CARBOXYLIC ACID & AMINES

Organic compounds having -COOH group called Carboxylic group. This functional group is

composed of Carbonyl (—C—) and hydroxyl (—OH) group.

$$\stackrel{\mathsf{O}}{\overset{\parallel}{-}} - \stackrel{\mathsf{C}}{-} - OH \longrightarrow \stackrel{\mathsf{O}}{\overset{\parallel}{-}} - OH$$

Carbonyl group Hydroxyl group Carboxylic group

The properties of the carboxylic group are not simply the combined properties of these two groups, but it has its own distinctive properties. The acidic nature of carboxylic acids is due to the presence of replaceable H-atom in the Carboxylic group. The general formula is $C_nH_{2n}O_2$.

☐ Classification :

Monocarboxylic acid (RCOOH):

Having one carboxylic group, also called monobasic acid.

 $General \ formula - C_n H_{2n} O_2 \ (\ n=1,2,3,......). Higher \ mono \ carboxylic \ acids \ are \ called \ \textbf{fatty acids}.$

Example: CH₃COOH acetic acid

Dicarboxylic acid: Having two carboxylic groups, also called dibasic acid.

Example : COOH | Oxalic acid

Tricarboxylic acid: Having three carboxylic groups also called tribasic acid.

NOMENCLATURE

Acid	Common name	IUPAC name	
НСООН	Formic acid (formica-red ants)	Methanoic acid	
CH ₃ COOH	Acetic acid (acetum-vinegar)	Ethanoic acid	
CH ₃ CH ₂ COOH	Propionic acid (Propan-first pion-fat)	Propanoic acid	
CH ₃ CH ₂ CH ₂ COOH	Butyric acid (Butter-butyrums)	Butanoic acid	
CH ₃ CH ₂ CH ₂ CH ₂ COOH	Valeric acid (valerian-plant root)	Pentanoic acid	
$C_5H_{11}COOH$	Caproic acid	Hexanoic acid	
C ₇ H ₁₅ COOH	Caprylic acid	Octanoic acid	
C_9H_{19} COOH	Capric acid	Decanoic acid	
Last three acids are found in goat fat word - (Caper-Goat).			

e06\B0B0-BA\Kola\EE(Advanced)\Leader\Che\Shee\\Carboxylic Acid & II's Derivative, Alighatic Amines

□ General Method of Preparation

1. By oxidation of primary alcohol with acidic $KMnO_4$ or acidic $K_2Cr_2O_7$:

$$R-CH_2OH + [O] \xrightarrow{K_3Cr_2O_7/H^+} RCHO + H_2O \xrightarrow{[O]} RCOOH$$

2. By oxidation of aldehydes:

Aldehydes on oxidation with usual oxidizing agent gives carboxylic acid with same number of carbon atoms as in the aldehyde.

$$R-CHO + [O] \xrightarrow{Tollen's Reagent} R-COO^- \xrightarrow{H^{\oplus}} R-COOH$$

$$C_6H_5CHO + [O] \xrightarrow{\text{Tollen's Reagent}} C_6H_5COO^{\Theta} \xrightarrow{\text{H}^{\oplus}} C_6H_5COOH$$

3. By oxidation of alkenes:

(a) RCH = CHR'
$$\xrightarrow{\text{(i) conc. KMnO}_4 / OH^{\Theta} \text{ heat}}$$
 RCOOH + R'COOH

(b) RCH = CHR'
$$\xrightarrow{\text{(i) O}_3}$$
 RCOOH + R'COOH

4. By Carboxylation of Grignard Reagent:

$$R-Br\xrightarrow[Dry\,ether]{Mg} RMgBr\xrightarrow[C--OMgBr]{O} R-C-OMgBr\xrightarrow[-MgBr(OH)]{O} R-C-OH$$

5. By hydrolysis of acyl derivatives of carboxylic acid:

$$R-C-CI + H_2O \xrightarrow{H^{\oplus}} R-COOH + HCI$$

$$(R - CO)_2O + H_2O \xrightarrow{H^{\oplus}} R-COOH + R-C-OH$$

$$R-COOR'+H_2O \xrightarrow{\quad \ H^\oplus \quad } R-COOH+ROH$$

$$\begin{array}{c} O \\ \parallel \\ R--C--NH_2 + H_2O & \xrightarrow{H^{\oplus}} & R-COOH + NH_4^{\oplus} \end{array}$$

6 Cyanide hydrolysis with dilute acids:

$$R - CN \xrightarrow{H_3O^{\oplus}} RCOOH$$

The mechanism of hydrolysis of R-CN is as follows.

$$R-C\equiv N \xrightarrow{H^{\oplus}} R \xrightarrow{C\equiv NH} R-C\equiv NH$$

$$R \xrightarrow{OH} NH_{2} \xrightarrow{H_{2}O} R \xrightarrow{\oplus} NH_{2} \xrightarrow{R} R \xrightarrow{OH} NH_{2}$$

$$R \xrightarrow{H_{2}O} NH_{2} \xrightarrow{H_{2}O} R \xrightarrow{H_{2}$$

7. By oxidation of alkyl benzene:

$$\begin{array}{c} CH_3 \\ \hline \\ (i) \ KMnO_4/OH \\ \hline \\ (ii) \ H_3O^{\oplus} \end{array}$$

Alkyl group having no α -H atom will not be oxidized to –COOH. Any alkyl group containing at least one α -H atom will be oxidized to –COOH. The product of oxidation will be benzoic acid.

$$\begin{array}{c|c} H_2C--CH_2CH_3 & COOH \\ \hline & \underbrace{ \text{ (i) } KMnO_4/OH}_{\text{ (ii) } H_3O^{\oplus}} \end{array}$$

$$C(CH_3)_3$$

Neutral KMnO₄

No oxidation

The order of benzoic acid formation by oxidation of alkyl benzene.

Methyl benzene >1° alkyl benzene >2° alkyl benzene

- **1.** Describe the preparation of acetic acid from acetylene.
- 2 Identify Z in the sequence

$$CH_{3}COONH_{4} \xrightarrow{\text{(i) heat}} Y \xrightarrow{H_{2}O(H^{+})} Z$$

(A) CH₃CH₂CONH₂

(B) CH₃CN

(C) CH₃COOH

(D) (CH₃CO)₂O

node06\B0B0-BA\Kota\UEE (Advanced)\\Leader\Che\Shee\\Carboxylic Acid & II's Derivative, Alighalic Amines\Eng\O1_Carboxylik

- 3. A halogen compound 'A' on hydrolysis with dilute alkali followed by acidification gives acetic acid. The compound X is -
 - (A) ClCH₂CH₂Cl

(B) CH₃CHCl₂

(C) ClCH₂CHCl₂

- (D) CH₃CCl₃
- **4.** Acetic acid is obtained when -
 - (A) Methyl alcohol is oxidised with potassium permangnate
 - (B) Formaldehyde is oxidised with potassium dichloromate and sulphuric acid
 - (C) Acetonitrile is hydrolysed with a dilute mineral acid
 - (D) Glycerol is heated with sulphuric acid
- 5. Identify Z in the following reaction sequence $CH_3I \xrightarrow{\text{Mg}} X \xrightarrow{CO_2} Y \xrightarrow{\text{Cl}_2} Z$
 - (A) CH₃COOH
- (B) CH₃MgI
- (C) CH₃COCl
- (D) ClCH₂COOH
- 6. Kolbe's electrolysis of aqueous potassium ethanoate leads to the formation of -
 - (A) Ethene
- (B) Methane
- (C) Ethane
- (D) Ethyne
- 7 $A \xleftarrow{\text{red P}} CH_3COOH \xrightarrow{\text{LiAlH}_4} B$. What is not true for A and B -
 - (A) A is hydrocarbon of general formula C_nH_{2n+2} while B belongs to alkanol
 - (B) A can be obtained by reducing CH₃CH₂Cl while B by its hydrolysis
 - (C) A is alkane while B is alkanal
 - (D) A and B both belongs to different homologous series
- 8. Arrange the following compounds in decreasing order of acidity -

ClCH₂CH₂CH₂COOH

CH₃CHClCH₂COOH

II

CH₃CH₂CHClCOOH

Ш

I

- (A) I > II > III
- (B) III > II > I
- (C) I > III > II
- (D) III > I > II
- 9. Arrange OHCH₂COOH (I), HOCH₂CH₂COOH (II) and CH₃COOH (III) in order of acidity -
 - (A) I > II > III
- (B) III > II > I
- (C) I > III > II
- (D) II > III > I

PHYSICAL PROPERTIES OF CARBOXYLIC ACID:

These are polar substances and can form H-bonds with each other to form dimer structures.

$$R \xrightarrow{O - \cdots - H - O} R$$

♦ Boiling Point: Due to dimeric structure, the effective molecular mass of the acid becomes double of the actual molecular mass. Hence carboxylic acids have higher boiling points than alcohols of comparable molecular masses. Due to hydrogen bonding carboxylic acids show appreciable solubility in water. Its solubility in water is greater than alcohol because H-bonding strength is greater in carboxylic acid than alcohol.

◆ Melting Point: Melting point of the carboxylic acid with even number of carbon atoms is higher than acid with odd number of carbon atoms. Such effect is observed in first ten members of the homologous series. This feature is based on the fact that in the carboxylic acids with even number of carbon atoms, the terminal methyl group and carboxylic group are on the opposite sides of zig-zag carbon chain. Hence they fit better in the crystal lattice resulting in stronger inter molecular forces on the other hands acids with odd number of carbon atom have carboxyl and terminal methyl group on the same side of zig-zag carbon chain which result in poor fitting in the crystal lattice. This causes a weak forces among molecules and result for the relatively lower melting point.

The melting point and boiling points are usually higher than those of aliphatic acid of comparable molecular masses. This is due to planar structure of benzene ring in the acid which can pack closely in the crystal than aliphatic acids.

□ Reaction Involving Cleavage of –OH Group:

1. Esterification:

When carboxylic acid reacts with alcohol in the presence of conc. H₂SO₄ to form ester, it is known as esterification

$$\begin{array}{c}
R - C - OH + R - OH \xrightarrow{\text{conc. H}_2SO_4} R - C - OR + H_2O \\
\parallel & \parallel & \parallel \\
O & O
\end{array}$$

Mechanism:

The relative reactivity of alcohol to ester formation markedly dependent on their structure. The greater the bulk of the substituents near the –OH group, the slower the reaction would be same facts is followed by acid as well

$$CH_3OH > CH_3CH_2OH > (CH_3)_2 CHOH > (CH_3)_3 COH$$

 H — $COOH > CH_3COOH > (CH_3)_2 CHCOOH > (CH_3)_3 CCOOH$

2. Formation of acid chloride:

$$R - COOH \xrightarrow{FCl_5} R - COCI + HCI + POCI_3$$

$$R - COOH \xrightarrow{FSOCI_2} R - COCI + SO_2 \uparrow + HCI$$

$$+ SO_2CI_2 \longrightarrow R - COCI + SO_3 \uparrow + HCI$$

$$+ SO_2CI_2 \longrightarrow R - COCI + SO_3 \uparrow + HCI$$

3. Formation of Acid Anhydride:

Carboxylic acid on treatment with any dehydrating agent as P_2O_5 to form anhydride by elimination of water molecule.

$$2R-C-OH \xrightarrow{P_2O_5} R \xrightarrow{O} O + H_2O$$

$$\begin{array}{c} \text{CH}_2\text{COOH} \\ \text{I} \\ \text{CH}_2\text{COOH} \\ \text{succinic acid} \end{array} \xrightarrow{P_2O_5} \begin{array}{c} \text{CH}_2\text{CO} \\ \text{CH}_2\text{CO} \\ \text{succinic anhydride} \end{array} 0 + \text{H}_2\text{O}$$

4. Formation of Amides:

$$R-C-OH + MeNH_2 \longrightarrow \left[R-C-\bar{O}\right] \stackrel{\oplus}{NH_3}Me \xrightarrow{heat \atop -H_2O} R-C-\ddot{N}H$$

The lone pair electron on N atom undergoes resonance and hence N atom carries partial +ve charge on it.

$$R-C \xrightarrow{NH} \longleftarrow R-C = N-H$$

$$Me$$

$$Me$$

Thus extent of H-bonding increases which makes the boiling and melting points of amides higher than other acid derivatives.

□ Reactions Involving –COOH Group:

1. Schmidt Reaction:

Carboxylic acid reacts with hydrazoic acid in the presence of conc. $\rm H_2SO_4$ at $90^{\circ}\rm C$ forming primary amine.

$$R \text{—COOH} \ + \ N_3 H \qquad \xrightarrow{\quad \text{Conc. H}_2 \text{SO}_4 \quad } \qquad R \text{—NH}_2 \ + \ N_2 \ + \ CO_2$$

Mechanism:

$$\begin{array}{c}
O \\
R - C + H^{\oplus} \longrightarrow R - C \oplus \longrightarrow H^{N_3} \longrightarrow R - C - OH \\
O H & H - N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
R - C - OH \\
H - N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
H - N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
H - N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
H - N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
H - N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
H - N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
H - N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
H - N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
H - N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
H - N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
N - N \oplus N
\end{array}$$

$$\begin{array}{c}
O \\
N - N \oplus N
\end{array}$$

2. Soda lime Decarboxylation :

Carboxylic acid on heating with soda lime (NaOH and CaO) give alkane with one carbon atom less than the parent acid.

$$R$$
— $COOH \xrightarrow{\text{sada lime}} R$ — $H + CO_2$

3. Hunsdicker Reaction:

$$R \text{—COOH} \xrightarrow{\quad Ag_2O\quad} R \text{—COO}^- \ Ag^+ \xrightarrow{\quad Br_2\quad} R \text{—Br} + AgBr + CO_2$$

Mechanism: Reaction proceeds through free radical mechanism in various steps.

(i) Chain initiation:

$$\begin{array}{ccc}
O & O \\
\parallel & \parallel & \vdots \\
R--C--O--Br & \longrightarrow & R--C--O+Br
\end{array}$$

(ii) Chain propagation step:

(iii) Chain termination:

$$\dot{R}+\dot{R}\longrightarrow R-R$$
 O
 $R-C-\dot{O}+\dot{R}\longrightarrow R-C-O-R$
 $\dot{B}r+\dot{B}r\longrightarrow Br_2$

4. With excess of organometallic compounds:

2 moles of organometallic compounds are needed to form ketone.

5. Hell-Volhard-Zelinsky Reaction:

This is α -halogenation of a carboxylic acid.

$$R \xrightarrow{OH} OH \xrightarrow{Red P/Br_2} R \xrightarrow{OH} OH \alpha$$
-bromo acid

Possible Mechanism for the reaction is:

The purpose of PBr_3 is to convert -OH into -Br to make α -hydrogen atom more acidic to be replaced by Br atom of Br_2 . The reaction does not stop at monosubstitution but continues till the α -hydrogen are replaced.

$$H_{3}C - COOH \xrightarrow[Red P]{Cl_{2}} H_{2}C \xrightarrow[Red P]{Cl_{2}} COOH \xrightarrow[Red P]{Cl_{2}} COOH \xrightarrow[Red P]{Cl_{2}} COOH$$

The reaction has a great synthetic importance as the halogen atom can be replaced by a number of other groups giving useful products.

6. Heating of b-keto acid:

There are two facts on which ease of decarboxylation depends.

(i) When the carboxylate ion decarboxylate, it forms a resonance stabilized enolate anion.

Resonance stabilized enolate anion

This anion is much more stable than the anion $R\overline{C}H_2$ formed by decarboxylation of an ordinary carboxylic acid anion.

(ii) When the acid itself decarboxylates it can do so through a six-membered cyclic transition state b-keto acid on warming alone or in presence of a base undergoes rapid removal of CO₂.

Mechanism:

Here y can be substituents like

OH - diacid; R - b-keto acid

H - b aldehyde acid; X - b halo acid

This decarboxylation proceeds through elimination.

7. Heating of a, b and g Hydroxy Acid:

y-hydroxy Acid

5-methyldihydrofuran-2-one

node06/B0B0-BA1Kota/LEF(Advanced)/Leader/Che\Sheel Carboxylic Acid & II's Derivative, Alighalic Amines/Eng\01_Carboxylicacid & amines

8. Reaction of α , β and γ halo carboxylic acid with aq. NaOH:

$$H_3C$$
 OH^{Θ}
 $OH^$

9. Heating of Dicarboxylic Acids:

10. Oxidation of Carboxylic acid at Alkyl Group:

Acid on treatment with mild oxidising agent such as H_2O_2 , is oxidized at the β position.

$$CH_{3} \overset{\beta}{C} H_{2} - CH_{2}COOH + [O] \xrightarrow{H_{2}O_{2}} H_{3}C \xrightarrow{COOH}$$

$$OH$$
3-hydroxybutanoic acid

Oxidation can also occur at α carbon atom on treatment with oxidizing agent like selenium dioxide SeO_2 .

$$RCH_{2}COOH + [O] \xrightarrow{SeO_{2}} R COOH + Se + H_{2}O$$

$$\alpha \text{ Keto acid}$$

10.
$$CH_3-C-OH + EtOH \xrightarrow{H^+} CH_3-C-O - Et$$

$$O$$

11.
$$CH_3-C-OH + Ph_3COH \xrightarrow{H^+} CH_3-C-O-CPh_3$$
O

12.
$$Ph-COOH + PhOH \xrightarrow{H^+} Ph-C-O-Ph + H_2O$$

13.
$$COOH$$

$$+ EtOH$$

$$C=O^{+}$$

$$+ H_{3}O^{+} + 2HSO_{4}^{-}$$

14.
$$R-C-O-R' \xrightarrow{H_2O^{18}}$$

Traces of O¹⁸ is founed in ester.

Mechanism:

(i)
$$R-C \stackrel{\oplus}{\bigcirc} R-C -OH + R'OH \longrightarrow R-C-OH \\ \downarrow I \\ \downarrow I \\ OH \longrightarrow R-C-I^8OH + R'OH \longrightarrow R-C-OH \\ \downarrow I \\ \downarrow$$

(ii)
$$R \xrightarrow{\stackrel{+}{O}} H \longrightarrow R \xrightarrow{\stackrel{+}{O}} C \xrightarrow{\stackrel{\oplus}{O}} R \xrightarrow{\stackrel{+}{O}} R \xrightarrow{\stackrel{+}{O}} C \xrightarrow{\stackrel{+}{O}} R \xrightarrow{\stackrel{+}{O}} R \xrightarrow{\stackrel{+}{O}} C \xrightarrow{\stackrel{+}{O}} R \xrightarrow{\stackrel{+$$

$$\begin{array}{c}
O \\
\parallel \\
CH_3-C-OH + Ph-C-OH \\
\parallel \\
O
\end{array}$$

icid & II's Derivative, Aliphatic Amines\Eng\01_Carboxylicacid & amines_(Theory), p65

15.
$$\begin{array}{c} O \\ O \\ O \\ \end{array}$$

$$\begin{array}{c} O \\ O \\ O \\ \end{array}$$

16.
$$CH_3-C-Cl \xrightarrow{H^+/H_2O} CH_3-C-Cl \xrightarrow{H_2O} CH_3-C-Cl \xrightarrow{H_2O} CH_3-C-OH + HCl$$

17.
$$R-C-NH_2 \xrightarrow{H^{\oplus}}$$

Ex.1
$$CH_3COOH \xrightarrow{Red P/Br_2} P \xrightarrow{NH_3} Q$$

Sol.
$$\begin{array}{c} \text{CH}_3\text{COOH} \xrightarrow{\text{Red P/Br}_2} & \text{CH}_2\text{-COOH} \xrightarrow{\text{NH}_3} & \text{NH}_2\text{-CH}_2\text{-C-NH}_2 \\ & \parallel & \text{O} \end{array}$$

Ex.2
$$CH_3CH_2COOH \xrightarrow{Red P/Br_2} P + Q$$

Sol.
$$CH_3CH_2COOH \xrightarrow{Red P/Br_2} CH_3-CH-COOH + enantiomer$$

Sol.
$$\xrightarrow{\text{COOH}} \xrightarrow{\text{Red P/Br}_2} \xrightarrow{\text{COOH}} \text{Br}$$

Ex.4
$$\xrightarrow{\text{Red P/Br}_2}$$
 No reaction

Ex.5 HCOOH
$$\xrightarrow{\text{Red P/Br}_2}$$
 No reaction

Ex.6
$$\xrightarrow{\text{Red P/Br}_2}$$
 No reaction

Ex.7
$$CH_2=C=O \xrightarrow{I_2} P \xrightarrow{H_2O} Q$$

$$CH_2 = C = O \xrightarrow{I_2} CH_2 - C = O \xrightarrow{H_2O} CH_2 - C - OH$$

$$I \qquad I \qquad I$$

Ex.8
$$CH_3COOH \xrightarrow{(i) \text{ Red P/Cl}_2/\text{cat}} CH_2\text{-COOH} Br$$

Ex.9 CH₃-COOH
$$\xrightarrow{\text{(i) red P/Br}_2(\text{cat.})}$$
 CH₂-COOH $\xrightarrow{\text{CI}}$ Cl

Ex.10.
$$CH_3$$
— C - $Cl \xrightarrow{Br_2}$

$$CH_{3}\text{-}C\text{-}Cl \xrightarrow{\text{tauto}} CH_{2}\text{-}C\text{-}Cl \xrightarrow{Br} CH_{2}Br\text{-}C\text{-}Cl$$

Ex.11.
$$CH_3$$
-C-OR' $\xrightarrow{Br_2}$ \longrightarrow

$$CH_{3}\text{-C-OR'} \xrightarrow{\text{tauto}} CH_{2}\text{-C-OR'} \xrightarrow{Br \mid Br} CH_{2}\text{-C-OR'} \xrightarrow{Br \mid Br} CH_{2}$$

Ex.12.
$$CH_3$$
— C - CH_3 $\xrightarrow{Br_2}$ CH_3 - C - CH_2Br
 O

ARNDT-EISTERT SYNTHESIS (AES)

In this reaction, next homologus of carboxylic acid is obtained as product.

$$\begin{array}{c} CH_{3}\text{--}C\text{--}OH \xrightarrow{\text{(i) SOCl}_{2}} CH_{3}\text{--}CH_{2}\text{--}COOH \\ O & \text{(iii) } Ag_{2}O \\ \text{(iv) } H_{2}O \end{array}$$

Mechanism:

$$\begin{array}{c} CH_{3}\text{-}C\text{-}OH \xrightarrow{SOCl_{2}} CH_{3}\text{-}C\text{-}Cl \xrightarrow{\overset{\ominus}{C}H_{2}\overset{\ominus}{N_{2}}} CH_{3}\text{-}C\text{-}\overset{\ominus}{C}H\text{-}\overset{\ominus}{N_{2}} \xrightarrow{Ag_{2}O} \\ O & O \end{array}$$

$$CH_3$$
- CH = C = $O \xrightarrow{H_2O} CH_3$ - CH_2 - C - OH
 O

node06\B080-BA\Kota\LEF(Advanced)\Leader\Che\Shee\\Carboxylic Acid & II's Derivative. Alighatic Amines\Eng\O1

1.
$$OCH_3 \xrightarrow{AES}$$

$$\begin{array}{c|c} OCH_3 & OCH_3 \\ \hline OH & OCH_2 \\ \hline OOH_3 & OCH_2 \\ \hline OOH_3 & OCH_3 \\ \hline OOCH_3 & OCH_2 \\ \hline OOCH_3 & OCH_3 \\ \hline OOCH_3 & OCH_2 \\ \hline OOCH_3 & OCH_3 \\ \hline OOCH_3 & OCH_2 \\ \hline OOCH_3 & OCH_3 \\ \hline OOCH_3 & OCH_3 \\ \hline OOCH_3 & OCH_3 \\ \hline OOCH_3 & OCH_2 \\ \hline OOCH_3 & OCH_2 \\ \hline OOCH_3 & OCH_3 \\ \hline OOCH_3 & OC$$

$$\begin{array}{c|c}
\text{Me} & \text{COOH} \\
\text{AES} & \\
\text{H} & \text{H}
\end{array}$$

$$\begin{array}{c} \text{Me} \quad \text{COOH} \quad \text{Me} \quad \text{COCl} \quad \text{Me} \quad \text{CH}_2\\ \text{H} \quad \text{H} \quad \text{H} \quad \text{H} \quad \text{H} \quad \text{H} \quad \text{H} \\ \end{array}$$

$$\stackrel{O}{\longleftarrow} H_{2}O \longrightarrow HOOC \stackrel{}{\longleftarrow}$$

4.
$$CH_3$$
- $COOH\frac{(i) SOCl_2}{(ii) CH_2N_2}$
 $(iii) H_2O$

5. COOH
$$(i) SOCl_{2}$$

$$(ii) CH_{2}N_{2}$$

$$(iii) Ag_{2}O$$

$$(iv) H_{2}O$$

$$COOH \xrightarrow{SOCl_2} Cl \xrightarrow{CH_2N_2} CH_2-COOH \xrightarrow{CH_2C} CH_2C = O$$

6. Cl
$$\frac{\text{(i) } \text{CH}_2\text{N}_2}{\text{(ii) } \Delta}$$
 $\frac{\text{(ii) } \text{CH}_2\text{N}_2}{\text{(iii) } \text{H}_2\text{O}_2}$

$$Cl \xrightarrow{CH_2N_2} CH_2-N_2 \xrightarrow{\Delta} CC \searrow \xrightarrow{H_2O} OH$$

WOLF REARRANGEMENT

In this reaction, a-diazocarbonyl compound is treated with thermally, photochemically or catalytically so that ketene is obtained.

$$\begin{array}{ccc}
R-C-CHN_2 & \xrightarrow{\Delta} & R-CH=C=O+N_2 \\
O & & \text{hv} \\
& \text{or} \\
& & \text{Ag}_2O
\end{array}$$

Mechanism:

1.
$$\begin{array}{ccc} CH_3-C-CH-N_2 & \xrightarrow{\Delta} & \\ \parallel & \parallel & \\ O & CH_3 & Ag_2O \end{array}$$

$$\begin{array}{c|c} CH_3-C & CH_3 \\ \hline CH_3-C & N \\ \hline O & CH_3 \end{array} \longrightarrow \begin{array}{c} C=C & CH_3 \\ \hline O & CH_3 \end{array} + N_2$$

ader \Che\Shee\\Carboxylic Acid & II's Derivative, Aliphatic Amines\Eng\01_Carboxylicacid & amines_(Theory); pd

2.
$$\stackrel{\oplus}{\overset{\oplus}{N=N}} \stackrel{\ominus}{\overset{\longrightarrow}{\underset{Ag_2O}{\longrightarrow}}}$$

3.
$$R-C-N_3 \xrightarrow{\text{or}} A$$

4. Ph-C-Cl
$$\xrightarrow{\text{NaN}_3}$$
 P $\xrightarrow{\Delta}$ Q $\xrightarrow{\text{H}_3\text{O}^+}$ R

$$R-CH=C=O \xrightarrow{R-NH_2/H^+} R-CH_2-CONHR$$

$$R-CH=C=O \xrightarrow{H_2O/OH^{\Theta}} R-CH_2-COO^{\Theta}$$

6. R-N=C=O
$$\xrightarrow{\text{H}_3\text{O}^+}$$

 $R-N=C=O \xrightarrow{H_3O^+} R-NH_2$ (decarboxylation takes place during reaction)

$$R-N=C=O \xrightarrow{H_2O/OH^{\Theta}} R-NH_2$$

Abnormal Behaviour of Formic Acid:

The behaviour of formic acid is different from other carboxylic acid due to presence of aldehydic group.

□ Reaction with :

(a) **Tollen's reagents**: formic acid behaves as a reducing agent and reduces Tollen's reagent or Felhing solution. But others acid fail to do so.

$$H\text{-COOH} + \text{Ag}_2\text{O} \longrightarrow \text{CO}_2 + \text{H}_2\text{O} + 2\text{Ag} \downarrow \text{ Silver mirror}$$

$$H\text{-COOH} + 2\text{CuO} \longrightarrow \text{CO}_2 + \text{H}_2\text{O} + \text{Cu}_2\text{O} \downarrow \text{ Red ppt.}$$

(b) **Reaction with HgCl₂**: Formic acid forms white ppt. of Hg₂Cl₂ with HgCl₂ which is converted to Grey ppt of mercury.

2HCOOH +
$$\operatorname{HgCl}_2$$

 → CO_2 + $\operatorname{Hg}_2\operatorname{Cl}_2$ ↓ + 2HCl white ppt.

Test for HCOOH and CH₃COOH

	Test	НСООН	CH ₃ COOH
1.	Reducing character		
	Reducing agents -		
	Tollen reagent	Silver mirror	_
	Fehling solution	Cu ₂ O red	_
	HgCl_2	$\mathrm{Hg_2Cl_2}$	_
	Corrosive sublimate	e Calomel	-
	$K_2Cr_2O_7$	Cr ⁺³	-
2.	Decarboxylation.	$Na_2CO_3 + H_2$	CH ₄
3.	Heating at 160°C	$CO_2 + H_2$	-
4.	Heating sodium	COONa	
	salts of acids	COONa	-
	at 360 ⁰ C	∆ HCI	
		COOH	
		+ NaCl COOH	
5.	Conc.H ₂ SO ₄	$CO + H_2O$	Dissolve
6.	P_2O_5	_	Anhydride
7.	Cl ₂ / P	CO ₂ + 2HCl	Products are mono, di,
	-	~	tri chloro acetic acid.
8.	Ca salt heat	НСНО	CH ₃ COCH ₃

- (i) As an antiseptic
- (ii) For preservation of fruits.
- (iii) For leather tanning.
- (iv) In dying wool and cotton fabrics.
- (v) As a coagulating agent for rubber.
- (vi) For hydrogenation of oil as Ni-formate.

□ Uses of Acetic Acid:

- (i) Vinegar (6 10% solution) used as **table acid** and manufacture of pickles.
- (ii) In the form of salts, it is used in medicine and paints.
- (iii) For manufacture of rubber from latex and casein from milk CH₃COOH is used as coagulant.
- (iv) Al and Cr acetates are used as mordants.
- (v) In the manufacture of dyes and perfumes.
- (vi) As a solvent and laboratory reagent.

ACID DERIVATIVES

□ Derivatives of Carboxylic Acid

The –OH of an acid can be replaced by –Cl, –OR, or –NH₂ group to yield an acid chloride an ester or an amide. These compounds are called functional derivatives of acid and they all contain acyl group. The functional derivatives are all readily converted into the acid by simple hydrolysis.

$$\begin{array}{c} O \\ \parallel \\ R - C - OH & \xrightarrow{-OH} & R - C - Z \\ Acid & Acid derivative \end{array}$$

R = C is Acyl group and Z is nucleophile Cl^{Θ} , CH_3COO^{Θ} , $C_2H_5O^{\Theta}$, NH_2^{Θ} etc.

eader/Che/Shee/Carboxylic Acid & Il's Derivative, Aliphalic Amines\Eng\01_Carboxylicacid & amines_(Theory)

Characteristic reaction for acid derivatives is nucleophilic substitution reaction: **Mechanism:**

$$CH_{3} \xrightarrow{C} + NU \xrightarrow{\Theta} CH_{3} \xrightarrow{C} -NU \xrightarrow{O} CH_{3} \xrightarrow{C} -NU + Z \xrightarrow{\Theta}$$

$$sp^2$$
 hybrid C - atom sp^3 hybrid C - atom

In this reaction Z is leaving group. Weak bases are good leaving groups.

Reactivity order - depends on the basic Character of Z

basicity:
$$CI^- < CH_3COO^- < C_2H_5O^- < NH_2^-$$

Cl is the weakest base so it is best leaving group. In the given groups

Reactivilty order: $CH_3COCl > CH_3COOCOCH_3 > CH_2COOC_2H_5 > CH_3CONH_2$

In acid derivatives the carbonyl group > C=O is attached to highly electronegative Cl $^-$, CH₃COO, NH₂⁻ etc. group due to electron withdrawing effect of these groups, the electron density on the carbonyl carbon is reduced further. Thus acetyl group is readily attacked by $\stackrel{\dots}{Nu}$ shows nucleophilic substitution reaction.

Basicity of leaving groups:

Weaker the basic character of the leaving group more will be the ease with which the leaving group leaves the compound and hence more is the leaving power

The order of basicity of the leaving group and their leaving tendency follows the order.

$$H_2N^- > RO^- > RCOO^- > Cl^-$$

Basicity

Leaving power

Resonance Effect:
$$Resonance Effect: Resonating Structure$$

Due to resonance, the carbon–leaving group (L) bond acquires a double bond character due to which stabilization occurs. Now more is stabilization, lesser is the reactivity and vice-versa. As the stabilization is the least in the case of acid chloride because of high magnitude of –I effect of Cl atom. Therefore its reactivity is the most.

Nucleophilic acyl substitution should be catalysed by acids becasuse the protonation of the acyl compound would facillitate step (i) for nuceleophilic attack.

ACYL CHLORIDE (RCOCI)

These are the derivatives of carboxylic acid in which hydroxyl (–OH) part of carboxyl group is replaced by halo group. The most reactive compound of halo leaving group is chloro compounds.

■ Method of Preparation :

Carboxylic acid chloride can be prepared by the reaction of carboxylic acid with PCl_5 or $SOCl_2$ of PCl_3 or SO_2Cl_2 .

R—COOH

$$\begin{array}{c}
 & \begin{array}{c}
 & \begin{array}{c}
 & \text{PCI}_5 \\
 & \text{C}_5\text{H}_5\text{N} \end{array}
\end{array}
\begin{array}{c}
 & \text{RCOCI} + \text{HCI} + \text{POCI}_3 \\
 & \begin{array}{c}
 & \text{PCI}_5 \\
 & \text{C}_5\text{H}_5\text{N} \end{array}
\end{array}
\begin{array}{c}
 & \text{RCOCI} + \text{H}_3\text{PO}_3 \\
 & \begin{array}{c}
 & \text{SOCI}_2 \\
 & \text{C}_5\text{H}_5\text{N} \end{array}
\end{array}
\begin{array}{c}
 & \text{RCOCI} + \text{SO}_2 + \text{HCI} \\
 & \begin{array}{c}
 & \text{SO}_2\text{CI}_2 \\
 & \text{C}_5\text{H}_5\text{N} \end{array}
\end{array}$$

□ Chemical Properties :

1. Acylation Reaction:

2. Reduction reactions:

$$\begin{array}{c|c}
O \\
R-C-C-CI + H_2 & Pd \\
\hline
BaSO_4 & RCHO + HCI & (Rosenmunds reduction)
\end{array}$$

$$RCOC1 + 4H \xrightarrow{\text{LiAIH}_4 \text{ or NaBH}_4 \atop \text{or C}_7H_5OH+Na} R-CH_2OH + HCI$$

Mechanism:

3. Reaction with KCN:

4. Reaction with AgNO₃:

$$\begin{array}{c|c}
O & O \\
R--C--CI + AgNO_3 & H_2O & I \\
\hline
R--C--OH + AgCI \downarrow + HNO_3
\end{array}$$

The aliphatic acid chlorides are readily decomposed by water therefore aqueous solution of acid chloride gives white ppt. with aqueous ${\rm AgNO_3}$.

ACID ANHYDRIDES (RCOOCOR)

Acid anhydrides are considered to be derived from carboxylic acids by the removal of a molecule of water from two molecules of the acid.

$$\begin{array}{c} O \\ = \\ 2R--C-OH \\ \text{carboxylic acid} \end{array} \longrightarrow \begin{array}{c} O \\ R--C \\ = \\ O \end{array} O + H_2O$$
acetic anhydride

■ Method of preparation :

1. Acylation : Carboxylic acid reacts with acyl chloride in the presence of pyridine to give carboxylic acid anhydride.

herivative, Aliphatic Amines\Eng\01_Carboxylicacid & amines_(Theory); p65

2. Sodium salt of carboxylic acids also react with acyl chlorides to give :

In this reaction a carboxylate ion acts as a nucleophile and brings about a nucleophilic substitution reaction at the acyl carbon of acyl chloride.

3. Cyclic anhydrides : By simple heating the appropriate dicarboxylic acid. This method leads to a five or six membered ring.

$$\begin{array}{c}
CH_2--H_{-OH} \\
CH_2--H_{-OH} \\
O\\
Succinic acid
\end{array}$$

$$\begin{array}{c}
CH_2 \\
CH_2
\end{array}$$

$$\begin{array}{c}
CH_2 \\
CH_2
\end{array}$$

$$\begin{array}{c}
CH_2
\end{array}$$

4. Chemical Properties:

Acid anhydride are good acylating agents. Their reactions are less vigorous than the corresponding acyl halides.

ROH R--C--OR + R'--C--OR

NH₃ R--C--NH₂ + R'--C--NH₂

$$H_2O$$
 R--C--OH + R'--C--OH

 θ OH/H₂O R--C--O + R'--C--O

ESTERS (RCOOR)

Ester are the derivative of the carboxylic acid in which the –OH part of the carboxylic group has been replaced by –OR group where R may be alkyl or aryl group.

Method of Preparation:

By reaction of acids wth alcohol or diazomethane in presence of ether.

RCOOH +
$$C_2H_5OH$$
 $\xrightarrow{H^+/H_2O}$ R—COOC $_2H_5$ + H_2O

R—COOH + CH_2N_2 $\xrightarrow{\text{ether}}$ RCOOCH $_3$ + N_2 Ester

 $\begin{array}{c} O \\ R--C--CI+C_2H_5OH \end{array}$ $\xrightarrow{C_5H_5N}$ $\begin{array}{c} O \\ R--C--OC_2H_5+HCI \end{array}$

Chemical Properties:

1. Conversion to other esters: Transesterifications

$$\begin{array}{c} O \\ \parallel \\ R--C--OR'+R"--OH \end{array} \begin{array}{c} O \\ \parallel \\ R--C--OR''+R'--OH \end{array}$$

2. Conversion to amides:

$$\begin{array}{c} O \\ \parallel \\ R--C--OR'+HN \end{array} \begin{array}{c} R'' \\ R'' \end{array} \longrightarrow \begin{array}{c} O \\ \parallel \\ R--C--N \end{array} \begin{array}{c} R'' \\ R'' \end{array} + R'--OH \end{array}$$

3. Reaction with Grignard Reagent:

$$\begin{array}{c} O \\ \blacksquare \\ R--C-OR + 2R"MgX \end{array} \xrightarrow{\text{diethylether}} \begin{array}{c} OMgX \\ \blacksquare \\ R--C-R" \end{array} \xrightarrow{\text{H}^{\oplus}} \begin{array}{c} OH \\ \blacksquare \\ R--C-R" \end{array} + R'OMgX$$

4. Reduction of ester :

$$\begin{array}{c} \text{MeCOCH}_2\text{COOC}_2\text{H}_5 \\ \\ \text{LiAIH}_4 \\ \end{array} \begin{array}{c} \text{MeCH}(\text{OH})\text{CH}_2\text{CO}_2\text{C}_2\text{H}_5 \\ \\ \text{LiAIH}_4 \\ \end{array} \begin{array}{c} \text{MeCH}(\text{OH})\text{CH}_2\text{--CH}_2\text{OH} + \text{C}_2\text{H}_5\text{OH} \\ \\ \text{CH}_2\text{OH} \\ \\ \end{array}$$

node06\B0B0-BA\Kala\LEE(Advanced)\Leader\Che\Shee\\Carboxylic Acid & II's Derivalive, Aliphalic Amines\Eng\01_Carboxylicacid & a

24

5. Reaction of NH₃ with keto ester:

Mechanism:

$$\begin{array}{c} \overset{\text{\scriptsize O}}{\underset{\text{\scriptsize C}}{\text{\scriptsize C}}} \\ \text{\scriptsize R} \overset{\text{\scriptsize O}}{\underset{\text{\scriptsize C}}{\text{\scriptsize C}}} \\ \text{\scriptsize C} \overset{\text{\scriptsize O}}{\underset{\text{\scriptsize C}}{\text{\scriptsize C}}} \\ \text{\scriptsize I} \\ \text{\scriptsize C} \\ \text{\scriptsize C} \\ \text{\scriptsize I} \\ \text{\scriptsize I$$

Attack will occur at carbonyl group first because of high degree of +ve charge on carbonyl carbon atom.

6. Acyloin condensation :

Mechanism:

It is the intermolecular, sodium promoted condensation of two moles of ester or the intra molecular condesation of a ester to α -hydroxy ketone (acyloin).

$$2R - C - OR \xrightarrow{Na} 2R - C - OR \xrightarrow{dimerisation} 2R - C - C - R \xrightarrow{2Na} R - C - C - R \xrightarrow{2Na}$$

$$R - \dot{C} - \dot{C} - R \xrightarrow{dimerisation} R - C = C - R \xrightarrow{2Na} R - C - C - C - R \xrightarrow{2Na}$$

$$R - \dot{C} - \dot{C} - R \xrightarrow{Na} R - C = C - R \xrightarrow{dimerisation} R - C - C - C - R \xrightarrow{2Na}$$

$$R - \dot{C} - \dot{C} - R \xrightarrow{Na} R - C - C - C - R \xrightarrow{dimerisation} R - C - C - C - R \xrightarrow{Na} R - C - C - C - R \xrightarrow{Na} R - C - C - C - R \xrightarrow{dimerisation} R - C - C - C - R \xrightarrow{Na} R - C - C - R \xrightarrow{Na}$$

☐ Hydrolysis of Acyl Derivatives :

Ester hydrolysis can be carried out in mechanistic pathways $A_{AC^{1}}$, $A_{AC^{2}}$, $A_{AL^{1}}$, $B_{AC^{2}}$.

AMIDES (RCONH₂)

■ Method of Preparation :

1. Amides from Acyl chloride:

Primary amines, secondary amines and ammonia all react rapidly with acid chloride to form amides. An excess of ammonia or amine is used to neutralize the HCl that would be formed otherwise.

$$\begin{array}{c} \text{R} \longrightarrow \text{COCl} + \text{RNH}_2 \longrightarrow \text{R} - \text{C} - \text{NH}_2 + \text{NH}_4 \text{Cl} \\ \text{R} - \text{COCl} + \text{RR'NH} \longrightarrow \text{RCON(R)R'} + \text{RR'N+H}_2 \text{Cl-} \\ \text{N, N-disubstituted amide} \end{array}$$

2. Amides from acid anhydride:

$$\begin{bmatrix} O \\ R--C-- \end{bmatrix}_{2} O + 2NH_{3} \longrightarrow R--C--NH_{2} + RCOO NPH_{4}^{\oplus}$$

$$\begin{bmatrix} O \\ R--C-- \end{bmatrix}_{2} O + 2R - NH_{2} \longrightarrow R--C--NHR + R--COONH_{3}R - NH_{2} \longrightarrow R--C--NH_{2} \longrightarrow R--C--NH_{2}$$

3. From Esters (Ammonolysis):

Ester undergoes nucleophilic substitution at their acyl carbon by nucleophilic ammonia or its derivative

$$\begin{array}{c} O \\ \parallel \\ R--C--OR + H--\ddot{N} \\ R^{"} \end{array} \longrightarrow \begin{array}{c} O \\ \parallel \\ R--C--\ddot{N} \\ R^{"} \end{array} + R'OH$$

4. By partial hydrolysis of alkyl nitriles:

$$R - C \equiv N + H_2O \xrightarrow{H^+ \text{ or } \atop OH^-} R - CO - NH_2$$

Physical Properties:

All amides except formamide are crystalline solid at room temperature. They have relatively high melting and boiling point due to association of amide molecules by inter molecular hydrogen bonds.

Chemical Properties:

1. Amphoteric character:

Amides are very feeble bases due to involvement of pair of electron present on N atom in resonance with carboxyl groups. As a result N atom receives partial +ve charges showing feeble acidic character as well

er/Cha/Snee/Carboxolic Acid & II's Derivative Alighatic Amines/EngV() Carboxolicacid & aminas (Theory) n65

(i) Acidic character: Due to structure II amide can act as acid.

$$\begin{array}{c}
O \\
\parallel \\
CH_3--C-NH_2+CaO
\end{array}$$

$$\begin{array}{c}
\longrightarrow \\
As acid
\end{array}$$
(CH₃CONH)₂Ca + H₂O

$$CH_3CONH_2 + Na \longrightarrow CH_3CONH^-Na^{\oplus} + \frac{1}{2}H_2$$

(ii) Basic Character: Due to structure I having lone pair of electrons on N atom it acts as base.

$$CH_3CONH_2 + HCl \longrightarrow CH_3CONH_3^+Cl^-$$

2. Reaction with nitrous acid:

$$R$$
— $CONH_2 + HONO \longrightarrow R$ — $COOH + N_2 + H_2O$

The reaction proceeds via the attack of electrophilic species NO⁺ generated from HNO₂.

3. Hoffmann's Bromide Reaction:

Amides react with bromine in the presence of alkali to form a primary amine having one carbon atom less than the parent amides.

$$CONH_2$$
 $+ Br_2 + 4KOH$ $+ K_2CO_3 + 2KBr + 2H_2O$

Mechanism:

$$2NaOH + Br_2 \longrightarrow NaOBr + NaBr + H_2O$$

(i)
$$R-C-NH_2 + OBr \longrightarrow R-C-N-Br + OH^{\Theta}$$

N-bromoacetamide

(ii)
$$R-C-N-Br+OH^{\Theta} \xrightarrow{-H_2O} R-C-N-Br \xrightarrow{Rearrangement} R-N=C=O \xrightarrow{H_2O} R-NH_2+CO_2$$

4. Reaction with PCl₅, PCl₃ or SOCl₂:

$$\begin{array}{c} O \\ \parallel \\ R--C--NH_2 \end{array} \xrightarrow{PCl_5 \text{ or } PCl_3} \qquad RCN + H_2O \end{array}$$

$$R - C - NH_2 \xrightarrow{PCI_5} R - C - NH^-PCI_4 \xrightarrow{+ -HCI} R - C - N = PCI_3 \longrightarrow R - C = N + POCI_3$$

5. Reduction:

$$R-C-NH_{2} \xrightarrow{Na/C_{2}H_{5}OH} R-CH_{2}NH_{2} + H_{2}O$$

$$0$$

$$R-C-NH_{2} \xrightarrow{Li^{\theta}AlH_{4}^{\Theta}} R-CH_{2}-NH_{2}$$

PROBLEMS

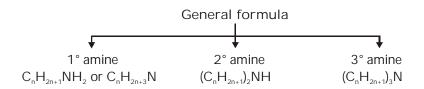
1. Predict the products of following reaction

(a)
$$NH \xrightarrow{NaOH} H_2O$$
 (b) $NH_2 \xrightarrow{NH_2} H_2O$ $COOH \xrightarrow{heat} H_2SO_4 \xrightarrow{H_2O} H_2O$ (d) $H-C-O-CH_2-CH_3 + NH_2$

- 2. Write balanced equation, having all the organic product, for the reaction of phenylacetamide with (a) hot HCl (aq) (b) hot NaOH (aq)
- 3. What products would you expect from acidic & basic hydrolysis of each of the following amides ?

 (a) N,N Diethylbenzamide

(c) HOOC –CH–NH–C–CH–NH₂
$$\stackrel{\text{O}}{\underset{\text{I}}{\text{II}}}$$
 $\stackrel{\text{CH}}{\underset{\text{CH}_3}{\text{CH}_2}}$ $\stackrel{\text{CH}_2}{\underset{\text{C}_6\text{H}_5}{\text{H}_5}}$


$$(d) \xrightarrow{\mathsf{H-C-O-C_2H_5}} + \underbrace{\qquad \qquad \qquad }_{\mathsf{NH_2}} \xrightarrow{\mathsf{NH_2}} + C_2\mathsf{H_5OH}$$

28

ALIPHATIC AMINES

Amines are derivatives of ammonia in which one or more hydrogen atoms are replaced by alkyl/Aryl group.

Amines are classified as primary(p) or 1°, secondary(s) or 2° or tertiary(t) or 3° depending on the number of alkyl/Aryl groups attached to nitrogen atom.

☐ General Method of Preparation :

(1) Ammonolysis of alkyl halides and alcohol:

(a) From Ammonolysis of alkyl halides [Hofmann's ammonolysis]:

When an aqueous solution of ammonia is heated with alkyl halide all the three types of amines and quaternary ammonium salt are formed.

$$R - X \qquad \xrightarrow{NH_3/\Delta} \qquad R - NH_2 \xrightarrow{R-X} R_2NH \xrightarrow{R-X} R_3N \xrightarrow{R-X} R_4 \overset{\oplus}{NX}$$

(Quaternary ammonium

salt)

If ammonia is taken in excess, 1° amine is the main product.

(b) Ammonolysis of alcohols:

When ROH and $\mathrm{NH_3}$ are passed over $\mathrm{Al_2O_3}$ or $\mathrm{ThO_2}$ at 350° C all the three types of amines are formed.

$$R - OH \qquad \xrightarrow{NH_3 \atop Al_2O_3 / 400^{\circ}C} \qquad R - NH_2 \qquad \xrightarrow{R - OH \atop Al_2O_3} \qquad R_2NH \qquad \xrightarrow{R - OH \atop Al_2O_3} \qquad R_3N$$

Note: (i) Quaternary ammonium hydroxide is not formed due to steric hindrance.

(ii) If excess of ammonia is used, then main product will be primary amine.

(2) By reduction:

(a) With RCONH₂: RCONH₂
$$\xrightarrow{\text{LIAIH}_4}$$
 RCH₂NH₂

(b) With RCN: RCN
$$\xrightarrow{Sn/HCl}$$
 RCH₂NH₂

This reaction is called mendius reaction.

The reduction of alkyl isocynides with sodium and ethanol gives secondary amines.

$$\begin{array}{ccc} R \text{—NC} & & & \frac{\text{C}_2\text{H}_5\text{OH/Na}}{\text{or 4[H]}} \rightarrow & R\text{NHCH}_3 \end{array}$$

(c) With Oximes:
$$R-CH=N-OH$$
 $\xrightarrow{LiAlH_4}$ $RCH_2-NH_2 + H_2O$

(d) With RNO₂: RNO₂
$$\xrightarrow{\text{Sn/HCl}}$$
 RNH₂ + 2H₂O

(3) By hydrolysis of:

(a) **R—NC**: Alkyl isocyanide undergoes hydrolysis with mineral acid and forms alkyl amine.

$$R$$
— $NC + 2H_2O$ — HCI $RNH_2 + HCOOH$

(b) RNCO: Alkyl isocyanate undergoes hydrolysis on heating with KOH.

$$R-N=CO + 2 KOH \longrightarrow RNH_2 + K_2CO_3$$

(4) From Grignard reagent:

Alkyl magnesium iodide reacts with chloramine to yield alkyl amine.

$$R-Mg-I + CI-NH_2 \longrightarrow R-NH_2 + Mg \left\langle \begin{matrix} I \\ CI \end{matrix} \right.$$

(5) Gabriel phthalimide synthesis:

Phthalimide is first treated with alcoholic KOH to obtain potassium phthalimide which is then treated with alkyl iodide. Then alkyl phthalimide on hydrolysis yields alkylamine. This method is used in the formation of pure aliphatic primary amines.

(6) By Hofmann's bromamide reaction (Hofmann's Hypobromite reaction): (Discussed earlier)

(7) Curtius reaction:

Acid chloride on treatment with sodium azide give acid azides which on pyrolysis gives isocyanates which on hydrolysis gives corresponding amines.

$$\begin{array}{c} R-C-CI \xrightarrow{NaN_3} RCON_3 \xrightarrow{-N_2} R-N=C=O \xrightarrow{H_2O} R-NH_2 \\ O \xrightarrow{Acylazide} \end{array}$$

DOCDAN Material (Fig. 1) And the condens On the Content of the Decision to Alicha dis Amissian Frank Of Produced Located 9 on

30

In presence of conc. H₂SO₄ alkanoic acid reacts with hydrazoic acid (N₃H) to yield alkylamine.

$$R \text{—COOH} \ + \ N_3 H \qquad \xrightarrow{\quad \text{Conc. H}_2 \text{SO}_4 \quad} \qquad R \text{—NH}_2 \ + \ N_2 \ + \ CO_2$$

Mechanism:

$$\begin{array}{c} O \\ R - C + H^{\oplus} \longrightarrow R - C \oplus & HN_3 \longrightarrow R - C - OH & H^+ \longrightarrow R - C & OH & H^- \longrightarrow R - C - N - N = N \\ OH & OH & H - N - N = N & H - N - N = N & H - N - N = N \\ \end{array}$$

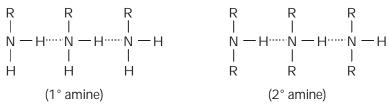
$$\begin{array}{c} R - N = C = O \bigoplus_{\text{isocyanate}} \bigoplus_{\text{constant}} \bigoplus_{\text{$$

(9) Lossen rearrangement reaction:

In this reaction hydroxamic acid undergoes rearrangement and gives alkyl amine.

$$R-C-NH-OH \xrightarrow{(i) R^{1}-C-CI} R-NH_{2}$$

(10) Reductive amination of aldehyde and ketone:

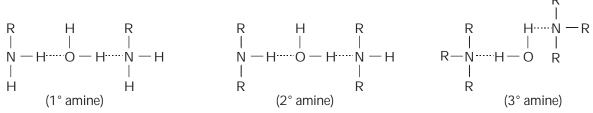

$$C=O + NH_3 + H_2$$
 \xrightarrow{Ni} $CH-NH_2 + H_2O$ 1° amine

$$C=O + RNH_2 + H_2$$
 \xrightarrow{Ni} $CH=NHR + H_2O$ 2° amine

$$C=O + R_2NH + H_2$$
 \xrightarrow{Ni} $CH - NR_2 + H_2O$ 3° amine

Physical Properties:

- (i) CH_3NH_2 is gas and $C_2H_5NH_2$ is a volatile liquid.
- (ii) Higher amines have fishy smell.
- (iii) H –Bonding (weaker as compared to H—O —H).



In 3° amine (due to absence of H-atom) H-bonding is not possible.

(iv) **Boiling point:** Due to small intermolecular association the b.p. of 1° and 2° amines are lower than those of alcohols of comparable molecular weight. The boiling point of 3° amines which form no H–bonds are near to those of alkanes of comparable molecular weight.

Boiling point $\boldsymbol{\alpha}$ molecular weight

(v) **Solubility:** Low molecular weight amines (< six carbon) are very soluble in water. The water solubility of amines decreases with increasing size of alkyl group.

Order of solubility \longrightarrow p- amine > s- amine > t- amine

\Box Chemical Properties:

- (i) Basic character of amines is due to the presence of lone pair of electrons on the N atom.
- (ii) Basic strength depends on electron donating tendency.

Basicity order in aqeous solution and in liquid phase. $Et_2 NH > Et_3 N > Et NH_2$. Due to steric hindrance in 3° amine, it is less basic, than 2° amine.

Steric hindrance of three $-C_2H_5$ group protect the lone pair of nitrogen from the attack of H^{\oplus} .

 $\label{eq:but-start} \text{But in gaseous phase basic order is} \qquad Et_3N > Et_2NH > EtNH_2$

Some other basic order of different amine if alkyl group would be change

Alkyl groups (R–)

Relative base strength in H₂O

$$R_2NH > RNH_2 > R_3N > NH_3$$

$$R_2NH > R_3N > RNH_2 > NH_3$$

$$RNH_2 > R_2NH > R_3N > NH_3$$

(iv)
$$(CH_3)_3C$$
 –

$$NH_3 > RNH_2 > R_2NH > R_3N$$

node06\B0B0-BA\Kota\UEE(Advanced)\Leader\Che\Shee\\Carboxylic Acid & II's Derivative, Aliphatic Amines\Eng\01_Carboxylicacid & a

□ Special point :

- (I) Tertiary amine is less basic then secondary due to following reasons:
- (i) **Steric hindrance:** In tertiary amines (R_3N) , three alkyl groups attached to N are bulkier and as such exert steric hindrance.
- (ii) Decrease in hydration:

In tertiary amine

In secondary amine

$$R_2$$
 $\stackrel{\oplus}{N}$ $\stackrel{H}{\leftarrow}$ O $\stackrel{H}{\leftarrow}$ O $\stackrel{H}{\leftarrow}$ O $\stackrel{H}{\leftarrow}$ O $\stackrel{H}{\leftarrow}$ O $\stackrel{H}{\leftarrow}$ O

Protonated t-amine can form H-bonding with water molecule only at one point [less stable]

Protonated s-amine can form H-bonding with water molecules at two points (more stable)

3° amine are less stable as compare to 2° amine due to low hydration so less basic.

(II) The basic strength of aniline is less than aliphatic amines as the lone pair of electron present on N- atom interact with the delocalized π - orbital of benzene ring. Hence it is less available for protonation on N-atom.

- (2) Reactions showing basic nature :
 - (a) It reacts with acids to form salts.

$$RNH_2 + HCl$$
 \longrightarrow $[RNH_3]Cl$ $\xrightarrow{\Delta}$ R — $Cl + NH_3$

Alkyl ammonium chloride

(Acidic salt)

$$2RNH_2 \xrightarrow{H_2SO_4} (RNH_3)_2 SO_4^{-2} Alkyl ammonium sulphate$$

(b) Amines reacts with auric acid and platinic chlorides in presence of HCl to form double salts. These double salts decompose on ignition to pure metal. Therefore the formation and decomposition of the double salts is used for determining the molecular weight of amines.

$$2R-NH_2 + PtCI_4 + 2HCI_3 \longrightarrow [RNH_3]_2PtCI_6^{-2}$$

(chloro platinic acid) Alkyl ammonium chloroplatinate

$$RNH_2 + \underline{AuCl_3 + HCl_3} \longrightarrow [RNH_3]AuCl_4$$

[Chloroauric acid]

Alkyl ammonium chloroaurate

(3) Reaction with alkyl halides:

Alkyl amine reacts with alkyl halides and form sec., ter. amines and quaternary ammonium salt.

$$RNH_2 + R - X \xrightarrow{-HX} R_2NH \xrightarrow{RX} R_3N \xrightarrow{RX} R_3^{HX}$$

♦ Special Point :

Separation of 1° , 2° and 3° amines :

1°, 2°, 3° amine +
$$R_4NX$$
 $\xrightarrow{\text{distillation}}$ Mixture of 1°, 2°, 3° amine R_4NX does not undergo distillation.

Mixture of 1° , 2° , 3° amine can be separated by following methods.

- (i) Fractional distillation: The mixture of amines may be separated by fractional distillation because their boiling points are quite different. It is used in industry.
- (ii) **Hinsberg method:** In this method mixture of amines is separated by using benzene sulphonyl chloride (Hinsberg's reagent).

$$\begin{array}{ccc} {\rm C_6H_5SO_2Cl+1^{\circ}~amine} & \longrightarrow & {\rm Product} & \xrightarrow{{\rm KOH}} & {\rm dissolve} \\ \\ {\rm C_6H_5SO_2Cl+2^{\circ}~amine} & \longrightarrow & {\rm Product} & \xrightarrow{{\rm KOH}} & {\rm insoluble} \end{array}$$

3° amine does not react with benzene sulphonyl chloride.

(iii) Hofmann method: In this method mixture of amines is separated by using ethyl oxalate.

$$1^{\circ}$$
 amine + ethyl oxalate \longrightarrow solid product 2° amine + ethyl oxalate \longrightarrow liquid product 3° amine + ethyl oxalate \longrightarrow No reaction

(4) Acetylation : Acetylation takes place when alkyl amine combines with acetyl chloride or acetic anhydride.

$$RNH_2 + CICOCH_3 \longrightarrow RNHCOCH_3 + HCl$$
 $(N-alkyl acetamide)$
 $RNH_2 + (CH_3CO)_2O \longrightarrow RNHCOCH_3 + CH_3COOH$
 $(N-alkyl acetamide)$

noteo6\B0B0-BA\kaa\EE4dvanced\Leade\Che\Shee\\Carboxwle Add & it's Derivative, Alighalic Amines\Eng\O1 Carboxwleadd & a

(5) Benzoylation (Schotten baumann reaction):

$$\begin{array}{c} \mathsf{COCI} & \qquad \qquad \mathsf{CONHR} \\ \hline \bigcirc \ + \ \mathsf{H-NH-R} & \longrightarrow & \hline \bigcirc \ + \ \mathsf{HCI} \end{array}$$

Benzoylchloride

N-alkyl benzamide

(6) Acidic nature: Amines are very weak acids only 1° and 2° amines show acidic nature.

$$R \hspace{-0.5cm} -\hspace{-0.5cm} N H_2 \ + \ N a \hspace{0.5cm} -\hspace{-0.5cm} \longrightarrow \hspace{0.5cm} R \overset{\scriptscriptstyle \Theta}{\mathsf{N}} H \overset{\scriptscriptstyle \oplus}{\mathsf{N}} a \ + \ \frac{1}{2} \, H_2$$

N-alkyl sodamide

(7) Reaction with Tilden reagent:

When alkylamine reacts with nitrosyl chloride (Tilden reagent) alkyl chloride is formed. This reaction is important in interconversion.

(8) Reaction with phosgene:

$$R-NH_2 + COCl_2 \longrightarrow R-N=C=O + 2HCl$$
Alkyl isocyanate

(9) **Reaction with halogen:** The hydrogen atoms of the amino group are replaced by halogen atoms in presence of alkali solution.

$$R$$
— $NH_2 + Br_2 \xrightarrow{NaOH \atop \text{or KOH } \Delta} R$ — NH — $Br + HBr$

N– bromo alkylamine

N, N-dibromo alkyl amine

(10) Reaction with aldehydes: Alkylamine reacts additively with aldehydes to form α - hydroxyl amines which are changed to schiff bases with elimination of water molecule.

$$R-NH_2 + O = C-R \xrightarrow{PH(4.5-6.0)} R-N-C-R \xrightarrow{OH_2O} RCH = NR \text{ (Schiff's base)}$$

(11) Mannich reaction:

(12) Oxidation:

◆ KMnO₄/H⁺: Alkylamine on oxidation with acidified potassium permaganate forms aldimine which on hydrolysis gives aldehyde and ammonia.

♦ With H₂SO₅ (Caro's acid) Or H₂O₂/Fe⁺² (Fenton reagent) :

(13) Carbylamine Reaction (Iso cyanide test):

When alkyl amine's heated with chloroform and alc. KOH alkyl isocyanide is formed which has very bad smell.

This test is also given by aniline. This is a test for p-amines.

$$R$$
— $NH_2 + CHCl_3 + 3 KOH$ — R — R $=$ $C + 3KCl + 3H_2O$

Nucleophile RNH2 attacks electrophilic intermediate [:CCl2] dichlorocarbene.

Mechanism:

$$CHCI_{3} + \overset{\bullet}{O}H \xrightarrow{-H_{2}O} CI \xrightarrow{C} \overset{\bullet}{CI} \xrightarrow{CI} : CCI_{2}$$

$$CI \xrightarrow{Dichlorocarbene} CI \xrightarrow{R-NH_{2}} : CCI_{2} \xrightarrow{r.d.s} R \xrightarrow{H} \overset{\bullet}{O} \xrightarrow{CI} \xrightarrow{-HCI} R \xrightarrow{H} \overset{\bullet}{O} \xrightarrow{CI} CI \xrightarrow{R-N} R \xrightarrow{R} C$$

(14) Hofmann's mustard oil test:

When alkyl amine is heated with carbon disulphide and mercuric chloride alkyl isothiocyanate is formed which has smell like mustard oil.

$$R-NH_{2} + C=S \longrightarrow R-NH-C-SH \xrightarrow{HgCl_{2}} R-N=C=S + HgS + 2HCl$$

$$Alkyl isothiocyanate$$

$$R_{2}NH + C=S \longrightarrow R_{2}N-C-SH \xrightarrow{HgCl_{2}} No reaction$$

$$R_{3}N + C=S \longrightarrow No reaction.$$

node06\B0B0-BA\Kota\LEE(Advanced)\Leader\Che\Shee\\Carboxylic Acid & II's Derivative, Aliphatic Amines\Eng\01_Carboxyli

Which statement is not true for primary amines Ex.

- (A) These forms salt will acids
- (B) Gives alcohols on hydrolysis
- (C) Gives carbyl amine reaction
- (D) Gives musturd oil test

Sol. (B)

36

(15) Reaction with $HNO_2(NaNO_2 + HCl \text{ or } H_2SO_4)$:

Primary amines react with nitrous acid to produce nitrogen gas [seen as bubbles] (a)

$$R$$
— NH_2 + $HONO$

$$\longrightarrow$$

$$\longrightarrow$$
 R—OH + N₂↑ + H₂O

$$CH_3 NH_2 + HNO_2$$

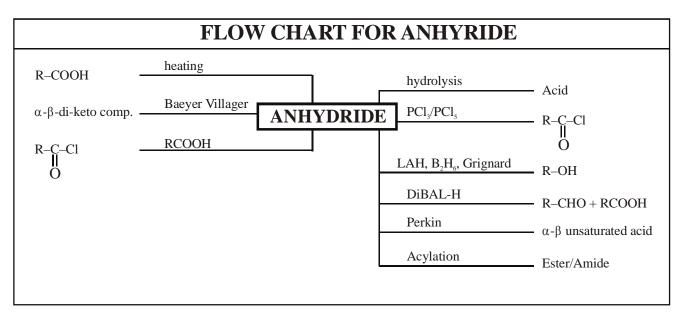
$$\text{CH}_3 \text{ NH}_2 + \text{HNO}_2 \longrightarrow \text{CH}_3 \text{--O--CH}_3$$

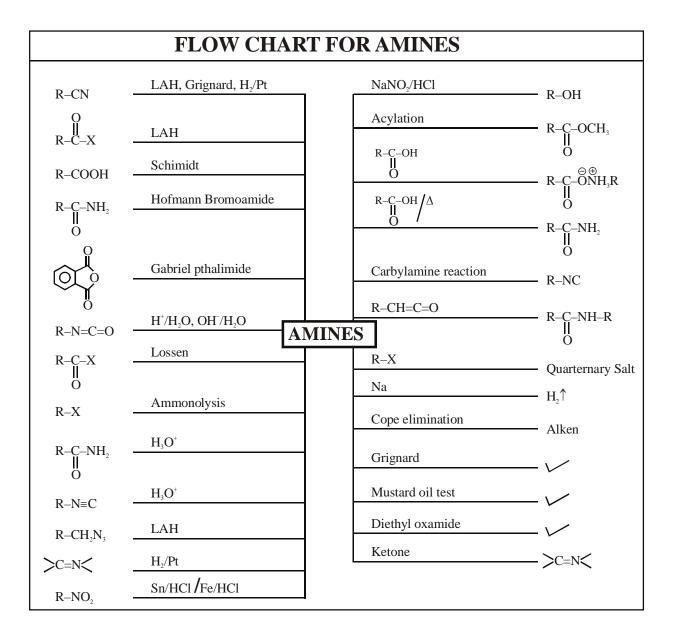
(b)
$$R_2 NH + HONO$$

$$\longrightarrow$$
 R₂ N—NO + H₂O

N-nitroso amine (Yellow oily layer)


This is called libbermann's nitroso test


(c)


 $R_{3}N \, + \, HONO \qquad \longrightarrow \qquad R_{3}\overset{\oplus}{N}HN\overset{\odot}{O}_{2} \quad Trialkyl \, ammonium \, nitrite \, (Soluble \, in \, water)$

Points to Remember:

- (i) Nitrosoamines are carcinogens (Cancer causing agents)
- Amines can have chiral N-atom but cannot be resolved into enantiomeric forms because of (ii) rapid inversion of one enantiomeric form into the other.
- The Schiff's bases formed by reaction of 1°-amines and aldehyde/ketones are also called anils. (iii)
- In Hoffmann test CS_2 + $HgCl_2$ are used and in Hinsberg test benzene sulphonyl chloride (C₆H₅SO₂Cl) is used.

CARBOXYLIC ACIDS AND IT'S DERIVATIVE, ALIPHATIC AMINES

EXERCISE # O-I

- In which reaction product is hydrocarbon? 1.
 - (A) RCOOK $\xrightarrow{\text{Electrolysis}}$

(B) RCOOAg $\xrightarrow{I_2/\Delta}$

(C) CH_3 - CH_3 $\xrightarrow{Cl_2/h\nu}$

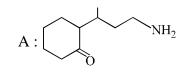
(D) $CH_3 - C - C1 \xrightarrow{C_2H_5OH}$

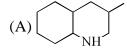
CA0001

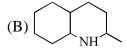
- 2. Which of the following set of reaction can not prepare carboxylic acid as the final product:
 - (A) $R-MgX + O=C=O \xrightarrow{dry \text{ ether}} A \xrightarrow{H_3O^+} (B) R-CN \xrightarrow{(i) SnCl_2 + HCl} (ii) H_2O/H^+$

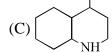
(C)
$$CH_2CH_2CH_3 \xrightarrow{KMnO_4,OH} A \xrightarrow{H_3O^+} (D) CH_3(CH_2)_8CH_2OH \xrightarrow{CrO_3} \xrightarrow{H_2SO_4}$$

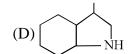
CA0002


3. In the given reaction,


$$C_{6}H_{5} - C - CH_{3} \xrightarrow{\text{(i) } Br_{2}/KOH} CHBr_{3} + [X]$$


- [X] will be:
- (A) C_6H_5 –CHO
- (B) C_6H_5COOH (C) $C_6H_5-CH_2OH$ (D) CH_3COOH


CA0003


4. Reductive amination of A forms:

CA0004

- 5. In the given reaction:
 - [X] + Acetic anhydride \longrightarrow Aspirin
 - [X] will be:
 - (A) Benzoic acid

(B) o-methoxybenzoic acid

(C) o-Hydroxybenzoic acid

(D) p-Hydroxybenzoic acid

- Arrange following compounds in decreasing order of reactivity for hydrolysis reaction: 6.
 - (I) C₆H₅COCl

(II)
$$NO_2$$
 COC

(IV) OHC
$$-\left\langle \bigcirc \right\rangle$$
- $C-C$

(A) II > IV > I > III

(B) II > IV > III > I

(C) I > II > III > IV

(D) IV > III > II > I

CA0006

Which one of the following compounds gives carboxylic acid with HNO₂? 7.

$$(A) C6H5 - C - Cl$$

(B)
$$C_6H_5CONH_2$$

$$(C) CH_3 - C - O - C - CH_3$$

CA0007

8. In the reaction sequence,

$$CH_{3} - C - H \xrightarrow{HCN}_{OH} (A) \xrightarrow{H_{2}O/H^{\oplus}} Product$$

Product will be:

$$\begin{array}{c} \text{OH} \\ \mid \\ \text{(B) HOOC-C-CH}_3 \\ \mid \\ \text{H} \end{array}$$

(C) Mixture of
$$CH_3$$
 – C – $COOH$ and $HOOC$ – C – CH_3 (D) CH_3 – CH – $CONH_2$ H

CA0008

- Arrange these esters in decreasing order of ease of esterfication with CH₃OH/H[⊕]: 9.
 - (I) CH₃ -CH -COOH ĊH,

(II)
$$CH_3 - CH - CH_2 - COOH$$

 CH_3

(III)
$$CH_3 - C - COOH$$

 CH_3

(A) II > I > III > IV

- (B) I > II > III > IV (C) III > IV > II > I (D) IV > III > II > I

- Which optically active compound on reduction with LiAlH₄ will give optically inactive compound? 10.
 - (A) $CH_3 CH COOH$ OCH_3

- (B) $CH_3 CH_2 CH COOH$ ÓН
- (C) $CH_3 CH_2 CH COOH$ CH_2OH
- (D) $CH_3 CH CH_2 COOH$

CA0010

- 11. Which will form lactone on treatment with NaOH?
 - (A) α-Bromo acid
- (B) β-Bromo acid
- (C) β -Hydroxy acid (D) δ -Bromo acid

CA0011

In the given reaction: **12.**

$$\xrightarrow{\text{COOH}} \xrightarrow{\text{HBr}} [X]$$

[X] will be:

CA0012

13. Correct order of decarboxylation

(c)

(A)
$$a > b > c > d$$

(B)
$$c > d > b > a$$

(b)

(d)

(C)
$$c > d > a > b$$

(D)
$$d > c > a > b$$

- N-Ethyl pthalimide on hydrolysis gives:
 - (A) Methyl alcohol
- (B) Ethyl amine
- (C) Dimethyl amine (D) Diethyl amine

CA0014

15. In the given reaction:

$$[Q] \xleftarrow{\text{NaBH}_4} \stackrel{O}{\longrightarrow} \underbrace{\text{LiAlH}_4} \rightarrow [P]$$

[P] and [Q] respectively be:

(A)
$$CH_2OH - CH_2 - CH_2 - CH_2OH$$
 and OH

(B)
$$O$$
 and $CH_2OH - CH_2 - CH_2 - CH_2OH$ OH

(C) Both are
$$O$$

(D) Both are
$$CH_2OH - CH_2 - CH_2 - CH - CH_2OH$$

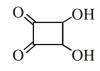
CA0015

16.
$$Ph - C - Cl + O$$

$$MH \longrightarrow A$$
Major 'A' is
$$(A) Ph - C - N \longrightarrow O$$

$$(A) Ph - C - N O$$

$$(C) Ph - C - N$$


- $CH_3NH_2 \xrightarrow{(CH_2)_2O} (A)$ **17.**
 - (A) 'A' is more basic than CH₃NH₂
- (B) 'A' is less basic than CH₃NH₂

(C) 'A' is Ter-amine

(D) None

CA0017

Which of the following can released CO₂ with NaHCO₃. 18.

(i)

- (ii)
- (iii)

- (A) (i), (ii) & (iii)
- (B) (i) & (ii)
- (C) (ii) & (iii)
- (D) (i) & (ii)

CA0018

19. Sodium bicarbonate reacts with salicylic acid to form:

CA0019

- Which of the following diazonium salt is relatively stable at 0-5°C: **20.**
 - $(A) CH_3-N=N\}^{\oplus}Cl^-$

(B) $(CH_3)_2CH-N=N$ $\}^{\oplus}Cl^{-}$

 $(C) C_6H_5-N=N\}^{\oplus}Cl^{-}$

(D) $(CH_3)_3C-N\equiv N\}^{\oplus}Cl^{-}$

CA0020

- Which is most volatile? 21.
 - (A) $CH_3CH_2CH_2NH_2$ (B) $(CH_3)_3N$
- (C) CH_3CH_2 NH CH_3
- (D) CH₃OH

CA0021

- 22. $C_6H_5CONH_2 \xrightarrow{Br_2/OD^{\Theta}} P$, 'P' is:
 - (A) $C_6H_5COND_2$

(B) $C_6H_5ND_2$

(C) C_6H_5NHD

(D) $C_6H_5NH_2$

23. In the given reaction:

$$CH_{3} - CH - C - CH_{2} - CH_{3} \xrightarrow{CF_{3}COOOH} [X] \text{ major product}$$

$$CH_{3}$$

[X] will be:

(A)
$$CH_3 - CH_2 - C - O - CH - CH_3$$
 (B) $CH_3 - CH - C - O - CH_2 - CH_3$ CH_3

(B)
$$CH_3 - CH - C - O - CH_2 - CH_3$$
 CH_3

$$(C) CH_3 - C - OC(CH_3)_3$$

CA0023

24. In the given reaction sequence:

$$CH_2$$
 - COOH $\xrightarrow{\Delta}$ (A) $\xrightarrow{CH_3$ - CH_2 NH $_2$ / Δ (B) CH_2 - COOH

(B) will be:

$$(A) \begin{tabular}{c} CH_2 - C - NH - C_2H_5 \\ | CH_2 - C - NH - C_2H_5 \\ | CH_2 - C - NH - C_2H_5 \\ | O \end{tabular}$$

$$(B) CH_{2} - C > N-C_{2}H_{5}$$

$$CH_{2} - C > N - C_{2}H_{5}$$

$$O$$

$$\begin{array}{c} \operatorname{CH}_2\operatorname{-COOH} \\ (\operatorname{C}) \mid \\ \operatorname{CH}_2\operatorname{-COOH} \end{array}$$

$$\begin{array}{c} & \text{O} \\ & || \\ \text{CH}_2 - \text{C} - \text{NH} - \text{C}_2 \text{H}_5 \\ & || \\ & \text{CH}_2 - \text{COOH} \end{array}$$

CA0024

25. In the given reaction:

$$CH_3CHO \xrightarrow{\text{(i) NaCN/HCl}} (A) \xrightarrow{\text{Fenton's}} (B)$$

- (B) will be:
- (A) Acetic acid
- (B) Oxalic acid (C) Pyruvic acid
- (D) Citric acid

CA0025

46

Which of the following is/are present in mixture of product: 1.

$$C-O-CH_2-CH_3$$

$$C-O-CH_2-CH_3$$

$$HOH/H^{\oplus}$$
Mixture of product

CA0026

- 2. Mixture of 1° , 2° and 3° amines can be separated by:
 - (A) Hinsberg's method

(B) Hofmann's isocyanide test

(C) Fractional distillation

(D) NaNO₂ HCl

CA0027

- 3. RCOOR' can be prepared by:
 - (A) Esterification of RCOOH
 - (B) Reaction of CH₃CH=CH₂ with methanol
 - (C) Baeyer-Villiger oxidation of RCOR' with peroxy acid
 - (D) reaction of RCOCl with R'OH

CA0028

- 4. Which of the following amine reacts with Hinsberg reagent to give base soluble product:-
 - (A) Neopentyl amine
- (B) sec propyl amine (C) diethyl amine
- (D) ethyl methyl amine

CA0029

5. Which is/are correct reaction(s):

$$(A) \bigcirc -Cl + NH_3 \xrightarrow{\Delta} \bigcirc + NH_4C$$

$$(C) \xrightarrow{\hspace{1cm}} Cl + NH_3 \longrightarrow \begin{array}{c} \\ \\ \end{array} + NH_4Cl \qquad (D) \xrightarrow{\hspace{1cm}} NH_2 + HNO_2 \xrightarrow{\hspace{1cm}} \begin{array}{c} \\ \\ \end{array}$$

(D)
$$NH_2 + HNO_2 \xrightarrow{0^{\circ}C} OH$$

CA0030

- 6. Which of the following will form acetyl chloride with PCl₅?
 - (A) MeCOOH
- (B) MeCOOMe
- (C) MeCOOCOMe
- (D) Me-CONH₂

CA0031

- 7. Sodium salt of which compound on electrolysis does not give hydrocarbon:
 - (A) C_6H_5COOH
- (B) HCOOH
- (C) Me₃C-COOH
- (D) COOH-CH=CH-COOH

- Among the following, which statement is not correct? 8.
 - -OH will not respond to haloform test
 - (B) Schiff's regent and Schiff's base are different compounds
 - (C) Fehling's solution is a good reagent to detect aromatic aldehydes
 - (D) Both aldehyde and ketone can react with 2,4-dinitrophenylhydrazise reagent

CA0033

9.
$$N-H \longrightarrow P \xrightarrow{CH_3-CH_2-I} R \xrightarrow{H_3O^+} S + T$$

$$N-H \longrightarrow N_{AOH} \longrightarrow Q + Na_2CO_3$$

If T can evolve effervescence of CO₂ with a NaHCO₃, then correct statement(s) is/are:

- (A) S & Q can be distinguished by dye azo test
- (B) T is most acidic among all isomeric benzenoid dicarboxylic acid
- (C) Q & S can be distinguished by mustered oil test
- (D) P, Q & T all are soluble in a NaHCO₃

CA0034

- Acetic anhydride and ammonia gives the product: **10.**
 - (A) CH₃CONH₂
- (B) CH₃CONHCH₃ (C) CH₃CN (D) CH₃COONH₄

CA0035

11.
$$CH_3$$
— C — C — CH_2 — CH_3 $\stackrel{18}{\longleftarrow}$ Ethanoic acid + Ethanol

Isotopic oxygen of water will be present with

- (A) Ethanoic acid
- (B) Ethanol
- (C) After some time it will also be present in some molecules of ester
- (D) None of these

CA0036

Which one of the following compounds will give HVZ reaction? **12.**

 $RCH_2CONH_2 + NaOBr \longrightarrow ?$ **13.**

Rate of reaction will be faster if 'R' is

- (A) CH₂ -
- (B) $C_{2}H_{5}$ –
- (C) NO₂ –
- (D) CN -

CA0038

Which of the following carboxylic acids do not undergo decarboxylation simply on heating? 14.

(A)
$$F_3C$$
-C-OH (B) H_2C =CH-C-OH (C) OH

CA0039

- Which of the following compounds will give acetic acid with $KMnO_4/H^{\oplus}/\Delta$: **15.**
 - (A) CH₃-CHO

(B) CH₃-CH=CH-CH₃

(C) $CH_3-C\equiv C-CH_3$

(D) CH₃CH₂OH

CA0040

- **16.** Hofmann degradation is given by:
 - (A) Succinimide
- (B) Acid chloride
- (C) Acid anhydride
- (D) Acetamide

CA0041

- **17.** The presence of primary amine can be confirmed by its reaction with:
 - (A) HNO₂
- (B) CHCl₃ + NaOH (C) CS₂ & HgCl₂
- (D) H_2SO_4

CA0042

- **18.** Total number of compounds which are soluble in hot a NaOH are:
 - (i) Salicyclic acid
- (ii) Aspirine
- (iii) Carbolic acid
- (iv) Acetic acid

- (v) Succinic anhydride (vi) Cyclohexanone (vii) Benzene sulphonamide (viii) Cyclohexene
- (A) 5

- (B) 6
- (C) 7
- (D) 8

CA0043

Number of oxidation reactions in which organic reactant gets oxidised & one of the major product **19.** is carboxylic acid/salt:

$$(A) \bigcirc C CH_3 \longrightarrow NaOI$$

(B)
$$H \xrightarrow{CH_2OH} OH \xrightarrow{H_5IO_6}$$

$$(D) \overbrace{\hspace{1cm}}^{NC} \xrightarrow{\hspace{1cm} H_3O^{\oplus}}$$

20.
$$H_3C-C-O-C=CH_2 + H_2O \xrightarrow{H_3O^+} X + Y$$
Ph

X and Y are:

(A) X is
$$CH_3$$
– C – O – CH_2 – Ph

(B) Y is PhCHO

(D) X is Ph–C–CH
$$_3$$

CA0045

Which of the following compound react with $\ensuremath{\mathsf{HNO}}_2$: 21.

$$(A) \longrightarrow NO_2 \qquad (B) \longrightarrow NO_2 \qquad (C) \longrightarrow NO_2 \qquad (D) \left\langle \left(\begin{array}{ccc} & & & \\ & & \\ & & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

(B)
$$\longrightarrow$$
 NO₂

EXERCISE # S-I

Matching Type Questions

1. Match the following question :

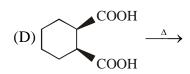
Column - I

(Reaction)

(A) HOOC
$$\xrightarrow{\text{CH}_3}$$
 COOH $\xrightarrow{\Delta}$ $\xrightarrow{\Delta}$ C_2H_5

Column-II

(Products)


(B) HOOC
$$\stackrel{\text{CH}_3}{\longrightarrow}$$
 COOH $\stackrel{\triangle}{\longrightarrow}$

(Q) Racemic mixture

(C)
$$COOH$$

$$CH_3$$

(R) Meso comp.

(S) CO₂ gas will evolve

CA0047

2. Match the following question :

Column I

(Organic compounds oxidised by $\mathrm{HIO_4}$)

(A) CH₃COCHO

(B) 1,2-cyclohexane dione

(C) PhCH (OH) CHO

(D) CH₃CH₂CH (OH) COCH₃

Column II

 $(Products of HIO_4 oxidation)$

(P) PhCH = O + HCOOH

 ${\rm (Q)~CH_3CH_2CHO~+~HOOCCH_3}$

(R) HOOC (CH₂)₄COOH

(S) CH₃COOH + HCOOH

3. Match the following question:

Column I (Reactions)

(A)
$$CH_3NH_2 + \bigcirc$$

(B)
$$(CH_3)_2NH + C_6H_5COCl$$

(C)
$$\langle \bigcirc \rangle$$
 -CHO + $\langle \bigcirc \rangle$ -NH

(D)
$$CH_3NH_2 + \bigcirc - SO_2C$$

Column II (Products)

(P)
$$\langle \bigcirc \rangle$$
 $-N = CH - \langle \bigcirc \rangle$

$$(Q) CH_3 - NH - \bigcup_{i=0}^{G} (Q) CH_3 - NH - \bigcup_{i=0}^{G}$$

(R)
$$(CH_3)_2N-C$$

CA0049

4. Match the following question :

Column I

(Correct about product)

$$(A) R - CN \xrightarrow{H_3O^+}$$

(B)
$$R - NH_2 \xrightarrow{CHCl_3} KOH$$

(C)
$$R - NH_2 \xrightarrow{NaNO_2} HCl$$

(D)
$$R_2NH \xrightarrow{NaNO_2} HCl$$

Column II

- (P) Product is yellow oily liquid
- (Q) Gives red colour with CAN
- (R) Gives fruity smell with CH₃OH
- (S) Foul smelling compound is formed.

CA0050

5. Match the following question :

Column I

(A) $PhCONH_2 \longrightarrow Ph-C \equiv N$

Column II

 $(P) P_2O_5$

(B)
$$CH_2OH-(CH_2)_2-CHOH-C_6H_5$$
 (Q) LiAlH₄

(C)
$$CH_3 - C - OCH_3 \longrightarrow CH_3CH = O$$

(R) H₂/Pd–BaSO₄

(D)
$$CH_3COCl \longrightarrow CH_3-CHO$$

(S) DIBALH

Column I

n I Column II

(A) RCN $\xrightarrow{\text{reduction}}$

(P) 1° Amine

(B) RCN $\xrightarrow{(i)CH_3MgBr}$

(Q) Alcohol

(C) RNC $\xrightarrow{\text{hydrolysis}}$

(R) Ketone

(D) RNH₂ $\xrightarrow{\text{HNO}_2}$

(S) Acid

CA0052

7. Find out number of reactions which involve electron dificient nitrogen [Nitrene character] during reaction mechanism.

(a)
$$Ph$$
 $C = N$ OH OH OH

CA0053

(b)
$$H_3C - C - Ph \xrightarrow{PhCO_3H}$$

CA0054

(c)
$$CH_3 - C - NH_2 \xrightarrow{Br_2 + KOH}$$

CA0055

$$\begin{array}{ccc} O \\ II \\ (d) & Ph-C-OH & \xrightarrow{\quad N_3H, \, Dilute \, H_2SO_4 \quad} \end{array}$$

CA0056

(e)
$$CH_3 - \overset{O}{C} - Cl \xrightarrow{NaN_3} \overset{NaN_3}{\longrightarrow}$$

CA0057

$$(f) \longrightarrow NH_2 \xrightarrow{CHCl_3+KOH} \rightarrow$$

CA0058

$$(g) \xrightarrow{H^{\oplus}/H_2O}$$

CA0059

8. Of the following amines how many can be seperated by Hoffmann's mustard oil reaction.

$$NH_2$$
 , CH_3 ; NH_2 ; CH_3

$$Ph \longrightarrow NH_2$$
; CH_2-NH_2 ; $Ph \longrightarrow NH_2$

9. Examine the structure of following compounds, and find out number of compounds that will undergo decarboxylation in presence of heat.

CA0061

10. CH_3CH_2 -CH-COOH $\xrightarrow{\Delta}$ P (no. of products) NH_2

$$CH_3CH_2$$
-CH-COOH $\stackrel{\Delta}{\longrightarrow}$ Q (no. of products) OH

$$\begin{array}{c} CH_{3}CH-CH_{2}-COOH & \stackrel{\Delta}{\longrightarrow} R \text{ (no. of products)} \\ OH \end{array}$$

$$\begin{array}{c} CH_2\text{--}CH_2\text{--}COOH & \stackrel{\Delta}{\longrightarrow} S \text{ (no. of products)} \\ I \\ OH \end{array}$$

In all reactions the sum of product is.

CA0062

How will you bring about the following transformation:

11. Propanoic acid into lactic acid.

CA0063

12. Ethyl benzene to 2-phenyl propionic acid.

CA0064

13. Acetamide from acetone.

CA0065

nodeO6/B080-BAN KoB VEE (Advanced) Veaden Che Shed Y Carboylic Acid & II's Derivative, Alliphalic Amines VErgy 0.2 _Carboylic Acid & II's Derivative, Alliphalic Amines (ENG), p65

EXERCISE # (JEE-MAIN)

1. [AIEEE-2002] Reaction -

Primary amine + CHCl₃ + KOH → product, here product will be -

- (1) Cyanide
- (2) Isocyanide
- (3) Amine
- (4) Alcohol

CA0066

2. The compound formed in the positive test for nitrogen with the Lassaigne solution of an organic compound is-[AIEEE-2004]

- $(1) \operatorname{Fe}_{4}[\operatorname{Fe}(\operatorname{CN})_{6}]_{3}$
- $(2) \text{ Na}_3[\text{Fe}(\text{CN})_6]$
- $(3) \operatorname{Fe}(CN)_3$
- $(4) Na_4[Fe(CN)_5)NOS]$

CA0067

3. Which one of the following methods is neither meant for the synthesis nor for separation of amines-

(1) Hofmann method

(2) Hinsberg method

[AIEEE-2005]

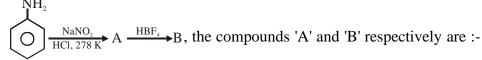
(3) Curtius reaction

(4) Wurtz reaction

CA0068

In the chemical reaction, $CH_3CH_2NH_2 + CHCl_3 + 3KOH \rightarrow (A) + (B) + 3H_2O$, the compounds (A) 4. [AIEEE-2007] and (B) are respectively -

(1) C_2H_5CN and 3KCl


(2) CH₃CH₂ CONH₂ and 3KCl

(3) C_2H_5NC and K_2CO_3

(4) C_2H_5NC and 3KCl

CA0069

5. In the chemical reactions, [AIEEE-2010]

- (1) Nitrobenzene and chlorobenzene
- (2) Nitrobenzene and fluorobenzene
- (3) Phenol and benzene
- (4) Benzene diazonium chloride and fluorobenzene

CA0070

In the chemical reactions 6.

$$\begin{array}{c}
NH_2 \\
\hline
NaNO_2 \\
HCI,278K
\end{array}$$
A \xrightarrow{CuCN} B, the compounds A and B respectively are : [AIEEE-2011]

- (1) Fluorobenzene and phenol
- (2) Benzene diazonium chloride and benzonitrile
- (3) Nitrobenzene and chlorobenzene
- (4) Phenol and bromobenzene

CA0071

7. Compound (A), C₈H₉Br, gives a white precipitate when warmed with alcoholic AgNO₃. Oxidation of (A) gives an acid (B), C₈H₆O₄. (B) easily forms anhydride on heating. Identify the [AIEEE-2013] compound (A):

(2)
$$C_2H_2$$

- **8.** An organic compound A upon reacting with NH₃ gives B. On heating, B gives C. C in presence of KOH reacts with Br₂ to give CH₃CH₂NH₂. A is:
 [AIEEE-2013]
 - (1) CH₃COOH
- (2) CH_3CH_2COOH (3) $CH_3-CH-COOH$ (4) CH_3CH_2COOH CH_3

CA0073

- 9. On heating an aliphatic primary amine with chloroform & ethenolic potassium hydroside the organic compound formed is [AIEEE-2014]
 - (1) An alkyl cyanide

(2) An alkyl isocyanide

(3) an alkanol

(4) an alkanediol

CA0074

- 10. In the reaction $CH_3COOH \xrightarrow{LiAlH_4} A \xrightarrow{PCl_5} B \xrightarrow{alc.KOH} C$ 'C' is [AIEEE-2014]
 - (1) Ethylene
- (2) Acetyl chloride
 - (3) Acetaldehyde
- (4) Acetylene.

CA0075

- 11. In the presence of a small amount of phosphorous, aliphatic carboxylic acids react with chlorine or bromine to yield a compound in which α hydrogen has been replaced by halogen. This reaction is known as : [JEE(Main)-2015]
 - (1) Etard reaction

(2) Hell - Volhard - Zelinsky reaction

(3) Wolff - Kischner reaction

(4) Rosenmund reaction

CA0076

- **12.** In the Hofmann bromamide degradation reaction, the number of moles of NaOH and Br₂ used per mole of amine produced are : [**JEE(Main)-2016**]
 - (1) Four moles of NaOH and one mole of Br₂
 - (2) One mole of NaOH and one mole of Br₂
 - (3) Four moles of NaOH and two moles of Br₂
 - (4) Two moles of NaOH and two moles of Br₂

CA0077

13. The major product expected from the following reaction is : [JEE(Main On-Line)-2017]

$$HO_2C$$
 NH_2
 $HCl(g)/CCl_4$
 OH

$$(4) \begin{array}{c} \text{HO}_2\text{C} \\ \text{CI} \end{array}$$

CA0078

nodeO6\B0B0-BA\Kola \JEE(Advanced)\Leadsh\Che\Sheet\CarboxyllcAcld & II's Derivative, Alliphatic Amines\Eng\02_CarboxyllcAcld & II's De

14. The increasing order of basicity of the following compounds is: [**JEE**(**Main**)-2018]

(c)
$$NH_2$$
 (d) $NHCH$

$$(1)$$
 $(b) < (a) < (c) < (d)$

$$(2)$$
 $(b) < (a) < (d) < (c)$

$$(4)$$
 $(a) < (b) < (c) < (d)$

CA0079

Major product of the following reaction is: **15.**

[JEE Main (Jan)-2019]

$$(1) \bigcup_{O} \bigcup_{H}^{CI} \bigcup_{NH_2}^{NH_2}$$

$$(3) \begin{bmatrix} Cl & O \\ & & \\ &$$

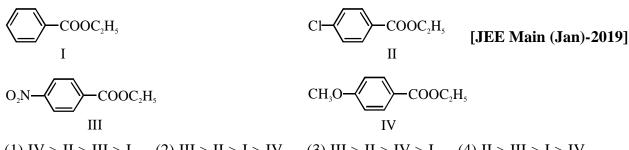
$$(4) \bigcup_{O}^{Cl} \int_{\mathbf{N}}^{\mathbf{n}} NH_{2}$$

CA0080

16. The major product obtained in the following reaction is: [JEE Main (Jan)-2019]

$$\frac{\text{(CH}_{3}\text{CO)}_{2}\text{O/pyridine(1eqv.)}}{\text{room temp}}$$

CA0081


The major product of the following reaction is: **17.**

[JEE Main (Jan)-2019]

18. Which dicarboxylic acid in presence of a dehydrating agent is least reactive to give an anhydride:

COOH
$$CH_2$$
 CH_2 $COOH$ $COOH$ CH_2 $COOH$ $COOH$ CH_2 $COOH$ CO

19. The decreasing order of ease of alkaline hydrolysis for the following esters is:

(1) IV > II > III > I(2) III > II > I > IV (3) III > II > IV > I (4) II > III > I > IV

CA0084

CA0083

20. The major product formed in the reaction given below will be: [JEE Main (Jan)-2019]

$$NH_{2} \xrightarrow{NaNO_{2}} Aq.HCl,0-5°C}$$

$$(1) \qquad NO_{2} \qquad (2) \qquad OH \qquad (3) \qquad NH_{2} \qquad (4) \qquad NO_{2}$$

CA0085 [JEE Main (Jan)-2019]

21. The major product of the following reaction is:

$$(4) \qquad (4) \qquad (4) \qquad (5) \qquad (6) \qquad (7) \qquad (7)$$

CA0086

nodsO6 BOBO BATKOB VEE (Advanced) Lie aden Chet Sheet NCarboxylic Add & It's Derivative, Aliphatic Amines (Eng.) p65

22. An aromatic compound 'A' having molecular formula $C_7H_6O_2$ on treating with aqueous ammonia and heating forms compound 'B'. The compound 'B' on reaction with molecular bromine and potassium hydroxide provides compound 'C' having molecular formula C_6H_7N . The structure of 'A' is:

[JEE Main (Jan)-2019]

CA0087

- **23.** A compound 'X' on treatment with Br₂/NaOH, provided C₃H₉N, which gives positive carbylamine test. Compound 'X' is:- [JEE Main (Jan)-2019]
 - (1) CH₃COCH₂NHCH₃

(2) CH₃CH₂COCH₂NH₂

(3) CH₃CH₂CH₂CONH₂

(4) $CH_3CON(CH_3)_2$

CA0088

24. The increasing order of reactivity of the following compounds towards reaction with alkyl halides directly is: [JEE Main (Jan)-2019]

$$\begin{array}{c}
CN \\
NH_2 \\
(C) \\
(D)
\end{array}$$

$$(1)$$
 $(B) < (A) < (D) < (C)$

$$(2)$$
 $(B) < (A) < (C) < (D)$

CA0089

25. The major product of the following reaction is:

[JEE Main (Jan)-2019]

$$H_3C$$
 O
 NH_2
 $(i) NaNO_2/H^+$
 $(ii) CrCO_3/H^+$
 $(iii) H_2SO_4 (conc.), \Delta$

26. Which of the following amines can be prepared by Gabriel phthalimide reaction?

[JEE Main (Apr)-2019]

- (1) Neo-pentylamine
- (2) n-butylamine
- (3) triethylamine
- (4) t-butylamine

CA0091

27. The major product obtained in the following reaction is:

[JEE Main (Apr)-2019]

$$\overbrace{CN~O}^{NH_2} \xrightarrow{(i)CHCl_3/KOH}$$

(1)
$$H_{2N}$$
 OH

$$(2) \bigcirc \bigcap_{\text{CN}} \bigcap_{\text{O}}^{\text{H}} \bigcap_{\text{NCH}_3}$$

$$(3) \begin{array}{c} H \\ NCH_3 \\ CN & OH \end{array}$$

CA0092

28. The major product of the following reaction is:

[JEE Main (Apr)-2019]

CA0093

29. Hinsberg's reagent is :

 $(1) C_6H_5SO_2Cl$

(2) C_6H_5COCl

(3) SOCl₂

(4) (COCl)₂

[JEE Main (Apr)-2019]

CA0094

Ε

nodsO6B0B0/BAVK0b/JEf(AdvanceQ)\Leaden/Che/Sheet\CarboxylicAdd&ll's Derivative, Allphaic Amines \text{ToyU2_CarboxylicAdd & ll's Derivative, Allphaic Amines

60

30. The major product of the following reaction is :

[JEE Main (Apr)-2019]

OH | (1) CH₃CHCH₂CH₂NHCHO

(2) CH₃CH=CH-CH₂NH₂

 $\begin{array}{c} \text{OH} \\ \text{I} \\ \text{(4) CH}_{3}\text{-CH-CH=CH}_{2} \end{array}$

CA0095

31. Ethylamine $(C_2H_5NH_2)$ can be obtained from N-ethylphthalimide on treatment with :

[JEE Main (Apr)-2019]

- (1) $NaBH_4$
- (2) CaH₂
- (3) H_2O
- (4) NH₂NH₂

CA0096

32. The major product 'Y' in the following reaction is:-

[**JEE Main (Apr)-2019**]

$$Ph \underbrace{ CH_3}_{O} \xrightarrow{NaOC1} X \xrightarrow{(i)SOCl_2} Y$$

$$(2) \bigcap_{O} \Pr$$

EXERCISE # (**JEE ADVANCED**)

1. Which of the following carboxylic acids undergo decarboxylation easily: [IIT 1995]

(A) C₆H₅CO–CH₂COOH

(B) C₆H₅COCOOH

(C) C₆H₅CH₂ - COOH OH (D) C₆H₅CH₂ - COOH | NH₂

CA0098

- 2. The molecular weight of benzoic acid in benzene as determined by depression in freezing point method corresponds to:

 [IIT 1996]
 - (A) Ionization of benzoic acid
 - (B) Dimerisation of benzoic acid
 - (C) Trimerisation of benzoic acid
 - (D) Solvation of benzoic acid

CA0099

- $\textbf{3.} \qquad \text{When propionic acid is treated with aqueous NaHCO}_3, \text{CO}_2 \text{ is liberated. The 'C' of CO}_2 \text{ comes from.}$
 - (A) Methyl group

(B) Carboxylic acid group

(C) methylene group

(D) bicarbonate

[IIT 1999]

CA0100

4. Benzoyl chloride is prepared from benzoic acid by:

[IIT 2000]

- (A) Cl_2 , hv
- (B) SO₂Cl₂
- (C) SOCl₂
- (D) Cl₂, H₂O

CA0101

5. Which of the following acids has the smallest dissociation constant?

[IIT 2002]

(A) CH₃CHFCOOH

(B) FCH₂CH₂COOH

(C) BrCH₂CH₂COOH

(D) CH₃CHBrCOOH

CA0102

6. When benzamide is treated with $POCl_3$, the product is:

[IIT 2004]

- (A) Benzonitrile
- (B) Aniline
- (C) Chlorobenzene
- (D) Benzylamine

7.

$$CHO + (X) \xrightarrow{CH_3COONa} MeO \xrightarrow{CH_3O^+} MeO \xrightarrow{CH} CH = CH - COCH$$

The compound (X) is

[IIT 2005]

(A) (CH₃CO)₂O

(B) Br CH₂ – COOH

(C) CH₃COOH

(D) CHO - COOH

CA0104

8. Which of the following reactants on reaction with conc. NaOH followed by acidification gives the following lactone as the only product? **[IIT 2006]**

CA0105

9. Match the compounds in **Column I** with their characteristic test(s)/reaction(s) given in **Column II**. Indicate your answer by darkening the appropriate bubbles of the 4×4 matrix given in the ORS.

Column-I

Column-II

[IIT 2008]

 $(A) \; H_2N - \overset{\ominus}{N}\overset{\ominus}{H_3}\overset{\ominus}{C}l$

(P) Sodium fusion extract of the compound gives Prussian blue colour with FeSO₄

(Q) Gives positive FeCl₃ test

(C) HO—\(\bigcirc\) \(\times\) NH3Cl

(R) Gives white precipitate with AgNO₃

(D) O_2N \longrightarrow $NH - NH_3Br$

(S) Reacts with aldehydes to form the

corresponding hydrazone derivative

Column-I

- (A) CH₃CH₂CH₂CN
- (B) CH₃CH₂OCOCH₃
- (C) $CH_3 CH = CH CH_2OH$
- (D) CH₃CH₂CH₂CH₂NH₂

Column-II

- (P) Reduction with Pd–C / H_2
- (Q) Reduction with SnCl₂ / HCl
- (R) Development of foul smell on treatment with chloroform and alcoholic KOH
- (S) Reduction with diisobutylaluminium hydride (DIBAL-H)
- (T) Alkaline hydrolysis

CA0107

11. The major product of the following reaction is

[IIT 2011]

[IIT 2009]

$$(A) \bigcirc C$$

$$O$$

$$O$$

$$O$$

$$O$$

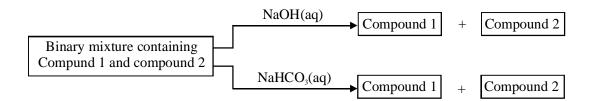
(C)
$$\sim$$
 N O-CH₂- \sim -Br

$$(D) \bigcirc N$$

$$O - \bigcirc - CH_2CI$$

CA0108

12. With reference the scheme given, which of the given statement(s) about T, U, V & W is/are correct [IIT 2012]


$$\begin{array}{c} O \\ \parallel \\ C \\ O \end{array} \qquad \begin{array}{c} C \\ \downarrow \\ \end{array} \qquad \begin{array}{c} C \\ \end{array} \qquad \begin{array}{c} C \\ \downarrow \\ \end{array} \qquad \begin{array}{c} C \\ \\ \end{array}$$

- (A) 'T' is soluble in hot aq NaOH
- (B) 'U' is optically active
- (C) mol formula of W is $C_{10}H_{18}O_4$
- (D) V gives effervescence with aq NaHCO₃

CA0109

18080 BATKOB VEE (Advanced) Neader Chel Sheet Carboylic Add & 11's Darvalive, Alighaic Amins (Englo 2_Carboylic Add & 11's Darvalive, Alighaic Amins (ENG), p65

13. Identify the binary mixtures (s) that can be separated into the individual compounds, by differential extraction, as shown in the given scheme -
[IIT 2012]

- (A) C₆H₅OH and C₆H₅COOH
- (B) C₆H₅COOH and C₆H₅CH₂OH
- (C) C₆H₅CH₂OH and C₆H₅OH
- (D) C₆H₅CH₂OH and C₆H₅CH₂COOH

CA0110

14. The total number of carboxylic acid groups in the product P is

[IIT 2013]

$$\begin{array}{c|c} O & O \\ \hline O & \hline O \\ O & \hline \begin{array}{c} 1. \ H_3O^+, \Delta \\ \hline 2. \ O_3 \\ 3. \ H_2O_2 \end{array} \end{array}) P$$

CA0111

15. In the reaction shown below, the major product(s) formed is / are :

[IIT 2014]

$$NH_{2} \xrightarrow{\text{acetic anhydride}} NH_{2} \xrightarrow{\text{acetic anhydride}} product(s)$$

(B)
$$H_{\text{CH}_3} + \text{CH}_3\text{COOH}$$

(C)
$$H$$
 CH_3 CH_3 CH_3 CH_3 CH_3

Different possible **thermal** decomposition pathways for peroxyesters are shown below. Match each **16.** pathway from List-I with an appropriate structure from List-II and select the correct answer using the code given below the lists. [IIT 2014]

List-I

List-II

(P) Pathway P

(1) C₆H₅CH₂ O CH₃
(2) C₆H₅ O CH₃

(Q) Pathway Q

(R) Pathway R

(S) Pathway S

Code:

P Q R \mathbf{S}

- (A) 1 3 2
- (B) 2 3 1
- 1 2 3 (C) 4
- 2 1 (D) 3 4

nodsO6NB0B0 BANKOB VEE (Advanced) Leaden Chel Sheat Carboxylic Acid & II's Derivative, Alliphatic Amines (EnVG) p65

Ε

66

17. The major product of the reaction is :

[IIT 2015]

CA0114

PARAGRAPH FOR NO. 18 & 19

Treatment of compound \mathbf{O} with $\mathrm{KMnO_4}/\mathrm{H^+}$ gave \mathbf{P} , which on heating with ammonia gave The compound \mathbf{Q} on treatment with $\mathrm{Br_2}/\mathrm{NaOH}$ produced \mathbf{R} . On strong heating, \mathbf{Q} gave \mathbf{S} , which on further treatmenet with ethyl 2-bromopropanoate in the presence of KOH following by acidification, gave a compound \mathbf{T} . [IIT-JEE-2016]

18. The compound \mathbf{R} is:

CA0115

19. The compound T is:

- (A) Glycine
- (B) Alanine
- (C) Valine
- (D) Serine

CA0116

20. The order of basicity among the following compounds is

[IIT-JEE(Adv.)-2017]

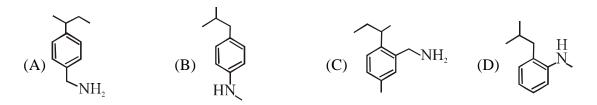
- (A) II > I > IV > III
- (C) I > IV > III > II

- (B) IV > II > III > I
- (D) IV > I > II > III

PARAGRAPH FOR NO. 21 & 22

An organic acid $P(C_{11}H_{12}O_2)$ can easily be oxidized to a dibasic acid which reacts with ethyleneglycol to produce a polymer dacron. Upon ozonolysis, **P** gives an aliphatic ketone as one of the products. $\bf P$ undergoes the following reaction sequences to furnish $\bf R$ via The compound $\bf P$ also undergoes another set of reactions to produce S. [IIT-JEE(Adv.)-2018]

 $(1) H_2/Pd-C$ (2) NH_3/Δ (1) HCl (1) H₂/Pd-C (3) Br₂/NaOH(3) CO, (dry ice) (3) MeMgBr, CdCl₂ (4) CHCl₃, KOH, Δ $(5) H_2/Pd-C$ (4) NaBH₄


(There are two questions based on PARAGRAPH "A", the question given below is one of them)

21. The compound \mathbf{R} is

$$(A) \qquad CO_2H \qquad (B) \qquad CO_2H$$

$$(C) \qquad (D) \qquad CO_2H$$

CA0118

22. The compound S is

CA0119

23. The correct order of acid strength of the following carboxylic acids is -

[IIT-JEE(Adv.)-2019]

- (A) I > III > II > IV
- (C) II > I > IV > III

- (B) III > II > IV
- (D) I > II > III > IV

CA0120

ANSWER KEY

			ANSV	VLK	KEI			
			EXER	CISE	# O-I			
1	Ans. (A)	2	Ans. (B)	3	Ans. (B)		4	Ans. (C)
5	Ans. (C)	6	Ans. (A)	7	Ans. (B)		8	Ans. (C)
9	Ans. (A)	10	Ans. (C)	11	Ans. (D)		12	Ans. (B)
13	Ans. (B)	14	Ans. (B)	15	Ans. (A)		16	Ans. (A)
17	Ans. (B)	18	Ans. (C)	19	Ans. (B)		20	Ans. (C)
21	Ans. (B)	22	Ans. (B)	23	Ans. (A)		24	Ans. (B)
25	Ans. (C)							
			EXER	CISE	#O-II			
	Ans. (A,C,D)	2	Ans. (A,C)	3	Ans. (A,C,D)	4	Ans. (A , B)
5	Ans. (A,C,D)	6	Ans. (A,B,C)	7	Ans. (B,C)		8	Ans. (C)
)	Ans. (A,B,D)	10	Ans. (A)	11	Ans. (A , C)		12	Ans. (B,C)
.3	Ans. (B)	14	Ans. (A,B,C)	15	Ans. (A,B,C	,D)	16	Ans. (A,D)
7	Ans. (A,B,C)	18	Ans. (B)	19	Ans. (A,B,D)	20	Ans. (C,D)
21	Ans. (B,C,D)							
			EXER	CISE	# S-I			
	Ans. (A) \rightarrow P, S	; (B)-	\rightarrow Q, S; (C) \rightarrow P, S;	(D)→ I	₹			
2	Ans. (A) \rightarrow S; (B) \rightarrow R; (C) \rightarrow P; (D) \rightarrow Q 3 Ans. (A) \rightarrow S; (B) \rightarrow R; (C) \rightarrow P; (D) \rightarrow Q						$\rightarrow P ; (D) \rightarrow Q$	
Ļ	Ans. $(A) \rightarrow R$;	(B)→S	$;(C)\rightarrow Q;(D)\rightarrow P$	5	Ans. (A) \rightarrow P; (B) \rightarrow Q; (C) \rightarrow S; (D) \rightarrow R, S			
5	Ans. $(A) \rightarrow P$; $($	$(B) \rightarrow R$	$; (C) \rightarrow P, S; (D)$	→Q				
7	Ans. (4)	8	Ans. (4)	9	Ans. (5)	10	Ans	s. (9)
			EXERCISI	E#(J]	EE-MAIN)			
	Ans. (2)	2	Ans. (1)	3	Ans. (4)	4	Ans	s. (4)
5	Ans. (4)	6	Ans. (2)	7	Ans. (4)	8	Ans	s. (4)
)	Ans. (2)	10	Ans. (1)	11	Ans. (2)	12	Ans	s. (1)
3	Ans. (1)							
14	Ans. (2)							
Sol.	Order of base nature depends on electron donation tendency.							

NH₂ is very strong nitrogeneous organic base as lone pair of one nitrogen delocalize

in resonance and make another nitrogen negativly charged and conjugate acid have two equivalent resonating structure.

Thus it is most basic in given compouds.

NHCH₃ (secondary amine) more basic than /NH₂ (primary amine)

15. Ans. (4)

Sol.
$$Cl$$
 Cl NH_2 Cl NH_2 Cl NH O O

NH₂(a) will wact as nucleophile as (b) is having delocalised lonepair.

$$\begin{array}{c|c} Cl & NH & Cl \\ \hline NH & O & Polymerisation \\ \hline O & H & NH_2 \\ \hline \end{array}$$

16. Ans. (3)

Sol.
$$CH_3 - C - O - C - CH_3$$

$$OH$$

$$OH$$

$$OH$$

$$OH$$

$$NH-C-CH_3$$

17. Ans. (3)

Sol.
$$C$$

$$CH_{2}-CH_{3}$$

$$CH_{2}-CH_{3}$$

$$CH_{2}-CH_{3}$$

$$CH_{2}-CH_{3}$$

$$CH_{2}-CH_{3}$$

$$CH_{2}-CH_{3}$$

$$CH_{2}-CH_{3}$$

$$CH_{3}$$

$$CH_{2}-CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

18. Ans. (4)

Sol. Adipic acid CO_2H – $(CH_2)_4$ – CO_2H $\xrightarrow{\text{dehydrating}}$ 7 membered cyclic anhydride (Very unstable)

19. Ans. (2)

Sol. More is the electrophilic character of carbonyl group of ester faster is the alkaline hydrolysis.

20. Ans. (Bonus)

Sol. Answer should be

21. Ans. (2)

Ε

nodsO6B0B0/BAVK0b/JEf(AdvanceQ)\Leaden/Che/Sheet\CarboxylicAdd&ll's Derivative, Allphaic Amines \text{ToyU2_CarboxylicAdd & ll's Derivative, Allphaic Amines

Sol.

$$[X] \xrightarrow{Br_2} C_3H_9N \xrightarrow{CHCl_3} CH_3CH_2CH_2-NC$$

Hoff mann's

Carbylamine Reaction

Bromaide degradation

Thus [X] must be aride with oen carbon more than is amine. Thus [X] is CH₃CH₂CONH₂

24. Ans. (2)

Sol. Nucleophilicity order

$$\bigcup_{0}^{O} NH < \bigcup_{0}^{O} NH_{2} < \bigcup_{0}^{CN} NH_{2} < \bigcup_{0}^{N} NH_{2}$$

25. Ans. (4)

Sol.

26. Ans. (2)

Sol. Gabriel phthalimide synthesis:

$$\begin{array}{c|c} & & & \\ \hline \\ NH & \frac{1.KOH}{2.R-X} \\ \hline \\ (1^o\text{halide } S_N) \end{array} \\ \hline \\ R-NH_2 + \\ \hline \\ COOH \\ \\ \hline \\ COOH \\ \end{array}$$

27. Ans. (1)

Sol.

28. Ans. (3)

$$\begin{array}{c} OH \\ C - O - CH_2 - CH_3 \end{array} \xrightarrow{\begin{array}{c} H_2SO_4 \\ (Hydrolysis \\ of \ ester) \end{array}} \begin{array}{c} OH \\ OH \\ C - OH \\ \end{array}$$

29. Ans.(1)

Ε

nodeO6 B0B0 BANKob VEE (Advanced) Leaden Che Sheet NCarboxyllic Acid & II's Denialive, Alliphatic Amines NErg NO.2. Carboxyllic Acid & II's Denialive, Alliphatic Amines (ENG), p65

[Benzene Sulphonyl chloride]

30. Ans. (1)

Sol.
$$CH_3$$
-CH-CH₂-CH₂-NH₂ $\xrightarrow{\text{ethyl formate (lequiv.)}} CH_3$ -CH-CH₂-CH₂-NH-C-H

as NH₂ is a better nucleophile than OH.

31. Ans. (4)

Sol.
$$\bigcirc N-Et \xrightarrow{H_2N-NH_2} C_2H_5NH_2$$

reagent is NH_2 - NH_2 byproduct will be

32. Ans. (1)

EXERCISE # (JEE ADVANCED)

1 Ans. (A) 2 Ans. (B) 3 Ans. (D)

4 Ans. (C) 5 Ans. (C) 6 Ans. (A) 7 Ans. (A)

8 Ans. (C) 9 Ans. (A) \rightarrow R, S; (B) \rightarrow P, Q; (C) \rightarrow P, Q, R; (D) \rightarrow P,S

10 Ans. (A) \rightarrow P, Q, S, T; (B) \rightarrow P, S, T; (C) \rightarrow P; (D) \rightarrow R 11 Ans. (A)

12 Ans. (A,C,D) 13 Ans. (B,D) 14 Ans. (2) 15 Ans. (A)

16 Ans. (A) 17 Ans. (C)

18. Ans. (A)

19. Ans. (B)

Solution 18 & 19.

HOOC COOH
$$H_2NOC$$
 CONII₂

$$\begin{array}{c}
H^{\oplus}KMnO_4 \\
\hline
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

06/8080-BANKob VEE (Advanced) Leader) Chel Sheet Carboxylic Acid & It's Derivalive, Alliphalic Amines \Eng\02_Carboxylic Acid & It's Derivalive

Q to R is Hoffmann's bromamide degradation reaction

S to T is Gabriel's phthalimide sysnthesis

20. Ans. (D)
$$IV > I > II > III$$

Sol. Basic strength ∞ stability of conjugated acid.

$$_{\infty}$$
 + M / +H / +I

21. Ans. (A)

22. Ans. (B)

Solution 21 & 22.

23. Ans. (D)