_3COOH$
- (b) $HC1 + NH_3$
- (c) HCl + NaOH

IE0050

Q.41 An acid indicator has a K_a of 3×10^{-5} . The acid form of the indicator is red & the basic form is blue. By how much must the pH change in order to change the indicator form 75% red to 75 % blue? [log 3 = 0.477]

SOLUBILITY & SOLUBILITY PRODUCT'S

- Q.42 The values of K_{sp} for the slightly soluble salts MX and QX_2 are each equal to 4.0×10^{-18} . Which salt is more soluble? Explain your answer fully.
- Q.43 The solubility of PbSO₄ in water is 0.0608 g/L. Calculate the solubility product constant of PbSO₄.

 Molar mass PbSO₄ = 304 g/mole
- Q.44 How many mole CuI ($K_{sp} = 5 \times 10^{-12}$) will dissolve in 1.0 L of 0.10 M NaI solution?
- Q.45 A solution of saturated CaF_2 is found to contain 4×10^{-4} M fluoride ion. Calculate the K_{sp} of CaF_2 . Neglect hydrolysis.

080-BA\Kota\JEE(Advanced)\Leader\Che\Sheet\lonic Equilibrium\Eng\02.Ex.pt

Q.46 The solubility of ML_2 (formula weight = 60 g/mol) in water is 2.4×10^{-5} g/100 mL solution. Calculate the solubility product constant for ML_2 .

- Q.47 Calculate the solubility of A_2X_3 in pure water, assuming that neither kind of ion reacts with water. For A_2X_3 , $K_{sp} = 1.08 \times 10^{-23}$
- Q.48 Determine the solubility of AgCl in 0.1 M BaCl₂. $[K_{sp} \text{ for AgCl} = 1 \times 10^{-10}]$
- Q.49 Calculate solubility of $Ca_3(PO_4)_2$ ($K_{sp} = 10^{-15}$) in presence of 0.1 M $CaCl_2$ solution.

SIMULTANEOUS SOLUBILITY

Q.50 Calculate the Simultaneous solubility of AgSCN and AgBr. K_{sp} (AgSCN) = 3.2 × 10⁻¹², K_{sp} (AgBr) = 8 × 10⁻¹³.

COMPLEX FORMATION

Q.51 Calculate the solubility of AgCl in 0.2 M - NH₃ solution.

Given: K_{sp} of AgCl = 2×10^{-10} , K_{f} of Ag(NH₃)₂⁺ = 8×10^{6} .

IE0061

SOLUBILITY, CONSIDERING HYDROLYSIS

Q.52 Calculate the solubility of AgCN in a buffer solution at pH = 3.0.

Given : K_{sp} of AgCN = 8×10^{-10} , K_a of HCN = 5×10^{-10} .

IE0062

PRECIPITATION

Q.53 A solution has a ${\rm Mg^{2+}}$ concentration of 0.0010 mol/L. Will ${\rm Mg(OH)_2}$ precipitate if the ${\rm OH^-}$ concentration of the solution is ${\rm [K_{sp}^{=}\,1.2\times10^{-11}]}$

(a) 10^{-5} mol/L

(b) 10^{-3} mol/L?

IE0063

- Q.54 200 ml of 2×10^{-4} M AgNO₃ solution is mixed with 400 ml of 1.2×10^{-6} M NaCl solution. Predict whether precipitation of AgCl will occur or not. Ksp of AgCl = 2×10^{-10} .
- Q.55 Calculate the minimum mass of Na₂SO₄ needed to just start precipitation of BaSO₄ from 500 ml of 2×10^{-5} M BaCl₂ solution. Ksp of BaSO₄ = 8×10^{-8} .

$$[Na = 23, S = 32, O = 16]$$

IE0065

EXERCISE S-II

Q.1 What are the concentrations of H^+ , HSO_4^- , SO_4^{2-} and H_2SO_4 in a 0.20 M solution of sulphuric acid?

Given:
$$H_2SO_4 \longrightarrow H^+ + HSO_4^-$$
; strong $[\sqrt{521} = 22.83]$

$$HSO_4^- \rightleftharpoons H^+ + SO_4^{2-}$$
; $K_2 = 10^{-2} M$

IE0066

Q.2 Nicotine, $C_{10}H_{14}N_2$, has two basic nitrogen atoms and both can react with water to give a basic solution [log 2 = 0.3]

Nic (aq) + H₂O (
$$l$$
) \rightleftharpoons NicH⁺ (aq) + OH⁻ (aq)
NicH⁺ (aq) + H₂O (l) \rightleftharpoons NicH₂²⁺ (aq) + OH⁻ (aq)

 K_{b_1} is 8×10^{-7} and K_{b_2} is 10^{-10} . Calculate the approximate pH of a 0.20 M solution.

- Q.3 An aqueous solution contains 0.01 M RNH₂ ($K_b = 2 \times 10^{-6}$) & 10^{-4} M NaOH. The concentration of OH⁻ is nearly:
- Q.4 Calculate the pH of 1.0×10^{-3} M sodium phenoxide, NaOC₆H₅. K_a for HOC₆H₅ is 0.6×10^{-10} . [log3 = 0.48]
- Q.5 Calculate the pH of 0.1 M solution of (i) NaHCO₃, (ii) Na₂HPO₄ and (iii) NaH₂PO₄. Given that:

$$CO_2 + H_2O \longrightarrow H^+ + HCO_3^-;$$
 $K_1 = 4.2 \times 10^{-7} M$

$$HCO_3^- \longrightarrow H^+ + CO_3^{2-};$$
 $K_2 = 4.8 \times 10^{-11} \text{ M}$

$$H_3PO_4 \Longrightarrow H^+ + H_2PO_4^-;$$
 $K_1 = 7.5 \times 10^{-3} M$

$$H_2PO_4^- \iff H^+ + HPO_4^{2-};$$
 $K_2 = 6.2 \times 10^{-8} \text{ M}$

$$HPO_4^{2-} \longrightarrow H^+ + PO_4^{3-};$$
 $K_3 = 1.0 \times 10^{-12} \text{ M}$

$$(\log 4.2 = 0.62, \log 4.8 = 6.8, \log 6.2 = 0.80, \log 7.5 = 0.88)$$

IE0070

- Q.6 An ammonia-ammonium chloride buffer has a pH value of 9 with $[NH_3] = 0.25$. What will be the new pH if 500 ml 0.1 M KOH is added to 200 ml buffer solution $(K_b = 2 \times 10^{-5})$ [log 2 = 0.3]
- Q.7 10 ml of 0.1M weak acid HA($k_a = 10^{-5}$) is mixed with 10 ml 0.2M HCl and 10 ml 0.1M NaOH. Find the value of [A $^-$] in the resulting solution.
- Q.8 150 ml of 0.5 M HCN ($Ka = 3.75 \times 10^{-9}$) was reacted with 1.5 M KOH for complete neutralisation. What will be molarity of HCN at equilibrium.
- Q.9 How much AgBr could dissolve in $1.0 \,\mathrm{Lof}\,0.40\,\mathrm{M\,NH_3}$? Assume that $\mathrm{Ag}(\mathrm{NH_3})_2^+$ is the only complex

formed.
$$[K_f(Ag(NH_3)_2^+) = 1 \times 10^8; K_{sp}(AgBr) = 5 \times 10^{-13}]$$

$$\left[\sqrt{50} \simeq 7\right]$$
 IE0074

Q.10 Calculate solubility of PbI₂ ($K_{sp} = 1.4 \times 10^{-8}$) in water at 25°, which is 90% dissociated.

$$\left(\frac{14}{(0.81)(3.6)}\right)^{1/3} = 1.7$$

IE0075

BOBO-BA\Kota\JEE(Advanced)\Leader\Che\Sheet\lonic Equilibrium\Eng\02.Ex.p6

Ε

EXERCISE O-I

			01011		
Sing	le correct				
Q.1	The conjugate acid of	NH_2^- is			
	(A) NH ₃	(B) NH ₂ OH	(C) NH ₄ ⁺	(D) N_2H_4	IE0076
Q.2	Which of the following	ng is not a Bronsted ac	id:-		
	(A) CH ₃ NH ₄ ⁺	(B) CH ₃ COO ⁻	(C) H ₂ O	(D) HSO_4^-	IE0077
Q.3	In the reaction	J	2		
	$HNO_3 + H_2O$	$= H_3O^+ + NO_3^-$, the c	conjugate base of HNO ₃	is :-	
	(A) H ₂ O	(B) H ₃ O ⁺	(C) NO_3^-	(D) H ₃ O ⁺ and 1	NO 3 IE0078
Q.4	Out of the following, a	amphiprotic species in ac	queous medium are	J	
~	I: HPO ₃ ²⁻	II OH-	•	IV HCO ₃ -	
	(A) I, III, IV		2 7	3	IE0079
Q.5	When ammonia is ad	ded to water, it decreas	ses the concentration of v	which of the followi	ng ion
	(A) OH-	(B) H_3O^+	(C) NH_4^+	(D) NH ₄ * Ol	H- IE0080
Q.6	Which of the followi	ng pair is Lewis acid &	& Lewis base & Product	of these is also Lev	vis base
	(A) BF_3 , NH_3	(B) $SiCl_4$, $2Cl^-$	(C) CH_3^{\oplus} , $\Theta OC_2 H$	(D) All of these	IE0081
Q.7	Ionic product of water	er will increase, if:-			
	(A) Pressure is decre	eased	(B) H ⁺ is added		
	(C) OH- is increase		(D) Temperature is i		IE0082
Q.8	At 60°C, pure water	has $[H_3O^+]=10^{-6.7}$ mo	l/lit. what is the value of	$^{\circ}K_{\mathrm{W}}$ at 60 $^{\circ}C$:-	
	(A) 10^{-6}	(B) 10^{-12}	(C) 10^{-67}	(D) $10^{-13.4}$	IE0083
Q.9	_		at a certain temperatur		n constant
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		present per 100 cm ³ of p		
	(A) 10 ⁻¹⁵		(C) 6.022×10^7		IE0084
Q.10		s increased from 3 to 6	5. Its H ⁺ ion conc. will be	e :-	
	(A) Reduced to half		(B) Doubled		
0.11	(C) Reduced by 100		(D) Increased by 10	000 times	IE0085
Q.11		$m^3 H_2 SO_4$ (aq.) solution		(T) 10	
	(A) 2	(B) 5	(C) 9	(D) 12	IE0086
Q.12			H is: (Dissociation con		
0.40	(A) 10^{-5}	(B) 10^{-4}	(C) 10^{-3}	(D) 10^{-2}	IE0087
Q.13	_		ch is 5% ionised will be		
0.14	(A) 2	(B) 11	(C) 5	(D) 7	IE0088
Q.14			ion of a weak monoprotic		
0.15	(A) 1	(B) 2	(C) 3	(D) 11	IE0089
Ų.13			of [OH] of a 0.1 M aque	ous solution of 2% is	onisea weak
	(A) 0.02×10^{-3} M a	t of water = 1×10^{-14}]	(B) 1×10^{-3} M and	1 2 × 10-11 M	
	(C) 2×10^{-3} M and		(D) 3×10^{-2} M and		IE0090
	(C) 2 . 10 IVI allu	J · ` 1∪ 1V1	(D) J ~ IV IVI all	4 I 1 TO 171	iLUUJU

E.

Q.16	What is the quantity o $(A) 10^{-13} g$	f NaOH present in 250 (B) 10 ⁻¹ g	cc of the solution, so th	at it gives a pH = 1 (D) 4.0 g	3 :- IE0091
O 17	()	of HCl is 10^{-9} M HCl. T	` '	` ,	ILOUJI
Q.17	(A) 9	(B) Between 6 and 7	_	(D) Unpredictable	IE0092
Q.18	.The moles of H ⁺ from	H_2O in a 1 <i>l</i> , $\sqrt{5} \times 10^{-7}$ I	M HCl solution at 25°C,	, is	
	$(\sqrt{5} = 2.23)$				
	(A) 10 ⁻⁷	(B) 6.85×10^{-8}	(C) 3.85×10^{-8}	(D) 10 ⁻⁸	IE0093
0.19	Which one of the follow	` /			
Ç	(A) Distilled water	S III S III F	(B) 1 M NH ₃		
	(C) 1 M NaOH		(D) Water saturated wi	th chlorine	IE0094
O 20		gm H ₂ SO ₄ are present in	,		
(.= ·	(A) 1	(B) 13	(C) 12	(D) 2	IE0095
Q.21	$10 \text{ ml of } \frac{\text{M}}{200} \text{H}_2 \text{SO}_4 \text{ is}$	s mixed with 40 ml of $\frac{M}{200}$	$\frac{1}{1}$ H_2SO_4 . The pH of the 1	resulting solution is	
	(A) 1	(B) 2	(C) 2.3	(D) none of these	IE0096
Q.22	Which of the following s	solution will have pH clos	e to 1.0?		
	(A) 100 ml of M/100 H	ICl + 100 ml of M/10 Na	ОН		
	(B) 55 ml of M/10 HCl	+45 ml of M/10 NaOH			
	(C) $10 \text{ ml of M}/10 \text{ HCl}$	1+90 ml of M/10 NaOH			
	(D) 75 ml of M/5 HCl -	+ 25 ml of M/5 NaOH			IE0097
Q.23	A solution with pH 2.0	is more acidic than the on	e with pH 6.0 by a factor	of:	
	(A) 3	(B) 4	(C) 3000	(D) 10000	IE0098
Q.24		ssociation constants of an	-	and $5.0 \times 10^{-10} \text{resp}$	ectively.
		constant of the acid will b		(D) 0.2 × 1.05	
0.25	* *	(B) 5.0×10^{15}	* *	• •	IE0099
Q.25	is: $(\log 2 = 0.3)$	25°C is 10.4, the ionisation	i constant of hydrofluoric a	icid in water at this ten	nperature
	(A) 4×10^{-11}	(B) 3×10^{-3}	(C) 2.5×10^{-4}	(D) 2×10^{-2}	IE0100
Q.26	pH of an aqueous soluti	ion of NaCl at 85°C shou	ld be		
	(A) 7	(B) > 7	(C) < 7	(D) 0	IE0101
Q.27	1 cc of 0.1 N HCl is add	led to 99 cc solution of N	aCl. The pH of the result	ing solution will be	
	(A) 7	(B) 3	(C) 4	(D) 1	IE0102
Q.28	The degree of hydrolysis	is of a salt of weak acid ar	nd weak base in it's 0.1 M	solution is found to	be 0.5. If
	the molarity of the solut	ion is 0.2 M, the percenta	ge hydrolysis of the salt si	hould be	
	(A) 100%	(B) 50%	(C) 25%	(D) none of these	IE0103
Q.29	What is the percentage	hydrolysis of NaCN in N	80 solution when the diss	sociation constant fo	r HCN is
	2×10^{-9} and $K_{\rm w} = 1.0$	$\times 10^{-14}$			
	(A) 2	(B) 5.26	(C) 8.2	(D) 9.6	IE0104

(C) 50 ml.

(A) 40 ml.

Q.41 Which can act as buffer:(A) NH₄OH + NaOH
(B) HCOOH + HCl

(D) All of them

(B) 4 ml.

(C) 40 ml. of 0.1 M NaCN + 20 ml. of 0.1 M HCl

IE0115

(D) 100 ml.

Q.42	If equal volume of 0.05	5 M ammonium hydroxid	e solution is dissolved in	0.001 M ammonium	chloride
	solution. What will be	the OH- ion concentrati	on of this solution : $\sqrt{32}$	$\frac{1.8}{1.8} = 5.73$	
	$K_b(NH_4OH) = 1.8 \times$	10 ⁻⁵			
	(A) 3.0×10^{-3}	(B) 4.66×10^{-4}	(C) 9.0×10^{-3}	(D) 9.0×10^{-4}	IE0117
Q.43	_	buffer prepared by mixin 10^{-5} , (log $1.8 = 0.26$)	ng 600 cc of 0.6 M NH ₃	and 400 cc of 0.5 M	NH ₄ Cl.
	(A) 11.3	(B) 9.0	(C) 9.52	(D) 5	IE0118
Q.44	of NH ₄ OH and NH ₄ C				entration
	(A) 7.74	(B) 4.74	(C) 2.37	(D) 9.26	IE0119
Q.45	On addition of NaOH	to CH ₃ COOH solution,	60% of the acid is neutr	alised. If pK _a of CH	₃ COOH
	is 4.7 then the pH of the	he resulting solution is :-	-		
	(A) More than 4.7 bu	t less than 5.0	(B) Less than 4.7 but	more than 4.0	
	(C) More than 5.0		(D) Remains unchange	d	IE0120
Q.46	Henderson equation 1	$pH - pK_a = 5$ will be ap	plicable to an acidic but	fer when :-	
	(A) [Acid] = [Conjuga	ate base]	(B) [Acid] $\times 10^5 = [C]$	onjugate base]	
		ate base] × 10 ⁵		_	IE0121
Q.47		im propanoate should be		•	_
		ic acid ($K_a = 3 \times 10^{-5}$ a	t 25°C) to obtain a buff	er solution of pH 4.7	7
	$[\log 2 = 0.3]$	(D) 2.52 10.2 1	(C) 2.52 10.2 1	(D) 2 10 2 1	
O 40		(B) $3.52 \times 10^{-2} \text{ mol}$			IE0122
Q.48		ne ratio of concentration		is 1:1. When it cha	anges in
	(A) Increase	e value of pH of buffer? (B) Decrease	(5) 37 39	(D) None	IE0123
O 49		(B) Decrease ay an important role in :-	` '	(D) None	IEU123
Q. 1 7	(A) Increasing the pH		(B) Decreasing the pH	value	
	(C) Keeping the pH co		(D) Solution will be ne		IE0124
0.50	. ,	fferent kind of acidic buff	· · ·		
Ç	are:			3 -4	
	(A) 3	(B) 1	(C) 2	(D) 0	IE0125
Q.51	Which of the following	g solutions does not act		,	
	(A) $H_3PO_4 + NaH_2PO_4$	O_4	(B) $NaHCO_3 + H_2CO_3$),	
	(C) $NH_4Cl + HCl$	•	(D) CH ₃ COOH + CH	·	IE0126
Q.52	Half of the formic	acid solution is neutr	alised on addition of	a KOH solution t	o it. If
	K_a (HCOOH) = 2 × 1	0 ⁻⁴ then pH of the solu	tion is : $-(\log 2 = 0.30)$	10)	
	(A) 3.6990	(B) 10.3010	(C) 3.85	(D) 4.3010	IE0127
Q.53	When 0.02 moles of N What is its buffer capa	IaOH are added to a litre	of buffer solution, its pl	H changes from 5.75	to 5.80.

(C) - 0.05

(D) 2.5

IE0128

(B) 0.05

Ε

(A) 0.4

Q.34	_	U IIII 01 U.ZIVI NAOH IS I	eacted with 100 mil of 0.	2 M Ch ₃ COOH	
	$(K_a = 10^{-5})$ (A) 9	(B) 7	(C) 5	(D) 2	IE0129
O 55		` '	oml of 0.2 M HNO_3 is a	` /	
4.00		resulting solution will be		adod t o 2 0 mm of 1 m	114011
	(A) 5	(B) 6	(C) 7	(D) None of these	IE0130
Q.56	When 20 ml of $\frac{11}{20}$ Na	aOH are added to 10 ml	of $\frac{M}{10}$ HCl, the resulting	ng solution will:-	
	(A) Turn blue litmus re	d	(B) Turn phenolphthale	in solution pink colour	r
	(C) Turn methyl orange	e red	(D) Will have no effect	on either red or blue	litmus
					IE0131
Q.57			point of an acid-base titi		
	_		of the concentrations of	the conjugate acid (H	In) and
	base (In ⁻) forms of the	indicator by the express	sion :-		
	(A) $\log \frac{[H \ln]}{[\ln]} = pK_{\ln} -$		(B) $\log \frac{[H \ln]}{[\ln]} = pH -$	"V	
	(A) $\log_{[\ln^-]} - p \kappa_{\ln} -$	- рн	(B) $\log_{[\ln^-]} - pH -$	pK_{In}	
	(r - 1		fr -1		
	(C) $\log \frac{[\ln^{-}]}{[H \ln]} = pH +$	pK _{In}	(D) $\log \frac{[\ln^{-}]}{[H \ln]} = pK_{\ln}$	· pH	IE0132
0.50		. 1.1 .1.1.	[1 1111]		1
Q.58			tor with K _{acid} (indicator)	$= 1.0 \times 10^{-3}$ changes	colour
		n of the indicator is 1×10^{-11}		(D) 0 + 1	150433
0.50	(A) 5 ± 1	(B) 11 ± 1	(C) 3 ± 1	` '	IE0133
Q.59		a 1 × 10 · M solution c	of an indicator will K _b (in	$1dicator) = 1 \times 10^{-11}$	cnange
	colour?	(D) 2 0 + 1	(C) = 5 + 1	(D) 11 0 + 1	150404
0.60			(C) 5.5 ± 1	(D) 11.0 ± 1	IE0134
Q.00		ed in the titration of Cl	-	(D) Litmus	150125
O 61	(A) Methyl orange	(B) Methyl red	(C) Phenolphthalein	(D) Litmus	IE0135
Q.01	Phenolphthalein is a :- (A) Strong acid	(B) Strong base	(C) Weak base	(D) Weak acid	IE0136
0.62	pH–range of Methyl red	` /	(C) Weak base	(D) Weak acid	IEU130
Q.02	(A) $4.4-6.5$	(B) 6·8–10·8	(C) $8 - 9.6$	(D) $6.8 - 8.2$	IE0137
0.63	· /		e use of phenolphthalein	` '	
Q.03	unsuitable for the titrati		duse of phenoiphendicing	as an indicator, winen	0430 15
	(A) NaOH	(B) RbOH	(C) KOH	(D) NH ₄ OH	IE0138
0 64	` '	` '	r the titration between :-	(D) 11114011	120130
Q.0.	(A) KOH and H ₂ SO ₄	iot dot do dil ilidicator lo	(B) NaOH and CH ₃ C	ООН	
	(C) Oxalic acid and K	MnO ₄	(D) Ba(OH) ₂ and HCl		IE0139
0.65		ong base titration, the in	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		
	(A) Potassium di-chron	•	(B) Methyl orange		
	(C) Litmus		(D) Phenolphthalein		IE0140
Q.66	The solubility of A_2X_3 is	s y mol dm ⁻³ . Its solubility	product is		
	(A) $6 y^2$	(B) 64 y^4	(C) 36 y^5	(D) 108 y^5	IE0141

AL	LER			10nic equilibrium	59
Q.67	If K _{sp} for HgSO ₄ is 6.4	$\times 10^{-5}$, then solubility of	this substance in mole per	r m ³ is	
	T .	(B) 6.4×10^{-5}		(D) 8	IE0142
Q.68	If the solubility of AgC	tl (formula mass=143) in	water at 25°C is 1.43×10	0 ⁻⁴ gm/100 ml of solut	ionthen
	the value of K _{sp} will b	e :-			
			(C) 1×10^{-10}	(D) 2×10^{-10}	IE0143
Q.69	One litre of saturated se	olution of CaCO ₃ is evap	orated to dryness, 7.0 g o	of residue is left. The so	olubility
	product for CaCO ₃ is:	-			
	(A) 4.9×10^{-3}	(B) 4.9×10^{-5}	(C) 4.9×10^{-9}	(D) 4.9×10^{-7}	E0144
Q.70	A ₃ B ₂ is a sparingly solu	ıble salt of molar mass M	(g mol ⁻¹) and solubility x	$x g lit^{-1}$. The ratio of th	e molar
	concentration of B ³ -to	the solubility product of	the salt is		
	(A) $108 \frac{x^5}{M^5}$	(B) $\frac{1}{108} \frac{M^4}{x^4}$	(C) $\frac{1}{54} \frac{M^4}{x^4}$	(D) None	IE0145
Q.71	. Solubility of Ag ₂ CrO ₄	$(K_{sp} = 4 \times 10^{-13})$ in 0.1 I	M K ₂ CrO ₄ solution will b	oe :-	
	(A) 10^{-3} M	(B) 10^{-6} M			IE0146
Q.72	. How many times solubi	ility of CaF ₂ is decreased i	$\sin 4 \times 10^{-3} \mathrm{MKF}$ (aq.) solu	tion as compare to pur	re water
	at 25°C. Given K _{sp} (C	$(aF_2) = 3.2 \times 10^{-11}$			
	(A) 50	(B) 100	(C) 500	(D) 1000	IE0147
Q.73	At 30°C, In which of t	he one litre solution, the	e solubility of Ag ₂ CO ₃		
	(solubility product $= 8$	\times 10 ⁻¹²) will be maximum	n :-		
	(A) 0.05 M Na ₂ CO ₃	(B) Pure water	(C) 0.05 M AgNO_3	(D) 0.05 M NH_3	IE0148
Q.74			on of 0.001 M Mg(NO	$(D_3)_2$ solution is adjust	sted to
	$pH = 9 (K_{sp} \text{ of } Mg(O))$	$H)_2 = 8.9 \times 10^{-12})$			
	(A) ppt will take place	2	(B) ppt will not take p	lace	
	(C) Solution will be sa	turated	(D) None of these		IE0149
Q.75	· ·		\times 10 ⁻⁵ M - BaCl ₂ soluti	on without any precip	pitation
	of Ba ₃ (PO ₄) ₂ is [Ksp	of $Ba_3(PO_4)_2$] = 4 × 10)–23		
	(A) $2 \times 10^{-4} \text{ gm}$	(B) 0.328 gm	(C) 0.164 gm	(D) 0.82 gm	IE0150

Ε

EXERCISE O-II

Single correct:

- Q.1 The pH of the solution produced when an aqueous solution of strong acid pH 5 is mixed with equal volume of an aqueous solution of strong acid of pH 3 is :- [log 5.05 = 0.7]
 - (A) 3.3
- (B) 3.5
- (C) 4.5
- (D) 4.0

IE0151

- Q.2 How many moles of HCl must be removed from 1 litre of aqueous HCl solution to change its pH from 2 to 3:-
 - (A) 1

- (B) 0.02
- (C) 0.009
- (D) 0.01

IE0152

IE0153

- Q.3 Which of the following is most soluble in water?
 - (A) MnS $(K_{sp} = 8 \times 10^{-37})$

- (B) ZnS $(K_{sp} = 7 \times 10^{-16})$ (D) Ag₃(PO₄) $(K_{sp} = 1.8 \times 10^{-18})$
 - (10^{-18})

- (C) Bi_2S_3 ($K_{sp} = 1 \times 10^{-72}$) Q.4 Solubility of AgBr will be minimum in :-
 - (A) Pure water
- (B) 0.1 M CaBr₂
- (C) 0.1 M NaBr
- (D) 0.1 M AgNO₃ IE0154
- Q.5 pH of solution at first 1/4th equivalence point of Na₂CO₃ when titrated with HCl will be

(for
$$H_2CO_3 K_{a_1} = 10^{-7}$$
; $K_{a_2} = 10^{-11}$)

- (A) $7 + \log 3$
- (B) $7 \log 3$
- (C) $11 + \log 3$
- (D) $11 \log 3$

IE0155

- Q.6 An acid-base indicator has a $K_a = 1.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue. [log 2 = 0.3]
 - (A) 1.20
- (B) 0.80
- (C) 0.20
- (D) 1.40

IE0156

Assertion/Reason:

Q.7 **Statement-1** pH of 10⁻⁷ M NaOH solution is exist between 7 to 7.3 at 25°C.

Statement-2 Due to common ion effect ionization of water is reduced.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

IE0157

Q.8 **Statement-1**: On dilution of a concentrated solution of CH₃COOH, the concentration of [H⁺] decreases.

Statement-2: Increase in volume is more than the increase in degree of ionisation.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

IE0158

Multiple correct:

- Q.9 Which of the following is correct for 0.1 M BOH solution ($K_b = 10^{-5}$)
 - (A) pH of solution is 11
 - (B) OH⁻ concentration is 10⁻³ mol/L
 - (C) it's salt with HCl (i.e. BCl) form the acidic solution in water
 - (D) Phenolphthalein indicator can be used during the titration of BOH with HCl

IE0159

E

Q.10	For weak monobasic acid, HA, the dissociation constant is 2×10^{-6} , at 25° C. Which of the following is/are correct regarding this acid? [log2= 0.3] (A) $A^{-} + H_{2}O \rightleftharpoons HA + OH^{-}$; $K_{eq} = 5 \times 10^{-9}$ (B) The equilibrium constant for the reaction of HA with aq. NaOH is 2×10^{8} (C) The pH of 0.1 M, HA solution is 3.35			ollowing		
	(D) solution of A ⁻ is ba					IE0160
Q.11	If $K_1 & K_2$ be first and s	second ionisation constan	nt of H ₃	$_{3}PO_{4}$ and $K_{1} >> K$	2 which is/are incor	rect.
	(A) $[H^+] = [H_2PO_4^-]$		(B) [H	$\mathbf{H}^{+}] = \sqrt{\mathbf{K}_{1}[\mathbf{H}_{3}\mathbf{PO}_{4}]}$		
	(C) $K_2 = [HPO_4^{}]$		(D) [H	$[H^+] = 3[PO_4^{3-}]$		IE0161
Q.12	10 ml. of a solution cont pH of solution:—	ains $0.1 \text{ M NH}_4\text{Cl} + 0.0$	1M NH	OH. Which add	ition would not cha	inge the
	(A) Adding 1 ml. water	r	(B) A	dding 5 ml. of 0	.1 M NH₄Cl	
	(C) Adding 5 ml. of 0.	.1 M NH ₄ OH		dding 10 ml. of	•	IE0162
Q.13	When equal volumes of	the following solutions ar	e mixed	l, precipitation of		
	AgCl ($K_{sp} = 1.8 \times 10^{-10}$					
		$10^{-4}\mathrm{M}(\mathrm{Cl}^{-})$				
	(C) 10^{-6} M (Ag ⁺) and 1	$10^{-6}\mathrm{M}(\mathrm{Cl}^{-})$		$0^{-10} \mathrm{M} (\mathrm{Ag^{+}}) \mathrm{and}$	$10^{-10} \mathrm{M} (\mathrm{Cl}^{-})$	IE0163
		Paragraph for (,	
	8 gm weak acid HX (m	nolecular mass $= 80$) is α	dissolve	ed is 100 ml water	r. $(K_a = 10^{-4})$	
Q.14	Find pH of solution-					
	(A) 3.3	(B) 2	(C) 2.		(D) 3	IE0164
Q.15		M NaOH find pH at eq	-		•	
	(A) 9.15	(B) 8.65	(C) 4.	.65	(D) 4.85	IE0165
Q.16	Find [H ⁺] if 10 ⁻³ mol H	Cl is added to 100 ml or	iginal s	olution $(\sqrt{41} = 6)$.4; $\sqrt{5} = 2.24$	
	(A) 0.62×10^{-2}	(B) 1.62×10^{-2}	(C) 2.	$.7 \times 10^{-2}$	(D) 0.27×10^{-2}	IE0166
MATO	CH THE COLUMN:					
Q.17	Match the effect of addit	ion of 1 M NaOH to 100 n	nL1M0	CH ₃ COOH (in Col	umn I) with pH (in Co	olumn II)
	Column-I			Column-II		
	(A) 25 mL of NaOH		(P)	pK _a		
	(B) 50 mL of NaOH			$pK_a + log 3$		
	(C) 75 mL of NaOH		(K)	$pK_a - log 3$		
	(D) 100 mL of NaOH	I	(S)	$\frac{1}{2} \left[pK_{w} + pK_{a} \right]$	- log 2]	IE0167

TABLE TYPE QUESTION:

Column-I

Column-II

Column-III

(solution)

(pH of solution)

1.3

(Introduction about

solution)

(A) $CH_{\circ}COOH(0.2M, 1L) +$

(P)

(1) pH is determined by strong acid

NaOH (0.1M, 1 L)

(B) $CH_{q}COOH(0.1M, 1 L) +$ HCl (0.1 M, 1 L)

(Q) 7 (2) Buffer solution at its maximum buffer capacity

(C) $CH_{3}COOH(0.1M, 1 L) +$

(R) 9 (3) pH is determined by salt

NH₄OH (0.1M, 1 L)

hydrolysis.

(D) NH₄Cl (200 ml, 0.1M)

+ NaOH (100 ml, 0.1M)

(S) 5 (4) pH is determined by buffer

solution

 $(\text{Given}: (K_a)_{\text{CH},\text{COOH}} = 10^{-5}, (K_b)_{\text{NH},\text{OH}} = 10^{-5}, \log 2 = 0.3$

Q.18 Which of the following is incorrectly matched

(A) A - S - 4

(B) B - P - 1

(C) D - R - 2

(D) C - Q - 1

IE0168

Q.19 If 0.15 mole NaOH is added in solution (B) of column-I then which of the following is correct

(A) S - 3

(B) S - 4

(C) R - 1

(D) P - 3

IE0169

Q.20 If 0.1mole HCl is added in solution (A) of column-I then pH of the resulting solution will be

(A) 7

(B) 13

(C) 3.0

(D) 1

IE0170

J-MAIN

Q.1	The K _{en} for Cr(OH) ₂	is 1.6×10^{-30} . The mola	ar solubility of this	compound in water is :-	
	sp × 73		J	[AIEEE-2	2011]
	(1) $\sqrt[2]{1.6 \times 10^{-30}}$	(2) $\sqrt[4]{1.6 \times 10^{-30}}$ (3) $\sqrt[4]{}$	$\sqrt{1.6 \times 10^{-30} / 27}$	$(4) 1.6 \times 10^{-30/27}$	IE0171
0.2			71.0 × 10 / 27		
Q.2	An acid HA ionises a HA \rightleftharpoons H ⁺ + A ⁻	S			
		ition is 5. Its dissociation	a constant would be	e :- [AIEEE-	20111
	-	(2) 5		(4) 1×10^{-5}	E0172
Q.3		` /	· /	ne following which gives a	
Q.3	of CaF_2 is :-	is 1.7 × 10 ·, the contr	omation amongst th	[JEE-MAIN(onli	
	<u>~</u>	and 1 × 10-5 M F	(2) 1 × 10–4 M	Ca ²⁺ and 1×10^{-4} M F	
				Ca^{2+} and 1×10^{-3} M F ⁻	
Q.4	• •		` ´	he ionization constant, Ka	
Q.T	is:-	i solution of the dela 11Q	is 5. The value of th	[AIEEE-2	
		(2) 3×10^{-7}	$(3) 1 \times 10^{-3}$	(4) 1×10^{-5}	
Q.5				olution of HCl with a pH of	
۷.٥	an aqueous solution		or or an aqueous se	[AIEEE-2013]	1 00 010000
	(1) 0.1 L	-	(3) 2.0 L		IE0175
Q.6	` '			ution. At which concentrat	
	, <u>-</u>	begins to form? (K _{sp} fo			Ź
	$(1) 5.1 \times 10^{-5} \text{ M}$	sp × sp		[JEE-MAIN(Onli	ine)–2013]
	$(3) 4.1 \times 10^{-5} M$		(4) 7.1×10^{-8} M		IE0176
Q.7	NaOH is a strong ba	se. What will be pH of 5	5.0×10^{-2} M NaOH	I solution ? $(\log 2 = 0.3)$	
	_	-		[JEE-MAIN(Onli	ine)–2013]
	(1) 13.70	(2) 13.00	(3) 14.00	(4) 12.70	IE0177
Q.8	Which one of the follo	owing arrangements repre	esents the correct or	rder of solubilities of sparin	ıgly soluble
	salts Hg ₂ Cl ₂ , Cr ₂ (SO	$(O_4)_3$, BaSO ₄ and CrCl ₃ re	espectively?	[JEE-MAIN(Onli	ine)–2013]
	$(1) \left(\frac{K_{sp}}{4}\right)^{\frac{1}{3}}, \left(\frac{K_{sp}}{108}\right)^{\frac{1}{5}},$	$(K_{sp})^{\frac{1}{2}}, \left(\frac{K_{sp}}{27}\right)^{\frac{1}{4}}$	$(2) \left(K_{sp}\right)^{\frac{1}{2}}, \left(\frac{K_{s}}{4}\right)^{\frac{1}{2}}$	$\left(\frac{K_{sp}}{27}\right)^{\frac{1}{4}}, \left(\frac{K_{sp}}{108}\right)^{\frac{1}{5}}$	
	(3) $(K_{sp})^{\frac{1}{2}}$, $(\frac{K_{sp}}{108})^{\frac{1}{5}}$,	$\left(\frac{K_{sp}}{27}\right)^{\frac{1}{4}}, \left(\frac{K_{sp}}{4}\right)^{\frac{1}{3}}$	$(4) \left(\frac{K_{sp}}{108}\right)^{\frac{1}{5}}, \left(\frac{K}{2}\right)^{\frac{1}{5}}$	$\left(\frac{K_{sp}}{27}\right)^{\frac{1}{4}}, \left(K_{sp}\right)^{\frac{1}{2}}, \left(\frac{K_{sp}}{4}\right)^{\frac{1}{3}}$	IE0178

node06\B080-BA\Kota\JEE(Advanced)\Leader\Che\Shed\lonic Equilibrium\Eng\02

E.

.	,						
Q.9	What would be the pH	of a solution obtair	ned by mixing 5 g of acet	ic acid and 7.5 g of sodiu	um acetate and		
	making the volume equa	al to 500 mL?	[JEE-M	IAIN(Online)-2013]			
	$(Ka = 1.75 \times 10^{-5}, pk)$	(a = 4.76)					
	(1) $4.76 < pH < 5.0$						
	(2) $pH < 4.70$						
	(3) pH of solution will	be equal to pH of	acetic acid				
	(4) pH = 4.70				IE0179		
Q.10	In some solutions, the	concentration of H	₃ O ⁺ remains constant ev	en when small amounts	of strong acid		
			solutions are known as				
	(1) Colloidal solutions		(2) True solution	ns			
	(3) Ideal solutions		(4) Buffer soluti	ons	IE0180		
Q.11	Zirconium phosphate [2	Zirconium phosphate [Zr ₃ (PO ₄) ₄] dissociates into three zirconium cations of charge +4 and four phosphate					
			zirconium phosphate is				
	by K _{sp} then which of the	ne following relation	nship between S and $K_{\rm sp}$ is	s correct?			
	(1) $S = \{K_{sp}/144\}^{1/7}$			912) ^{1/7} }[JEE-MAIN (O)nline)-2014]		
	$(3)S = (K_{sp}/6912)^{1/7}$		(4) $S = \{K_{sp}/69\}$		IE0181		
Q.12	pK _a of a weak acid (HA	A) and pK _b of a we	eak base (BOH) are 3.2	and 3.4, respectively. T	he pH of their		
	salt (AB) solution is			[JEE-MAIN(Offine)-	-2017]		
	(1) 7.2	(2) 6.9	(3) 7.0	(4) 1.0	IE0182		
Q.13	Addition of sodium hyd	roxide solution to a	weak acid (HA) results i	n a buffer of pH 6. If ionis	sation constant		
	of HA is 10 ⁻⁵ , the ratio	of salt to acid cor	ncentration in the buffer	solution will be:			
				[JEE-MAIN(C)nline)-2017]		
	(1) 4:5	(2) 1:10	(3) 10:1	(4) 5 : 4	IE0183		
Q.14	50 mL of 0.2 M ammo	nia solution is trea	ated with 25 mL of 0.2 l	M HCl. If pK _b of ammo	nia solution is		
~	4.75, the pH of the mix			[JEE-MAIN(Online)-			
	•				_		

(1) 8.25 (2) 4.75 (3) 9.25 (4) 3.75 **IE0184**

Q.15 Which of the following salts is the most basic in aqueous solution? [JEE-MAIN(Offine)-2018]

(1) CH_3COOK (2) $FeCl_3$

(3) $Pb(CH_3COO)_2$

 $(4) Al(CN)_3$

IE0185

Q.16 An alkali is titrated against an acid with methyl orange as indicator, which of the following is a correct combination?

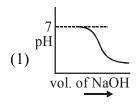
Base	Acid	End point	[JEE-MAIN(Offine)–2018]	
(1) Strong	Strong	Pinkish red to yellow		
(2) Weak	Strong	Yellow to pinkish red		
(3) Strong	Strong	Pink to colourless		
(4) Weak	Strong	Colourless to pink	IE0186	

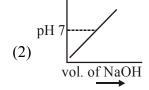
~		_		rium constants for the formation
	of HS ⁻ from H ₂ S is 1.0	0×10^{-7} and that of S ²⁻ fi	rom HS ⁻ ions is $1.2 \times 10^{-}$	13 then the concentration of S^{2-}
	ions in aqueous solutio			[JEE-MAIN(Offine)-2018]
	$(1) \ 3 \times 10^{-20}$		$(3) 5 \times 10^{-19}$	(4) 5×10^{-8} IE0187
Q.18				mL of a 1 M solution of Na_2SO_4
				The solubility product of BaSO ₄
	is 1×10^{-10} . What is the	e original concentration	of Ba ²⁺ ?	[JEE-MAIN(Offine)-2018]
	(1) $2 \times 10^{-9} \text{ M}$	(2) $1.1 \times 10^{-9} \text{ M}$	(3) $1.0 \times 10^{-10} \text{ M}$	(4) $5 \times 10^{-9} \text{ M}$ IE0188
Q.19	Following four solution	ons are prepared by mix	xing different volumes of	of NaOH and HCl of different
	concentrations, pH of	which one of them will	be equal to 1?	[JEE-MAIN(Online)-2018]
	(1) $75\text{mL}\frac{M}{5}\text{HCl} + 25\text{m}$	$nL\frac{M}{5}NaOH$		
	(2) $100 \text{mL} \frac{M}{10} \text{HCl} + 100$	0 mL $\frac{M}{10}$ NaOH		
	(3) $55\text{mL}\frac{M}{10}\text{HCl} + 45\text{m}$	$nL\frac{M}{10}$ NaOH		
	(4) $60 \text{mL} \frac{\text{M}}{10} \text{HCl} + 40 \text{r}$	M		
	(4) $60 \text{ mL} \frac{10}{10} \text{ HCI} + 40 \text{ m}$	$nL\frac{W}{10}NaOH$		IE0189
Q.20	10	10	olve 0.1 g lead (II) chlorid	
Q.20	The minimum volume of	10		$\label{eq:etogeta} \mbox{ \begin{tabular}{l} $\textbf{IE0189}$\\ eto get a saturated solution (K_{sp}\\ \hline $\textbf{[JEE-MAIN(Online)-2018]}$\\ \end{tabular}$
Q.20	The minimum volume of	of water required to disso		e to get a saturated solution (K_{sp})
Q.20 21.	The minimum volume of PbCl ₂ = 3.2×10^{-8} (1) 0.36 L	of water required to disso ; atomic mass of Pb = 2 (2) 0.18 L	207 u) is: (3) 17.98 L	e to get a saturated solution (K _{sp} [JEE-MAIN(Online)–2018]
	The minimum volume of $PbCl_2 = 3.2 \times 10^{-8}$ (1) 0.36 L A soft drink was bottled	of water required to disso ; atomic mass of Pb = 2 (2) 0.18 L with a partial pressure of C	207 u) is : (3) 17.98 L CO ₂ of 3 bar over the liquid	e to get a saturated solution (K _{sp} [JEE-MAIN(Online)–2018] (4)1.798 L IE0190
	The minimum volume of $PbCl_2 = 3.2 \times 10^{-8}$ (1) 0.36 L A soft drink was bottled pressure of CO_2 over the	of water required to disso ; atomic mass of Pb = 2 (2) 0.18 L with a partial pressure of C	207 u) is: (3) 17.98 L CO ₂ of 3 bar over the liquical liquid of 30 bar when 44 g of	te to get a saturated solution (K_{sp} [JEE-MAIN(Online)–2018] (4)1.798 L IE0190 If at room temperature. The partial FCO_2 is dissolved in 1 kg of water
	The minimum volume of $PbCl_2 = 3.2 \times 10^{-8}$ (1) 0.36 L A soft drink was bottled pressure of CO_2 over the	of water required to disso ; atomic mass of Pb = 2 (2) 0.18 L with a partial pressure of C e solution approaches a va	207 u) is: (3) 17.98 L CO ₂ of 3 bar over the liquical liquid of 30 bar when 44 g of	te to get a saturated solution (K_{sp} [JEE-MAIN(Online)–2018] (4)1.798 L IE0190 If at room temperature. The partial FCO_2 is dissolved in 1 kg of water
	The minimum volume of $PbCl_2 = 3.2 \times 10^{-8}$ (1) 0.36 L A soft drink was bottled pressure of CO_2 over the at room temperature. To	of water required to disso ; atomic mass of Pb = $\frac{2}{3}$ (2) 0.18 L with a partial pressure of Ce solution approaches a variation approaches a variation approaches a variation approximate pH of the approximate pH of t	207 u) is: (3) 17.98 L CO ₂ of 3 bar over the liquical liquical section of 30 bar when 44 g of the soft drink is $10^{-7}; \log 2 = 0.3; \text{ densite}$	te to get a saturated solution (K_{sp} [JEE-MAIN(Online)–2018] (4)1.798 L IE0190 If at room temperature. The partial of FCO_2 is dissolved in 1 kg of water FCO_2 is dissolved
	The minimum volume of $PbCl_2 = 3.2 \times 10^{-8}$ (1) 0.36 L A soft drink was bottled pressure of CO_2 over the at room temperature. To the solubility production of the solubility productio	of water required to disso ; atomic mass of Pb = $\frac{1}{2}$ (2) 0.18 L with a partial pressure of Ce solution approaches a variation of H ₂ CO ₃ = $\frac{4.0 \times 10^{-11} \text{ M}}{2}$ to fAB ₂ is $\frac{3.20 \times 10^{-11} \text{ M}}{2}$	207 u) is: (3) 17.98 L CO ₂ of 3 bar over the liquical liquidate of 30 bar when 44 g of the soft drink is $10^{-7}; \log 2 = 0.3; \text{ densite M}^3, then the solubility of the solubility of$	te to get a saturated solution (K_{sp} [JEE-MAIN(Online)–2018] (4)1.798 L IE0190 If at room temperature. The partial fCO ₂ is dissolved in 1 kg of water $\times 10^{-1}$. IE0191 [JEE-MAIN(Online)–2020]
21.	The minimum volume of $PbCl_2 = 3.2 \times 10^{-8}$ (1) 0.36 L A soft drink was bottled pressure of CO_2 over the at room temperature. To the solubility production of the solubility productio	of water required to disso ; atomic mass of Pb = $\frac{2}{3}$ (2) 0.18 L with a partial pressure of Ce solution approaches a variation approaches a variation approaches a variation approximate pH of the approximate pH of t	207 u) is: (3) 17.98 L CO ₂ of 3 bar over the liquical liquidate of 30 bar when 44 g of the soft drink is $10^{-7}; \log 2 = 0.3; \text{ densite M}^3, then the solubility of the solubility of$	te to get a saturated solution (K_{sp} [JEE-MAIN(Online)–2018] (4)1.798 L IE0190 If at room temperature. The partial CO_2 is dissolved in 1 kg of water $\times 10^{-1}$. IE0191 [JEE-MAIN(Online)–2020] By of the soft drink = 1 g mL ⁻¹) If AB_2 in pure water is
21.	The minimum volume of $PbCl_2 = 3.2 \times 10^{-8}$ (1) 0.36 L A soft drink was bottled pressure of CO_2 over the at room temperature. To (First dissociation con If the solubility product $\times 10^{-4}$ mol L ⁻¹ . [Assured]	of water required to disso ; atomic mass of Pb = $\frac{1}{2}$ (2) 0.18 L with a partial pressure of Ce solution approaches a variate approximate pH of the stant of $H_2CO_3 = 4.0 \times 10^{-11} \mathrm{M}$ ming that neither kind of	207 u) is: (3) 17.98 L CO ₂ of 3 bar over the liquical liquical of 30 bar when 44 g of the soft drink is $10^{-7}; \log 2 = 0.3; \text{ densited M}^3, \text{ then the solubility of fion reacts with water}$	te to get a saturated solution (K_{sp} [JEE-MAIN(Online)–2018] (4)1.798 L IE0190 If at room temperature. The partial of CO_2 is dissolved in 1 kg of water \times 10 ⁻¹ . IE0191 [JEE-MAIN(Online)–2020] By of the soft drink = 1 g mL ⁻¹) of AB_2 in pure water is
21.	The minimum volume of $PbCl_2 = 3.2 \times 10^{-8}$ (1) 0.36 L A soft drink was bottled pressure of CO_2 over the at room temperature. To the solubility product $\times 10^{-4}$ mol L ⁻¹ . [Assurement of the following the following states of the solubility product $\times 10^{-4}$ mol L ⁻¹ . [Assurement of the following states	of water required to disso ; atomic mass of Pb = $\frac{1}{2}$ (2) 0.18 L with a partial pressure of Ce solution approaches a variation of H ₂ CO ₃ = $\frac{4.0 \times 10^{-11} \text{ M}}{2}$ to fAB ₂ is $\frac{3.20 \times 10^{-11} \text{ M}}{2}$	207 u) is: (3) 17.98 L CO ₂ of 3 bar over the liquical liquica	te to get a saturated solution (K_{sp} [JEE-MAIN(Online)–2018] (4)1.798 L IE0190 If at room temperature. The partial CO_2 is dissolved in 1 kg of water $\times 10^{-1}$. IE0191 [JEE-MAIN(Online)–2020] By of the soft drink = 1 g mL ⁻¹) If AB_2 in pure water is
21.	The minimum volume of $PbCl_2 = 3.2 \times 10^{-8}$ (1) 0.36 L A soft drink was bottled pressure of CO_2 over the at room temperature. To the solubility product $\times 10^{-4}$ mol L ⁻¹ . [Assure Arrange the following (A) 0.01 M HC1	of water required to disso ; atomic mass of Pb = $\frac{2}{3}$ (2) 0.18 L with a partial pressure of Ce solution approaches a variate approximate pH of the stant of $H_2CO_3 = 4.0 \times 10^{-11} \text{M}$ ming that neither kind of solutions is the decreasing solutions is the decreasing of $H_2CO_3 = 4.0 \times 10^{-11} \text{M}$	207 u) is: (3) 17.98 L CO ₂ of 3 bar over the liquical due of 30 bar when 44 g of the soft drink is 10 ⁻⁷ ; log 2 = 0.3; density of the solubility of the	te to get a saturated solution (K_{sp} [JEE-MAIN(Online)–2018] (4)1.798 L IE0190 If at room temperature. The partial of CO_2 is dissolved in 1 kg of water \times 10 ⁻¹ . IE0191 [JEE-MAIN(Online)–2020] By of the soft drink = 1 g mL ⁻¹) of AB_2 in pure water is
21.	The minimum volume of $PbCl_2 = 3.2 \times 10^{-8}$ (1) 0.36 L A soft drink was bottled pressure of CO_2 over the at room temperature. The solubility product $\times 10^{-4}$ mol L ⁻¹ . [Assure Arrange the following (A) 0.01 M HC1 (C) 0.01 M CH ₃ COC	of water required to disso ; atomic mass of Pb = $\frac{2}{3}$ (2) 0.18 L with a partial pressure of Ce solution approaches a variate approximate pH of the stant of $H_2CO_3 = 4.0 \times 10^{-11} \mathrm{M}$ ming that neither kind of solutions is the decreasing DNa	207 u) is: (3) 17.98 L CO ₂ of 3 bar over the liquical due of 30 bar when 44 g of the soft drink is 10 ⁻⁷ ; log 2 = 0.3; density M³, then the solubility of the fion reacts with water] Ing order of pOH: (B) 0.01 M NaOH (D) 0.01 M NaCl	te to get a saturated solution (K_{sp} [JEE-MAIN(Online)–2018] (4)1.798 L IE0190 If at room temperature. The partial of CO_2 is dissolved in 1 kg of water \times 10 ⁻¹ . IE0191 [JEE-MAIN(Online)–2020] By of the soft drink = 1 g mL ⁻¹) IFO192 [JEE-MAIN(Online)–2020] [JEE-MAIN(Online)–2020]
21.	The minimum volume of $PbCl_2 = 3.2 \times 10^{-8}$ (1) 0.36 L A soft drink was bottled pressure of CO_2 over the at room temperature. To the solubility product $\times 10^{-4}$ mol L ⁻¹ . [Assure Arrange the following (A) 0.01 M HC1	of water required to disso ; atomic mass of Pb = $\frac{2}{3}$ (2) 0.18 L with a partial pressure of Ce solution approaches a variate approximate pH of the approximate pH of the approximate approximate pH of the approximate approximate approximate pH of the approximate approximate pH of the approximate approximate pH of the approximate approxi	207 u) is: (3) 17.98 L CO ₂ of 3 bar over the liquical due of 30 bar when 44 g of the soft drink is 10 ⁻⁷ ; log 2 = 0.3; density of the solubility of the	Let to get a saturated solution (K _{sp} [JEE-MAIN(Online)–2018] (4)1.798 L IE0190 I at room temperature. The partial of CO ₂ is dissolved in 1 kg of water — × 10 ⁻¹ . IE0191 [JEE-MAIN(Online)–2020] Ey of the soft drink = 1 g mL ⁻¹) IF AB ₂ in pure water is IE0192 [JEE-MAIN(Online)–2020] [JEE-MAIN(Online)–2020]

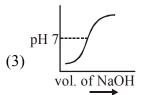
24. For the following Assertion and Reason, the correct option is

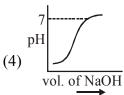
[JEE-MAIN(Online)-2020]

Assertion (A): When Cu (II) and sulphide ions are mixed, they react together extremely quickly to give a solid.


Reason (R): The equilibrium constant of $Cu^{2+}(aq) + S^{2-}(aq) \rightleftharpoons CuS(s)$ is high because the solubility product is low.


- (1) Both (A) and (R) are true and (R) is the explanation for (A)
- (2) Both (A) and (R) are false
- (3) (A) is false and (R) is true
- (4) Both (A) and (R) are true but (R) is not the explanation for (A)


IE0194


25. 100 mL of 0.1 M HCl is taken in a beaker and to it 100 mL of 0.1 M NaOH is added in steps of 2 mL and the pH is continuously measured. Which of the following graphs correctly depicts the change in pH?

[JEE-MAIN(Online)-2020]

IE0195

J-ADVANCE

Q.1 In 1 L saturated solution of AgCl $[K_{sp}(AgCl) = 1.6 \times 10^{-10}]$, 0.1 mol of CuCl $[K_{sp}(CuCl) = 1.0 \times 10^{-6}]$ is added. The resultant concentration of Ag⁺ in the solution is 1.6×10^{-x} . The value of 'x' is.

IE0196

- Q.2 The initial rate of hydrolysis of methyl acetate (1M) by a weak acid (HA, 1M) is $1/100^{th}$ of that of a strong acid (HX, 1M), at 25°C. The K_a of HA is [JEE 2013]
 - (A) 1×10^{-4}
- (B) 1×10^{-5}
- (C) 1×10^{-6}
- (D) 1×10^{-3}

IE0197

- Q.3 The K_{sp} of Ag_2CrO_4 is 1.1×10^{-12} at 298 K. The solubility (in mol/L) of Ag_2CrO_4 in a 0.1 M AgNO₃ solution is [JEE 2013]
 - (A) 1.1×10^{-11}
- (B) 1.1×10^{-10}
- (C) 1.1×10^{-12}
- (D) 1.1×10^{-9}

IE0198

Paragraph For Questions 4 and 5

When 100 mL of 1.0 M HCl was mixed with 100 mL of 1.0 M NaOH in an insulated beaker at constant pressure, a temperature increase of 5.7 °C was measured for the beaker and its contents. (**Expt-1**). Because the enthalpy of neutralisation of a strong acid with a strong base is a constant (-57.0 kJmol^{-1}), this experiment could be used to measure the calorimeter constant. In a second experiment (**Expt-2**), 100 mL of 2.0 M acetic acid ($K_a = 2.0 \times 10^{-5}$) was mixed with 100 mL of 1.0M NaOH (under identical conditions to (**Expt-1**)) where a temperature rise of 5.6 °C was measured.

(Consider heat capacity of all solutions as $4.2~\text{Jg}^{\text{-1}}\text{K}^{\text{-1}}$ and density of all solutions as $1.0~\text{g mL}^{\text{-1}}$)

- Q.4 Enthalpy of dissociation (in kJ mol⁻¹) of acetic acid obtained from the **Expt-2** is **[JEE 2015]**
 - (A) 1.0
- (B) 10.0
- (C) 24.5
- (D) 51.4

IE0199

- Q.5 The pH of the solution after **Expt-2**
 - (A) 2.8
- (B) 4.7
- (C) 5.0
- (D) 7.0

IE0200

Q.6 The solubility of a salt of weak acid(AB) at pH 3 is $Y \times 10^{-3}$ mol L^{-1} . The value of Y is ____. (Given that the value of solubility product of AB $(K_{sp}) = 2 \times 10^{-10}$ and the value of ionization constant of HB $(K_a) = 1 \times 10^{-8}$) $\sqrt{20} = 4.47$ [JEE 2018]

IE0201

E

Q.7 5.00 mL of 0.10 M oxalic acid solution taken in a conical flask is titrated against NaOH from a burette using phenolphthalein indicator. The volume of NaOH required for the appearance of permanent faint pink color is tabulated below for five experiments. What is the concentration, in molarity, of the NaOH solution? [JEE 2020]

Exp. No.	Vol. of NaOH (mL)
1	12.5
2	10.5
3	9.0
4	9.0
5	9.0

IE0202

Q.8 A solution of 0.1 M weak base (B) is titrated with 0.1 M of a strong acid (HA). The variation of pH of the solution with the volume of HA added is shown in the figure below. What is the pK_b of the base? The neutralization reaction is given by B + HA \rightarrow BH⁺ + A⁻.

[JEE 2020]

IE0203

Q.9 An acidified solution of 0.05 M $\rm Zn^{2+}$ is saturated with 0.1 M $\rm H_2S$. What is the minimum molar concentration (M) of H+ required to prevent the precipitation of ZnS? Use $\rm K_{sp}$ (ZnS) = 1.25 × 10⁻²² and [JEE 2020]

Overall dissociation constant of $\rm H_2S$, $\rm K_{\rm NET}$ = $\rm K_1K_2$ = 1 \times $10^{\text{-}21}$

IE0204

ANSWER KEY

EXERCISE-S-I

- Q.1 Ans.6.022 $\times 10^7$
- Q.2 Ans.(i) 6.53; (ii) (a) Basic, (b) Acidic
- Q.3 Ans.6.8
- Q.4 Ans.(a) 1, (b) 2.87, (c) 11.13 (d) 6.97, (e) 7, (f) 6, (g) 6.97, (h) 11.30 (i) 9, (j) 3
- Q.5 Ans.(a) $K_a = 10^{-8}$, (b) $K_b = 10^{-6}$
- Q.6 Ans.10
- Q.7 Ans.173.2:1
- Q.8 Ans.0.009
- Q.9 Ans.1.1 \times 10⁻³ M
- Q.10 Ans.1.11 \times 10⁻⁴
- Q.11 Ans.4.7
- Q.12 Ans.3.3
- Q.13 Ans.(a) 0.522, (b) 2.522
- Q.14 Ans. (1)
- Q.15 Ans. 0.027 M, 0.073 M, 0.027 M, 10⁻⁵ M
- **O.16** Ans. 11.3
- Q.17 Ans.10⁻⁵M
- Q.18 Ans.pH = 4.5
- Q.19 Ans. $K_b = 6.25 \times 10^{-10}$
- Q.20 Ans.0.56%, pH = 7
- Q.21 Ans.1.667%
- Q.22 Ans.8.3
- Q.23 Ans.(a) 6, (b) 1×10^{-5}
- Q.24 Ans. 9.0
- Q.25 Ans. 9.56
- Q.26 5.04
- Q.27 Ans. 0.05 mol
- Q.28 Ans. $[OH^-] = 9.0 \times 10^{-6}M$
- Q.29 Ans.(10.1)
- Q.30 Ans.4.74
- Q.31 Ans.9.56
- Q.32 Ans.8.783
- Q.33 Ans.(3.33)
- Q.34 Ans. 10^{-5} M
- Q.35 Ans. 8.7, $[H_3O^+] = 2 \times 10^{-9}M$
- Q.36 Ans. $5, 10^{-5} M$

ALLEN

- Q.37 Ans. (i) 2.85, (ii) 4.0969, (iii) 4.5229, (iv) 4.699, (v) 5.301, (vi) 8.699
- Q.38 Ans. $[HI_n] = 80 \%$
- Q.39 Ans. 85.71%
- Q.40 Ans. (b), (c)
- Q.41 Ans. Δ pH = 0.954
- Q.42 Ans. QX_2 is more soluble
- Q.43 Ans. 4×10^{-8}
- Q.44 Ans. 5×10^{-11}
- Q.45 Ans. 3.2×10^{-11}
- Q.46 Ans. 2.56 ×10⁻¹⁶
- Q.47 Ans. 1.0×10^{-5} mol/lit
- Q.48 Ans. 5×10^{-10} M
- Q.49 Ans.5 × 10^{-7}
- Q.50 Ans. 4×10^{-7} mol/L AgBr, 1.6×10^{-6} mol/L AgSCN
- Q.51 Ans. 8×10^{-3} M
- Q.52 Ans. 4×10^{-2} M
- Q.53 Ans.(a) no precipitation will occur, (b) a precipitate will form
- Q.54 Ans.No.
- Q.55 Ans.0.284 gm

EXERCISE S-II

Q.1	Ans. 0.209 M, 0.191 M, 9.15×10^{-3} M, 0	Q.2	Ans. 10.6
Q.3	Ans. $(2 \times 10^{-4} \text{M})$	Q.4	Ans. $pH = 10.52$
Q.5	Ans. 8.35, 9.60, 4.66	Q.6	Ans.(9.6)
Q.7	Ans.(10 ⁻⁵ M)	Q.8.	Ans (10 ⁻³ M)
Q.9	Ans. 2.8×10^{-3} mole	Q.10	Ans. 1.6×10^{-3}

EXERCISE O-I

	EMERCISE O I	
Q.1 Ans.(A)	Q.2 Ans.(B)	Q.3 Ans.(C)
Q.4 Ans. (C)	Q.5 Ans. (B)	Q.6 Ans. (C)
Q.7 Ans. (D)	Q.8 Ans. (D)	Q.9 Ans. (C)
Q.10 Ans.(C)	Q.11. Ans (C)	Q.12 Ans.(D)
Q.13 Ans.(B)	Q.14 Ans.(B)	Q.15 Ans.(C)
Q.16 Ans.(C)	Q.17 Ans.(B)	Q.18. Ans.(C)
Q.19 Ans.(C)	Q.20 Ans.(B)	Q.21 Ans.(B)
Q.22 Ans.(D)	Q.23 Ans.(D)	Q.24 Ans.(C)
Q.25 Ans.(C)	Q.26 Ans.(C)	Q.27 Ans.(B)
Q.28 Ans.(B)	Q.29 Ans.(A)	Q.30 Ans.(D)
Q.31 Ans.(B)	Q.32 Ans.(C)	Q.33 Ans.(C)
Q.34 Ans.(C)	Q.35 Ans.(B)	Q.36 Ans.(C)
Q.37 Ans.(D)	Q.38 Ans.(A)	Q.39 Ans.(C)

ALLEN		Ionic equilibrium 71	
Q.40 Ans.(C)	Q.41 Ans.(C)	Q.42 Ans.(B)	
Q.43 Ans.(C)	Q.44 Ans.(D)	Q.45 Ans.(A)	
Q.46 Ans.(B)	Q.47 Ans.(D)	Q.48 Ans.(B)	
Q.49 Ans.(C)	Q.50 Ans.(A)	Q.51 Ans.(C)	
Q.52 Ans.(A)	Q.53 Ans.(A)	Q.54. Ans.(A)	
Q.55. Ans.(B)	Q.56 Ans.(D)	Q.57 Ans.(A)	
Q.58 Ans.(A)	Q.59 Ans.(B)	Q.60 Ans.(C)	
Q.61 Ans.(D)	Q.62 Ans.(A)	Q.63 Ans.(D)	
Q.64 Ans.(C)	Q.65 Ans.(D)	Q.66 Ans.(D)	
Q.67 Ans.(D)	Q.68 Ans.(C)	Q.69 Ans.(A)	
Q.70.Sol.(C)	Q.71. Ans.(B)	Q.72. Ans.(B)	
Q.73 Ans.(D)	Q.74 Ans.(B)	Q.75 Ans.(B)	
. , ,	EXERCISE O-II	. , ,	
Q.1 Ans.(A)	Q.2 Ans.(C)	Q.3 Ans.(D)	
Q.4 Ans.(B)	Q.5 Ans (C)	Q.6 Ans.(A)	
Q.7 Ans.(A)	Q.8 Ans. (A)	Q.9 Ans. (A,B,C)	
Q.10 Ans.(A,B,C,D)	Q.11 Ans.(D)	Q.12 Ans.(A)	
Q.13 Ans.(A)	Q.14 Ans(B)	Q.15 Ans(B)	
Q.16 Ans (B)	Q.17 Ans. A - (R), B - (P), C - (Q), D - (S)		
Q.18 Ans.(D)	Q.19 Ans.(B)	Q.20 Ans.(C)	
	J-MAIN		
Q.1 Ans.(3)	Q.2 Ans.(1)	Q.3 Ans.(4)	
Q.4 Ans.(4)	Q.5 Ans.(4)	Q.6 Ans.(1)	
Q.7 Ans.(4)	Q.8 Ans.(1)	Q.9 Ans.(1)	
Q.10 Ans.(4)	Q.11 Ans.(3)	Q.12 Ans.(2)	
Q.13 Ans.(3)	Q.14 Ans.(3)	Q.15 Ans.(1)	
Q.16 Ans.(2)	Q.17 Ans.(1)	Q.18 Ans.(2)	
Q.19 Ans.(1)	Q.20 Ans.(2)	Q.21. Ans.(37)	
Q.22. Ans2.00	Q.23. Ans.(4)	Q.24. Ans.(4)	
Q.25. Ans.(3)			
	J-ADVANCE		
Q.1 Ans.(7)	Q.2 Ans.(A)	Q.3 Ans.(B)	
Q.4 Ans.(A)	Q.5 Ans.(B)	Q.6 Ans.(4.47)	
Q.7 Ans. (0.11)	Q.8 Ans. 2.30 to 3.00	Q.9 Ans.0.20	