
ALCOHOL & ETHERS

(I) Aliphatic hydroxy derivatives:

Hydroxy derivatives in which —OH is directly attached to sp³ C (Alcoholic compounds).

(II) Aromatic hydroxy derivatives:

Hydroxy derivatives in which —OH is directly attached to sp² C of benzene ring (Phenolic compounds).

Aliphatic hydroxy derivatives:

(a) Classification according to number of —OH groups:

(i) Monohydric [one –OH]
$$\longrightarrow$$
 CH₃CH₂—OH

(ii) Dihydric [two –OH]
$$\longrightarrow$$
 CH_2 —CH₂
OH OH
Glycol

(iiii) Trihydric [three –OH]
$$\longrightarrow$$
 $OH OH OH Glycerol$

(iv) Polyhydric
$$[n - OH]$$
 \longrightarrow CH_2-OH $|$ $(CHOH)_4$ $|$ CH_2-OH $|$ Sorbitol

GENERAL METHODS OF PREPARATION

(1) From alkenes:

(i) By hydration:

$$CH_{3}-CH=CH_{2}\xrightarrow{H^{\oplus}} CH_{3}-CH-CH_{5}$$

$$CH_{3}-CH-CH_{5}$$

$$OH$$

(ii) By hydroboration oxidation:

$$CH_{3}\text{--}CH = CH_{2} \xrightarrow{\text{(i) } B_{2}H_{6}/THF} CH_{3}\text{--}CH_{2} \text{--}CH_{2} \text{--}CH_{2} \text{ (1° alcohol)}$$

ALLEN

Mechanism:

Takes place by Anti Markownikov Rule in presence of H₂O₂

Firstly formed trialkyl borane by Cis cyclic addition which convert in alcohol by oxidation with ${\rm H_2O_2~/OH^-}$

(iii) By oxymercuration demercuration:

$$CH_{3} - CH = CH_{2} \xrightarrow{\text{(i)} Hg(OAc)_{2}, H_{2}O} CH_{3} - CH - CH_{3}$$

$$\downarrow OH$$

(2) From alkyl halides (By hydrolysis):

$$CH_3$$
— CH_2 — $Cl \xrightarrow{Aq. KOH} CH_3CH_2$ — OH

(3) From ethers:

(4) From carbonyl compounds (By reduction):

$$>$$
C $=$ O $\xrightarrow{\text{Reducing agent}}$ $>$ CH $=$ OH

• Reducing agents may be,

LiAlH₄/protic solvent, NaBH₄/protic solvent

Na + EtOH [Bouveault-blanc Reduction]

Ni/H₂

(5) From acid and derivatives (By reduction):

** Amide gives amine (not alcohol) with LiAlH₄

Ε

ALLEN

Chart-1

REDUCING AGENTS AND THEIR ROLE

Group	Product	LAH in Ether	NaBH ₄ in H ₂ O	B ₂ H ₆ in THF	H ₂ / Catalyst Δ	
-СНО	-CH ₂ OH	+	+	+ + +		
>C = O	>CH – OH	+	+	+	+	
-CO ₂ H	-CH ₂ OH	+	_	+	_	
-CO ₂ R	-CH ₂ OH	+	-	+	+	
-COC1	-CH ₂ OH	+	+	_	+	
-CONH ₂	-CH ₂ NH ₂	+	-	+	+	
(RCO) ₂ O	RCH ₂ OH	+	_	+	+	
–CN	-CH ₂ NH ₂	+	-	+	+	
>C = NOH	-CH ₂ NH ₂	+	-	_	+	
>C = C<	>CH - CH<	-	-	+	+	
-C ≡ C-	-CH = CH-	-	-	+	+	
1° RX	RH	+	-	- +		

Name	Reagent	Function		
Wolf Kishner Reduction	(i) N ₂ H ₄ / (ii) KOH, Δ	\rightarrow O \longrightarrow \nearrow H		
Clemenson Reduction	Zn–Hg / HCl	\rightarrow O \longrightarrow X_{H}		
Mozingo Reduction	Dry HCl, followed by Raney Ni	\succ o \longrightarrow \nearrow_{H}		
Stephen's Reduction	SnCl ₂ / HCl followed by H ₃ O ⁺	$R-C \equiv N \longrightarrow R-CH=O$		
MPV Reduction	$AI \left(-O-CH \underbrace{CH_3}_{CH_3} \right)_3 / HO-CH \underbrace{CH_3}_{CH_3}$	\rightarrow OH		
Hydroboration Reduction	В ₂ Н ₆ / АсОН, Н ₂ О	$C = C \longrightarrow C - C \longrightarrow H H$		
Bouvoult Blank Reduction	Na / EtOH	$R-COO-R \longrightarrow RCH_2OH + ROH$		
Transfer Hydrogenation	N ₂ H ₄ / H ₂ O ₂	$C = C \longrightarrow C \longrightarrow H H$		
Rosenmund Reduction	H ₂ , Pd–BaSO ₄	$ \begin{array}{ccc} & & & & & O \\ & & & & & & & \\ R - C - C \longrightarrow R - C - H \\ * - C \equiv C - \longrightarrow - C = C - \\ & & & & & \\ & & & & & \\ & & & & & \end{array} $		
Birch Reduction	Na / Liq. NH ₃	$-C \equiv C - \longrightarrow -C = C - H$		
DIBAL-H	$H-AI\left(-CH_2-CH-CH_3\right)_2$ followed by H_3O^{\oplus}	$ \begin{array}{c} -\text{COOR} \\ -\text{C} \equiv \text{N} \\ -\text{COCI} \\ -\text{COOH} \end{array} $ $ -\text{CHO} $ $ -\text{CHO} $		
Red phosphorus in presence of HI	Red P + HI	$\begin{array}{c} R-CH=O \longrightarrow RCH_{3} \\ R-C-R \longrightarrow RCH_{2}R \\ \parallel \\ O \\ R-OH \longrightarrow R-H \end{array}$		

(6) From hydrolysis of ester

$$R-C-OR'+H_2O \xrightarrow{OH \atop OH} R-C-O^{\circ}+R'OH \quad \text{(irreversible)}$$

$$R-C-OH+R'OH \quad \text{(acidic hydrolysis is reversible)}$$

Note:

- (i) Hydrolysis of ester can be catalysed by acid/base.
- (ii) Acid cataalysed hydrolysis of ester is reversible.
- (iii) Base catalysed hydrolysis of ester is called saponification

(7) From primary amines:

$$R-NH_2 \xrightarrow{NaNO_2+HCl} R-OH + N_2 + H_2O$$

Example:
$$CH_3CH_2$$
— NH_2 $\xrightarrow{HNO_2}$ CH_3CH_2 — $OH + N_2 + H_2O$

Ex.
$$CH_3CH_2CH_2$$
— NH_2 $\xrightarrow{NaNO_2+HCl}$ CH_3 — CH — CH_3 OH

Exception:
$$CH_3 - NH_2 \xrightarrow{HNO_2} CH_3 - O - CH_3$$

GRIGNARD REAGENT RMgX

(8) From Grignard reagent:

Now we need to learn chemistry of Grignard reagent

(A). Organometallic compounds

Organometallic compounds are the organic compounds in which a metal atom is directly attached to carbon of organic molecules through covalent bond or ionic bond. For example

$$C-M$$
 or $\overset{\odot}{C}$ $\overset{\oplus}{M}$

(Where C is a carbon atom of an organic molecule and M is a metal atom)

If the metal atom is attached to oxygen, nitrogen. sulphur, etc., then such an organic compound is not regarded as an organometallic compound. The following structural formula do not belong to the family of organometallic compounds.

RONa (Sodium alkoxide). CH₃COONa (Sodium acetate), CH₃COOAg(Silveracetate),RSK (Potassium mercaptide) RNHK

(N-Alkylpotassamide), (CH₃COO)₄Pb (Lead tetraacetate), etc.

Note: It should be noted that (CH₃)₄Si (Tetramethylsilane, TMS) is also not an organometallic compound because silicon is a nonmetal.

Most important examples of organometallic compounds are Grignard reagents. In Grignard reagent, the carbon and magnesium atoms are bonded with each other through polar covalent bond and magnesium atom is attached to halogen by ionic bond.

$$\searrow_{C-Mg} \overset{\oplus}{\times}$$
 (Functional part of a Grignard reagent molecule)

node06\B0B0-BA\Kota\JEE(Advanced)\Leader\Che\Sheet\Alcohol & Ether\Eng\02-Exe.p65

ALLEN

(B) Preparation of Grignard Reagent

$$RX + Mg \xrightarrow{Dry \text{ and pure}} RMgX$$

Ether is used as a solvent because it is a Lewis base that donates its lone pair of electrons to electrondeficient magnesium atom, therefore providing stability to the Grignard reagent by completing the octet on magnesium atom.

$$\begin{array}{c} \text{Et} \\ | \\ \text{Et} - \text{O} \\ | \\ \text{Et} \\ | \\ \text{Et} \end{array} + \text{Mg} \xrightarrow{R} \begin{array}{c} \text{Et} \\ | \\ \text{Et} - \text{O} \\ | \\ \text{Et} \end{array} \xrightarrow{R} \begin{array}{c} \text{Et} - \text{O} \\ | \\ \text{Et} \\ | \\ \text{Alkylmagnesium halide} \end{array}$$

(C) Reactions of Grignard reagents

It has been found out by estimation that there is 35% ionic character in carbon-magnesium bond of Grignard reagent. Therefore, there is a tendency of forming carbanion by heterolysis of this polar coordinate bond as follows.

$$R \leftarrow MqX \longrightarrow R: + MgX$$

The carbanion (a nucleophile) formed as shown above, attacks the positively charged electrophilic centre of other compound. Therefore. It can be said that if a Grignard reagent is regarded as the substrate, then electrophile displaces MgX, i.e. electrophilic substitution (S_E) reaction takes place.

$$R - MgX \longrightarrow \stackrel{\Theta}{R} : \stackrel{\bigoplus}{\stackrel{E}{\longrightarrow}} R - E(S_E \text{ Product})$$

Grignard reagents form adducts by addition on the following types of pi bonds.

$$C = O$$
, $C = S$, $C = N$ and $C = N$, $-N = O$, $S = O$

eg.
$$R - MgX + C = O \longrightarrow R - C - OMgX$$

(D) Synthetic importance of Grignard reagents

(a) Synthesis of Alkanes

(i) With compounds having reactive hydrogen atom

General reaction:

$$R - MgX + H - Z \longrightarrow R - H + ZMgX$$

$$CH_3 - MgX + H - OH \longrightarrow CH_3 - H + Mg(OH)X$$

$$C_2H_5 - MgX + H - OR \longrightarrow C_2H_5 - H + Mg(OR)X$$

$$CH_3 - MgX + H - C = CR \longrightarrow CH_3 - H + R - C = C - MgX \text{ (Alkynylmagnesium halide)}$$

Ε

Methane gas is released on reacting methylmagnesium iodide with a compound containing reactive hydrogen atom. The reaction is used for estimation of reactive hydrogen atoms present in a molecule. This method is called **Zerewitinoff's** method of estimation of reactive hydrogen atoms.

(ii) With alkyl halide (coupling):

$$R - MgX + X' - R' \longrightarrow R - R' + MgXX'$$

(b) Synthesis of alkenes

$$R - MgX + X' - CH_2 - CH = CH_2 \longrightarrow R - CH_2 - CH = CH_2 + MgXX'$$
Allyl halide

(c) Synthesis of higher alkynes

Non-terminal alkynes

$$R' C \equiv C - H \xrightarrow{RMgx} R' - C \equiv CMgX \xrightarrow{R'' X} R' - C \equiv C - R''$$

(d) Synthesis of other organometallics

$$4R - MgCl + 2PbCl_2 \longrightarrow R_4Pb + Pb + 4MgCl_2$$

Two important antiknocking compounds, tetraethyllead (T.E.L.) and tetramethyllead (T.M.L.) are manufactured by the above reaction.

$$2R-MgCl+CdCl_2 \quad \longrightarrow \quad \text{R-Cd-R} + 2\text{MgCl}_2 \\ \text{Diallkylcadmium}$$

$$4R - MgCl + SnCl_4 \longrightarrow R_4Sn + 4MgCl_2$$
Tetraalkyltin

(e) Synthesis of Alcohols

There are following methods to obtain alcohols from Grignard reagent.

(i) From carbonyl compounds

$$R - MgX + C = O \longrightarrow R - C - OMgX \xrightarrow{HOH} R - C - OH$$

This is nucleophilic addition reaction

(ii) From Ester:

Tertiary alcohols are also obtained on hydrolysis of the product obtained by taking excess of Grignard reagent and an ester of a higher homologue of formic acid.

Various alcohols can be prepared by changing R in the above synthesis.

ALLEN

(iii) From Epoxides

(iv) From Oxygen

Synthesis of alcohol

$$R - MgX + O = O \longrightarrow R - O - O - MgX$$

$$R - O - O - MgX + R - MgX \longrightarrow 2R - O - MgX$$

$$R - O - MgX + HOH \longrightarrow R - O - H + Mg(OH)X$$

Primary, secondary and tertiary alcohols can be obtained by above reaction

From Alkyl Cyanides

A ketimine is formed on hydrolysis of the adduct obtained by the reaction of Grignard reagent and an alkyl cyanide, which gives ketone on further hydrolysis.

$$RMgX + RCN \longrightarrow R_2C = NMgX \xrightarrow{HOH} R_2C = NH \xrightarrow{HOH} R_2C = O$$
 Keti min e R_2C = O Ketone

(g) Synthesis of Carboxylic acids

A carboxylic acid is formed on hydrolysis of the adduct formed by passing carbon dioxide in the ethereal solution of a Grignard reagent.

(h) Synthesis of Carboxylic acid esters

Esters are formed on reacting the ethylchloroformate with Grignard reagent.

- **Ex.** Which of the following formula represents Grignard reagent?
 - (A) H₂NMgX

(B) $HC \equiv CMgX$

(C) RMg

- (D) Mg(OH)Br
- **Ex.** Which of the following is not a Grignard reagent?
 - (A) (CH₃)₂CHMgCl

(B) CH₃COOMgI

 $(C) C_6 H_{11} MgBr$

(D) C₂H₅MgCl

Ε

PHYSICAL PROPERTIES:

- (i) C_1 to C_{11} are colourless liquids and higher alcohols are solids.
- (ii) Density of monohydric alcohol is less than H_2O .
- Density ∝ mol. wt. (for monohydric alcohol). (iii)
- **Solubility:** C_1 to C_3 and t-butyl alcohol is completely soluble in H_2O due to H-bonding. (iv)

solubility
$$\infty$$
 No. of side chain ∞ $\frac{1}{\text{molecular weight}}$

Order of solubility:

$$C_4H_9OH > C_5H_{11}OH > C_6H_{13}OH$$

$$CH_{3}CH_{2}CH_{2}CH_{2}OH < CH_{3}CH_{2}CH - OH < CH_{3} - CH_{3} - CH_{3}$$

[Number of —OH increases, H-bonding increases]

Boiling points: B.P. ∞ molecular weight (v)

If molecular wt. is same then B.P. $\propto \frac{1}{\text{branching}}$

Order of BP: $C_4H_9OH < C_5H_{11}OH < C_6H_{13}OH$

[Number of OH increases, H-bonding increases]

- Boiling point of alcohol is more than corresponding ether. Why? Ex.
- **Reason:** H-bonding in alcohol.

- Boiling point of alcohol is less than corresponding carboxylic acid. Why?
- **Sol. Reason:** Dimer formation in carboxylic acid. $R-C \stackrel{O----H-O}{\searrow} C-R$

KEY POINT

- 1. Diols and triols have higher b.p's and are more water soluble
- 2. In Thiols, Hydrogen bonding is much weaker than that in alcohols.
- **3.** Thiols have Lower boiling points than similar alcohols.
- 4. Thiols are much more acidic than similar alcohols

node06\B0B0-BA\Kota\JEE(Advanced)\Leader\Che\Sheet\Alcohol & Ether\Eng\02-Exe.p65 E

ALLEN

CHEMICAL PROPERTIES:

Monohydric alcohol show following reactions

- (A) Reaction involving cleavage of O+H
- (B) Reaction involving cleavage of C + OH
- (C) Reaction involving complete molecule of alcohol
- (A) Reaction involving cleavage of O + H: Reactivity order (Acidic nature) is

$$\mathrm{CH_3}\mathrm{-\!OH} > \quad \mathrm{CH_3}\mathrm{CH_2}\mathrm{-\!OH} \ \, > \quad (\mathrm{CH_3})_2\mathrm{CH}\mathrm{-\!OH} > \quad (\mathrm{CH_3})_3\mathrm{C}\mathrm{-\!OH}$$

(i) Acidic nature :

$$H_2O > R - OH > CH \equiv CH > NH_3$$
 (Acidic strength)

Alcohols are less acidic than H_2O and neutral for litmus paper and gives H_2 with active metals (Na, K)

$$R \longrightarrow OH + Na \longrightarrow R \longrightarrow ONa + \frac{1}{2}H_2$$

$$R$$
—OH + K — \rightarrow R—OK + $\frac{1}{2}$ H₂

(ii) Reaction with CS_2 :

Sodium alkyl xanthate (Used as floating agent)

(iii) Alkylation:

$$R$$
—OH $\xrightarrow{CH_2N_2/\Delta}$ R —O—C H_2 —H (Chain insertion)

$$R$$
—OH \xrightarrow{Na} R —ONa $\xrightarrow{R-X}$ R —O—R

(Williamson synthesis)

(iv) Acylation:

(Acetylation)

Salicylic acid

Acetoxy benzoic acid or Acetyl salicylic acid or Aspirin [Used as analgesic] pain killer

(Benzoylation)

(vi) Esterification: Conc. H_2SO_4 is used as catalyst and dehydrating agent.

$$\begin{array}{c} R - C - OH + R - OH & \xrightarrow{\text{conc. } H_2SO_4} & R - C - OR + H_2O \\ \parallel & \parallel & \parallel \\ O & & O \end{array}$$

Note: This is a laboratory method to prepare ester i.e. esterification.

Ex.
$$CH_3$$
— C — $OH + H$ — $OC_2H_5 \xrightarrow{conc. H_2SO_4} CH_3$ — C — $OC_2H_5 + H_2O$

Ex. Ph—C—OH + H—
$$OC_2H_5 = \frac{conc. H_2SO_4}{O}$$
 Ph—C— $OC_2H_5 + H_2O$

Ex.
$$CH_3$$
— C — $OH + H$ — OC_2H_5 — CH_3 — C — $OC_2H_5 + H_2O$

- (i) Reactivity for esterification $\propto \frac{1}{\text{Steric hinderence}}$.
- (ii) Reactivity of R OH [If acid is same]: $CH_3 OH > 1^\circ > 2^\circ > 3^\circ$ alcohol
- (iii) Reactivity of RCOOH [If alcohol is same]:

$$H-C-OH > CH_3-C-OH > CH_3-CH-C-OH > CH_3-C-C-OH$$
 $O CH_3 O CH_3 O$

KEY POINT

- 1. Esters are obtained by refluxing the parent carboxylic acid with the appropriate alcohol with an acid catalyst.
- 2. The equilibrium can be driven to completion by using an excess of either the alcohol or the carboxylic acid, or by removing the water as it forms.
- **3.** Esters can also be made from other carboxylic acid derivatives, especially acyl halides and anhydrides, by reacting them with the appropriate alcohol in the presence of a weak base
- **(B)** Reaction involving cleavage of $C \stackrel{!}{\rightarrow} OH$: Reactivity order or basic nature is

$$CH_3$$
— OH < CH_3CH_2 — OH < $(CH_3)_2CH$ — OH < $(CH_3)_3$ C— OH

(i) Reaction with halogen acid:

R—CH₂—OH + HCl
$$\xrightarrow{ZnCl_2}$$
 R—CH₂—Cl + H₂O
R₂CH—OH + HCl $\xrightarrow{ZnCl_2}$ R₂CH—Cl + H₂O
 2^0 alcohol

Reactivity of the acids is HI > HBr > HCl > HF

(C) Reaction involving complete molecule of alcohol:

- (i) **Dehydration**: Removal of H₂O by two type
 - (a) Intermolecularly removal of H₂O [form ether]
 - (b) Intramolecularly removal of H₂O [form alkene]

Ease of dehydration follow the order : 3° ROH > 2° ROH > 1° ROH > CH_3 OH

(ii) Catalytic Dehydrogenation: This reaction is useful in distinction of 1° , 2° and 3° alcohols.

$$CH_3CH_2OH \xrightarrow{Cu} CH_3CHO + H_2$$

(p- alcohol) (Acetaldehyde)

$$\begin{array}{ccc} CH_3-CH-CH_3 \xrightarrow{\quad Cu \quad \quad } & CH_3-C-CH_3+H_2 \\ OH & O \end{array}$$

(s- alcohol) (acetone)

$$\begin{array}{c} CH_{3} \\ CH_{3} - C - OH \\ CH_{3} \\ CH_{3} \end{array} \xrightarrow{\begin{array}{c} Cu \\ 300^{\circ}C \end{array}} \begin{array}{c} CH_{3} \\ CH_{3} - C = CH_{2} + H_{2}O \text{ [dehydration]} \end{array}$$

$$\text{(tertiary butyl alcohol)}$$

$$\text{(Iso - butylene)}$$

(II) OXIDATION OF ALCOHOLS

Oxidising agents

- (1) $H^{\oplus}/K_2Cr_2O_7$, Δ (Strong oxidising agent)
- (2) H[⊕]/KMnO₄, ∆ (Strong oxidising agent)
- (3) **Jones reagent :** CrO_3/H_2SO_4 treated with alcohol usually taken in acetone (strong oxidising agent)
- (4) Cu / 300°C (or Red hot Cu tube)

- (6) Collin's reagent (\bigcirc (2 mol) + CrO₃ + CH₂Cl₂)
- (7) Sarett reagent (i.e. PCC in CH_2Cl_2) \bigcirc + CrO_3 + HCl + CH_2Cl_2

(8)
$$PDC$$
(Pyridinium dichromate) Cr_2O_7

(9)
$$TsCl + DMSO + NaHCO_3$$

$$\text{RCH}_2\text{OH} \xrightarrow{\text{Ts-Cl}} \text{RCH}_2\text{OTs} \xrightarrow{\text{DMSO} \atop \text{NaHCO}_3} \text{RCHO}$$

$$R_2$$
CHOH $\xrightarrow{Ts-Cl}$ R_2 CH-OTs \xrightarrow{DMSO} R_2 CO

$$R_3COH \xrightarrow{Ts-Cl} R_3C-OTs \xrightarrow{DMSO \\ NaHCO_3} X$$

(10) MnO_2 -Oxidises only allylic or benzylic OH. 1° Allylic or benzylic OH $\xrightarrow{MnO_2}$ Aldehyde 2° Allylic or benzylic OH $\xrightarrow{MnO_2}$ Ketone

No effect on 3° ROH and on Carbon-Carbon multiple bond.

(12) **Periodic cleavage**

A similar oxidation is obtained in case of HIO₄ known as periodic cleavage.

$$\begin{array}{c} \text{R-CH-OH + HO-I=O} \longrightarrow \text{R-CH} \longrightarrow \text{O} \longrightarrow \text{I} = \text{O} \longrightarrow \text{R-CH + HIO}_3 \\ \text{R}_2\text{C-OH} \longrightarrow \text{O} \longrightarrow \text{R}_2\text{C} = \text{O} \end{array}$$

But reaction is observed for Vic-diols.

(13) **Openaur oxidation**

$$R - CH - R \xrightarrow{\text{Old OCMe}_3)_3} R - C - R$$

$$OH \quad CH_3 - C - CH_3$$

$$R_{2}CH-OH +Al(OCMe_{3})_{3} \Longrightarrow Me_{3}COH +Al(OCHR_{2})_{3} \Longrightarrow (R_{2}CH-O)_{2}-Al-O CR_{2}$$

$$3Me_{2}C \downarrow$$

$$3R_{2}C=O + (Me_{2}CH-O)_{3}A$$

Oxidation of alcohol with aluminium tertiary butoxide is Openaur oxidation.

Ex. Different oxidising agents are used to oxidise alcohols in corresponding carbonyl compounds and carboxylic acids.

e.g. (I)
$$R - CH_2 - OH \xrightarrow{1,2,3,} R - C - OH$$
 1° alcohol O

(II)
$$\begin{array}{c} R - CH_2 - OH \xrightarrow{\quad 4,5,6,7,8,9,10,11 \quad} R - C - H \text{ (Aldehyde)} \\ 1^{\circ} \text{alcohol} & O \end{array}$$

(III)
$$R - CH - R' \xrightarrow{1,2,3,4,5,6,7,8,8,9,10,11} P - C - R'(Ketone)$$

$$\stackrel{?}{}_{2} Alcohol}$$

(IV)
$$CH_3 - C - OH \xrightarrow{Cu \ 300^{\circ}C} CH_3$$
 CH_3 Dehydration takes place. CH_3

- (V) Double bond or Tripple bond is not affected by 4,5,6,7,8,9,10
- (VI) No effect on 3° alcohol by 1,2,3,5,6,7,8,9,10,12,13

(a) Oxidation by HIO₄ [per iodic acid]:

When diols reacts with HIO₄ [Periodic acid]. Those diols/ Polyols in which –OH group attached to vic C-atom after reaction with HIO₄ forms aldehyde and ketone.

This reaction is also used in identification of no. of OH group in polyol.

Condition for oxidation by HIO₄:

At least 2 —OH or 2 >C=O or 1 —OH and 1 >C=O should be at adjacent carbons.

$$\mathbf{Ex.} \qquad \mathrm{CH_3} \longrightarrow \mathrm{CH} \longrightarrow \mathrm{CH} \longrightarrow \mathrm{CH_3} \longrightarrow \mathrm{CH_3} \longrightarrow \mathrm{CH_3} \mathrm{CHO} + \mathrm{HCOOH} + \mathrm{CH_3} \longrightarrow \mathrm{CH_3}$$

Ex.
$$_{\text{HO}-\text{CH}_2}$$
 $_{\text{OH}}$ $_{\text{OH}}$ $_{\text{OH}}$ $_{\text{CHO}}$ $_{\text{OH}}$ $_{\text{CHO}}$ $_{\text{CHO}}$

Ex.
$$R - CH - OH$$
 $CH_2 - OH$
 $CH_2 - OH$
 $CH_3 - OH$
 $CH_4 - OH$
 $CH_4 - OH$
 $CH_5 - OH$

Ex.
$$\begin{array}{ccc}
R & & & & \\
R - C - OH & & & & \\
R - C - OH & & & & \\
R - C - OH & & & \\
R
\end{array}$$

Ex. R - CH - OH
$$+ \text{HIO}_4 \xrightarrow{\text{strong oxidation}}$$
 No reaction (due to absence of vic diols.)

CH₂
R - CH - OH

KEY POINT

- 1. 1,2- or vicinal diols are cleaved by periodic acid, HIO_4 , into two carbonyl compounds.
- **2.** The reaction is selective for 1,2-diols.
- 3. The reaction occurs via the formation of a cyclic periodate ester.
- **4.** This can be used as a functional group test for 1,2-diols.
- 5. The products are determined by the substituents on the diol
- **6.** The product of alcohol oxidation depends on whether the starting alcohol is a primary, secondary or tertiary alcohol.
- 7. Oxidation of methanol is unique amongst alcohols as the eventual products of methanol oxidation are water and carbon dioxide.
- **8.** A common reagent that selectively oxidizes a primary alcohol to an aldehyde (and no further) is pyridinium chlorochromate, PCC.
- 9. 3° alcohol are resistant to oxidation because they have no hydrogen atoms attached to the oxygen bearing carbon (carbinol carbon).
- **10.** Potassium permanganate is a cheaper but stronger oxidizing agent, and conditions must be controlled carefully.
 - (b) Pinacole Pinacolone Rearrangement:

Pinacole

Pinacolone

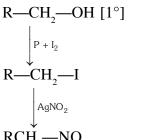
node06\B0B0-BA\Kota\JEE(Advanced)\Leader\Che\Sheet\Alcohol & Ether\Eng\02-Exe.p65

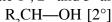
TEST OF ALCOHOLS:

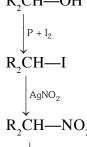
(1) Lucas test: A mixture of HCl(conc.) and anhydrous ZnCl₂ is called Lucas reagent.

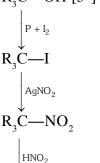
ZnCl₂+HCl No turbidity at room temp. [On heating within 30 minutes.] p-alcohol

ZnCl₂+HCl s-alcohol Turbidity appears within 5 minutes.


ZnCl₂+HCl Turbidity appears within 1 minute. t-alcohol


This test is used to differentiate 1°, 2° and 3° alcohols,


(2) Victor - Meyer test: This is colour test for alcohol (primary, secondary & tertiary).


p-alcohol Red colour s-alcohol Blue colour

No colour t-alcohol This test is used to differentiate 1°, 2° and 3° alcohols,

No reaction

NaOH

Colourless (White)

R—C—NO

 $\mathrm{N}-\mathrm{OH}$

NaOH

Insoluble (Blue)

(3) Other test of alcohols:

(a) Dichromate test:

$$2^{\circ}$$
 Alcohol $\xrightarrow{H^{\oplus}/K_2Cr_2O_7}$ Ketone + Cr^{+3} [green]

$$3^{\circ}$$
 Alcohol $\xrightarrow{H^{\oplus}/K_2Cr_2O_7}$ No oxidation, No green

(b) Test of alcholic group:

R—OH
$$\xrightarrow{\text{Na}}$$
 R—ONa + $\frac{1}{2}$ H₂ [effervesence of H₂]

R—OH
$$\xrightarrow{PCl_5}$$
 R—Cl + POCl₃ + HCl $\xrightarrow{NH_3}$ NH₄Cl [White fumes]

Cerric ammonium nitrate R—OH Red colour

(c) Distinction between $CH_3 - OH$ and C_2H_5OH

CH₃CH₂OH

 I_2 + NaOH No ppt Yellow ppt of CHI_3

Cu/300°C Smell of formalin [HCHO] No smell Salicylic acid Smell of oil of wintergreen No smell

Synthesis of oil of wintergreen and other related reactions are as following:

KEY POINT

- 1. Alcohols are very weak acids (somewhat weaker than water) but may loose H⁺ from the OH group if sodium or a sufficiently strong base is present
- 2. Phenol is more acidic than alcohols and H⁺ may be removed with sodium hydroxide solution. It is less acidic than carboxylic acids.
- 3. Normally an alcohol cannot be directly reduced to an alkane in one step. The –OH group is a poor leaving group so hydride displacement is not a good option however the hydroxyl group is easily converted into other groups that are superior leaving groups, and allow reactions to proceed.
- 4. The -OH is a poor leaving group, but $-OH_2^+$ is an excellent leaving group, and once the -OH is protonated, the molecule may take part in a variety of substitution and/or elimination reactions.
- 5. The ZnCl, coordinates to the hydroxyl oxygen, and this generates a far superior leaving group.

ETHER

GENERAL METHODS OF PREPARATION:

From alkyl halides:

(i) By Williamson's synthesis:

$$R$$
— X + Na — O — R — \longrightarrow R — O — R + NaX [S_{N^2} Reaction]

Ex.
$$CH_3$$
— $I + C_2H_5 O^- Na^+ \longrightarrow CH_3$ — CH_2O — $CH_3 + NaI$

Mechanism: $[S_{N^2}]$ Reaction

$$C_2H_5ONa^{\oplus} \rightleftharpoons C_2H_5O^{\ominus} + Na^{\oplus}$$

$$Na^{\oplus}$$
+ I^{\ominus} NaI

node06\B0B0-BA\Kata\JEE(Advanced)\Leader\Che\Sheet\Alcohol & Ether\Eng\02-Exe.p65

Ex.
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

Ex.
$$CH_3$$
 CH_3 CH_3

Ex.
$$CH_2$$
= CH — $C1 + CH_3CH_2$ — ONa ——— No reaction [Stable by Resonance]

(ii) Reaction with Dry Ag₂O:

$$2RX + Ag_2O$$
 $\xrightarrow{\triangle}$ $R \longrightarrow O \longrightarrow R + 2AgX$

Ex.
$$2CH_3$$
— CH_2 — $Cl + Ag_2O$ $\xrightarrow{\triangle}$ $CH_3CH_2OCH_2CH_3 + 2AgCl$

PHYSICAL PROPERTIES:

- (i) CH₃OCH₃, CH₃OCH₂CH₃ are gases and higher are volatile liquids.
- (ii) Ether are less polar [μ =1.18D].
- (iii) Ethers are less soluble in H₂O.
- (iv) Ethers have less BP then corresponding alcohol.

Ex. Ethers are less soluble in H₂O. Why?

Sol. Reason : Due to less polar, it forms weaker H–Bonding with H₂O.

Ex. Ethers have less BP then corresponding alcohol. Why?

Sol. Reason: No H-Bonding in ether molecules.

CHEMICAL PROPERTIES:

Ex.
$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 $COld and conc.$
 CH_3

Sol. Mechanism

$$CH_{3} \xrightarrow{CH_{2}CH_{2}CH_{3}} \xrightarrow{H^{+}} CH_{3} \xrightarrow{CH_{3}} CH_{2}CH_{3} \xrightarrow{CH_{3}} CH_{3} CH_{3} \xrightarrow{CH_{3}} CH_{3} CH_{3}$$

- ♦ If oxonium ion gives more stable carbocation [$PhCH_2$, CH_2 =CH— CH_2 , $(CH_3)_3$ C] then SN^1 reaction occurs.
- ♦ If oxonium ion gives less stable carbocation [Ph, CH₂= $\overset{\oplus}{C}$ H, CH₃ $\overset{\oplus}{C}$ H₂] then SN² reaction occurs, and X^{\odot} attacks at less hindered carbon.

CH₃CH₂—O—CH₂Ph $\xrightarrow{\text{Cold con.}}$ CH₃CH₂—OH + PhCH₂—I, write mechanism of given reaction.

Ex.
$$CH_3CH_2$$
— O — CH_3 $\xrightarrow{anhy.HI}$?

Sol.
$$CH_3CH_2-\ddot{\bigcirc}-CH_3 \stackrel{HI}{\Longrightarrow} CH_3CH_2-\overset{\oplus}{\bigcirc}-CH_3 \stackrel{|\Theta|}{\Longrightarrow} CH_3I+CH_3CH_2OH$$

Oxonium ion gives less stable carbocation

 SN^2 reaction I^{Θ} attacks at less hinderd carbon.

Ex.
$$CH_3$$
— CH_2 — O — Ph $\xrightarrow{\text{(aq.)}HBr}$?

Sol. Mechanism:
$$CH_3 - CH_2 - \overset{\leftarrow}{\overset{\circ}{\overset{\circ}{\circ}}} - Ph \xrightarrow{H^+} CH_3 - \overset{\leftarrow}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\circ}}}} - Ph \xrightarrow{Br^{\Theta}} CH_3CH_2Br + PhOH$$

- If excess of HI is used then two moles of alkyl hallides are formed.
- $\text{CH}_3\text{CH}_2 \text{O} \text{CH}_2\text{Ph} \xrightarrow{\hspace{1cm} \text{HI} \hspace{1cm}} \text{CH}_3\text{CH}_2\text{OH} + \text{PhCH}_2\text{I} \xrightarrow{\hspace{1cm} \text{HI} \hspace{1cm}} \text{CH}_3\text{CH}_2 \text{I} + \text{PhCH}_2 \text{I}$
- Reaction with hot and conc. HX: **(B)**

$$\text{CH}_3\text{CH}_2\text{--O--CH}_3 \xrightarrow{\quad \text{hot and conc HI} \quad} \text{CH}_3\text{CH}_2\text{--I + CH}_3\text{--I}$$

Ex.
$$C_2H_5$$
— O — C_2H_5 hot and conc. HBr ? +?

Sol.
$$C_2H_5$$
—Br + C_2H_5 — Br

USES OF ETHER:

- (i) General anaesthetics agent.
- (ii) Refrigerant a mixture of ether and dry ice gives temperature as low 110°C.
- Solvent for oil, fats, resins, Grignard reagent. (iii)
- (iv) For providing inert & moist free medium to organic reaction example: Wurtz reactions.
- In perfumery. (v)
- Mixture of alcohol and ether is used as a substitute of petrol. Trade name "Natalite"
- (vii) Halothane (CF₃CHClBr) used as an anaesthetic because it produces unconsciousness without affecting lung and heat.

EPOXIDES:

Preparation of Epoxides:

- Epoxidation of alkenes by reaction with peroxy acids
- Base-promoted ring closure of vicinal halohydrins (ii)
- Epoxidation of alkenes by reaction with peroxy acids
- Epoxidation of alkenes by reaction with peroxy acids:

$$C=C$$
 + R-C-OOH C + R-C-OH

Peroxy acid Epoxide

node06\B0B0-BA\Kota\JEE(Advanced)\Leader\Che\Sheet\Alcohol & Ether\Eng\02-Exe. p65 Ε

Mechanism:

transition state

♦ Base-promoted ring closure of vicinal halohydrins :

♦ Reaction of Epoxides :

♦ With Grignard reagent :

♦ Nucleophilic ring opening reactions of epoxides :

$$\begin{array}{c} Y : \begin{array}{c} & & Y \\ & & \end{array} \\ Y : \begin{array}{c} & + & R_2C - - - CR_2 \\ & & \end{array} \\ & & \vdots \\ & & \vdots$$

2-(butylthio) ethanol

Problems:

Ex. Which of the following is an appropriate set of reactants for the preparation of 1-methoxy-4-nitrobenzene and why?

Ex. Write the equation of the reaction of hydrogen iodide with:

- (i) 1-propoxypropane
- (ii) Methoxybenezene and
- (iii) Benzyl ethyl ether

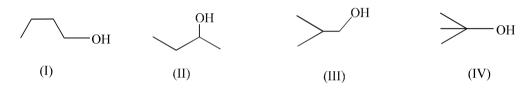
ALCOHOLS AND ETHERS

EXERCISE # 0-1

- $\frac{\text{conc.H}_2\text{SO}_4}{\Delta} \Rightarrow \text{Major product} :$
- (B) (C)
- (D) None of these

AE0001

2. Correct order of dehydration of following alcohols will be:


$$\bigcirc OH \bigcirc OH \bigcirc OH \bigcirc OH$$

- (A) 1 < 2 < 3 < 4

- (B) 4 > 3 > 1 > 2 (C) 4 > 2 > 1 > 3 (D) 1 > 3 > 4 > 2

AE0002

3. Dehydration of the isomeric alcohols

What will be the order of rate of reaction?

- (A) IV > III > II > I
- (B) I > II > III > IV
- (C) IV > II > III > I (D) II > IV > I > III

AE0003

4. Find out major product of following reaction.

$$\begin{array}{c|c} CH_3 CH_3 \\ \hline Ph & conc. H_2SO_4 \\ \hline OH OH \end{array}$$

- (A) Ph—C—Ph (B) Ph—C—Ph (C) CH_3 —C—Ph (D) CH_3 —C—Ph OH

AE0004

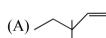
- H_3C — CH_3 CH_3
 - (A) Acid catalysed hydration

- (B) Oxymercuration-demercuration
- (C) Hydroboration oxidation

(D) Any method mentioned above

- A $\xrightarrow{\text{(i) Hg (OAc)}_2, \text{ HOH}}$ > 1-Methylcyclohexanol. Here A is: 6.

- (D)(A) or(B)

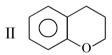

AE0006

Select schemes A, B, C out of

- (I) Acid catalysed hydration
- (II) HBO
 - (III) Oxymercuration-demercuration
- (A) I in all cases
- (B) I, II, III
- (C) II, III, I
- (D) III, I, II

AE0007

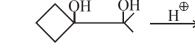
HBO, oxymercuration-demercuration and acid catalysed hydration will give same product in 8.


AE0008

- 9. Which of the following ethers is least reactive to cleavage with conc. HBr?
 - (A) Ph—CH₂—O—CH₃ (B) Ph—O—Ph
- $(C) \nearrow O \searrow (D) \xrightarrow{} O \xrightarrow{} C$

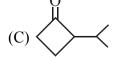
AE0009

10. Consider the reaction of HI with the following:



Which forms di-iodide on reaction with HI (excess)?

- (A) I and II both
- (B) II only
- (C) I only
- (D) none


AE0010

Find out major product of following reaction. 11.

AE0011

In the given reaction

$$H_3C \longrightarrow C = CH - CH_3 \xrightarrow{\text{(i) } Hg(OAc)_2/CH_3OH} [X], [X] \text{ will be :}$$

AE0012

In the following reaction **13.**

$$\xrightarrow{\text{H}_3\text{O}^{\oplus}} \text{Product}$$

The major product is:

AE0013

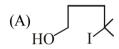
$$(A) \begin{picture}(60,0){\line(1,0){13}} \end{picture} \begin{pictu$$

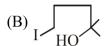
AE0014

15.
$$(CH_3)_2C = C(CH_3)_2 \xrightarrow{H_2O} A \xrightarrow{OH^-} B$$
, Product 'B' is:

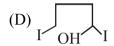
(A)
$$(CH_3)_2C-C(CH_3)_2$$

O


node06\B0B0-BA\Kota\JEE(Advanced)\Leader\Che\Sheet\Alcohol & Ether\Eng\02-Exe.p65 E


16. Find out correct product of reaction:

$$(B) \bigcirc \bigcap_{OH} Br(C) \bigcirc \bigcap_{Br} Br$$


AE0016

 $+ \underset{(1 \text{ eq.})}{\text{HI}} \longrightarrow \text{Product, Product is :}$

AE0017

 $Z \xrightarrow{PCl_5} X \xrightarrow{Alc.KOH} Y \xrightarrow{dil. H_2SO_4} Z ; Z is :$

(A)
$$CH_3 - CH_2 - CH_2 - OH$$
 (B) $H_3C - CH - CH_3$ (C) $CH_3 - CH_2 - OH$ (D) $CH_3 - CH = CH_2$

AE0018

When 2-chloroethanol is warmed slightly with dilute NaOH, the major product formed is: 19.

(C) HO–CH₂–CH₂–OH (D)
$$\stackrel{\frown}{\searrow}$$

AE0019

20. How many total alcohols are form by acidic hydrolysis of following ether.

(A) 5

(B)6

(C) 7

(D) 8

AE0020

- 21. Which of the following test can be used to differentiate methyl alcohol and iso-propyl alcohol.
 - (A) Litmus paper test

(B) Bromine water test

(C) Lucas test

(D) All of these

- On reaction of ether with BF₃, ether acts as: 22.
 - (A) Electrophile

(B) Nucleeophile

(C) Ambiphile

(D) None

AE0022

23. Give suitable major product for following reaction

$$\bigcirc O \longrightarrow CH_2 - R \xrightarrow{H^{\oplus}/H_2O} \longrightarrow$$

$$(A) \bigcirc + R - CH_2 - OH$$

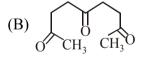
(A)
$$\bigcirc$$
 + R - CH₂ - OH (B) \bigcirc CH₂ - R (C) \bigcirc CH₂ - R (D) \bigcirc CH₂ - R

(B)
$$HO$$
 O $CH_2 - R$

(D)
$$_{\text{HO}}$$
 $_{\text{HO}}$ $_{\text{O}}$ $_{\text{CH}_2}$ – $_{\text{R}}$

AE0023

24.
$$CH = CH_2 \xrightarrow{CH_3CH_2OH}$$


(A)
$$CH_2CH_3$$
 (B) CH_2CH_3 (C) CH_2CH_3 (D) CH_2CH_3 (D) CH_2CH_3 (D) CH_2CH_3

(C)
$$CH_2CH_3$$
 OCH₂CH₂

AE0024

25.
$$\bigcap_{\text{CH}_3} \xrightarrow{\text{H}_2\text{O/H}^{\oplus}} \text{'X'}$$

Product 'X' will be:

$$(C)$$
 OH

AE0025

26.
$$H_3C$$
— CH — $CH_2 \xrightarrow{(i) CH_3-C \equiv C^{\Theta} N_a^{\Theta}} Product, Product is :$

(A)
$$H_3C$$
— CH — CH_2 — CH = CH_2 — CH

(A)
$$H_3C$$
— CH — CH_2 — CH = CH_2 — CH_3 (B) H_3C — CH — CH_2 — C = C — CH_3 OMe

(C)
$$H_3C$$
— CH — CH_2 — C = C — CH_3 (D) H_3C — CH — CH — C = C — CH_3

(D)
$$H_3C$$
— CH — CH — C $\equiv C$ — CH_3

27. The product of the reaction is:

$$(A) \xrightarrow{O} \xrightarrow{1. \text{ KH}} \xrightarrow{2. \text{ H}_2 \text{O}}$$

$$(B) \xrightarrow{S} \xrightarrow{O} (C) \text{ HS-(CH}_2)_5) - \text{O-Et} \quad (D) \text{ HS-(CH}_2)_4 - \text{CH} \xrightarrow{O} \text{OH}$$

AE0027

28. Identify the major product of reaction:

$$(A) \xrightarrow{\text{CH}} (B) \xrightarrow{\text{CSH}} (D) \text{ No reaction}$$

$$(A) \xrightarrow{\text{CH}} (B) \xrightarrow{\text{CH}} (D) \text{ No reaction}$$

AE0028

29.
$$CH_3CH_2$$
 H
 PBr_3
 KCN
 DMF
Final product is ?

(A)
$$CH_3CH_2$$
 CH_3
 CN

(B)
$$\stackrel{\text{CH}_3}{\longrightarrow} \text{C} = \text{C} \stackrel{\text{CH}_3}{\longleftarrow}$$

(C)
$$CH_3CH_2$$
 CH_3
 H

(D) NC
$$CH_3$$
 CH_3CH_2

AE0029

30. Diethyl ether on prolong exposure to air gives :

(A) Ethanol

- (B) Diethyl peroxide
- (C) Diethyl hydroxy peroxide
- (D) Ethanoic acid

EXERCISE # 0-2

1.
$$CH_3MgX \rightarrow Product$$

What is the product?

- (A) Enantiomer
- (B) Diastereisomer
- (C) Meso
- (D) Achiral

AE0031

2. RMgX
$$\xrightarrow{\text{(i) } \text{CH}_3\text{CN}}$$
 (A) $\xrightarrow{\text{RMgX}}$ (B), (B) will be:

- (A) 1° ROH
- (B) 2° ROH
- (C) 3° ROH
- (D) Alkene

AE0032

3.
$$\xrightarrow{\text{Br} \atop \text{Mg}} (A) \xrightarrow{\text{(i)} \ ^{14}\text{CO}_2} (B) \xrightarrow{\text{NaHCO}_3} (C) \text{ gas, product C is :}$$

(A) CO

(B) ${}^{14}CO_{2}$

(C) CO₂

(D) A mixture ¹⁴CO₂ and CO₂

AE0033

4.
$$OH \xrightarrow{SOCl_2} OH \xrightarrow{Bd_2O} OH \xrightarrow{Bd_3O} Product$$

Product of reaction is:

$$(A) \bigcirc OH$$

(C)
$$CH_3$$
 CH_2 CH_2 CH_3 CH_3

5.
$$\bigcirc \qquad \qquad \bigvee_{SO_3H} \qquad \qquad \bigvee_{(1 \text{ eq.})} \qquad \longrightarrow X + Y$$

X and Y are respectively:

$$(B) \bigcup_{SO_3H}^{COOMgBr} \text{and } \bigcirc$$

(D) None of these

AE0035

6.
$$Cl \longrightarrow Cl \xrightarrow{PhMgBr (excess)} (X)$$
; Product (X) is:

AE0036

7.
$$PhMgBr + H_3C - C = N \xrightarrow{H_3O^+} Product$$
:

(A)
$$Ph$$
— C — CH_3 (B) Ph Ph (C) H_3C CH_3 (D) Ph CH_3

(D) Ph
$$CH_3$$

AE0037

$$\underbrace{O \qquad \underbrace{\begin{array}{c} 2CH_3MgBr \\ H^{\dagger}/H_2O \end{array}}}$$
 Major product

$$(B) \nearrow \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$$

(D) No reaction

(A) 2

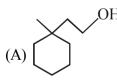
- (B)3
- (C)4
- (D) 1

(D)5

AE0039

10. HO
$$OC_2H_5$$
 OC_2H_5 OC_2H_5

AE0040


Identify (X):

(A)
$$OH$$
 (B) OH (C) OH (D) OH

AE0041

- **12.** If phenyl magnesium bromide and acetaldehyde are the reactants, the product formed after hydrolysis would be:
 - (A) Benzyl alcohol
- (B) 1-Phenylethanol
- (C) 2-Phenylethanol
- (D) Acetone

AE0042

14.
$$CH_3MgBr + \underbrace{ \begin{array}{c} H_3O^+ \\ O \end{array}} A \xrightarrow{HBr} B \xrightarrow{Mg/ether} C \xrightarrow{HCHO} D \xrightarrow{HI} E;$$

Product E is

Which of the following reagents (A to D) would you not select to convert C₆H₅COCH₂ (acetophenone) 15. to the following alcohol?

- (A) CH₃CH₂CH₂MgBr and hydrolysis
- (B) CH₂MgBr and acid hydrolysis
- (C)(CH₂)₂CHMgBr and acid hydrolysis
- (D) PhMgBr and acid hydrolysis

AE0045

16.
$$H \xrightarrow{\text{CH}_3} \text{OH} \xrightarrow{\text{SOCl}_2} \text{A} \xrightarrow{\text{KCN}} \text{B} \xrightarrow{\text{CH}_3\text{MgBr}} \text{HOH/H}^{\oplus} \text{C}$$

the final product C is:

$$(A) \underbrace{\begin{array}{c} Et \\ O \\ CH_3 \end{array}} \qquad (B) \underbrace{\begin{array}{c} Et \\ HO \\ CH_3 \end{array}} \qquad (C) \underbrace{\begin{array}{c} Et \\ CH_3 \end{array}} \qquad (D) \underbrace{\begin{array}{c} Et \\ CH_3 \end{array}} \qquad OH$$

AE0046

Which combination of reagents will not bring about the following conversion? 17.

$$\bigcirc^{O} \longrightarrow \bigcirc_{\operatorname{Br}}$$

- (A) MeMgBr/ H^{\oplus} , H_2SO_4/Δ , HBr/H_2O_2 , $h\nu$
 - (B) MeMgBr/H[⊕], H₂SO₄/Δ, HBr (D) MeMgBr, NH₄Cl

(C) MeMgBr/H[⊕], HBr/CCl₄

AE0047

Paragraph for Q.No. 18 to 19

Alcohols are converted to tosylates by treatment with p-toluene sulfonyl chloride (TsCl) in presence of pyridine. This overall process converts a poor leaving group $(\overset{\ominus}{OH})$ into better one $(\overset{\ominus}{OT_S})$. A tosylate is a better leaving group because its conjugated acid p-toluene sulfonic acid is strong acid. Because alkyl tosylates have better leaving tendency they undergo both nucleophilic substitution and β-elimination.

$$\begin{array}{c} \text{CH}_3\text{CH}_2 & \xrightarrow{\bullet} \text{OH} + \text{Cl} & \xrightarrow{\bullet} \text{OH}_3 & \xrightarrow{\text{Pyridine}} \\ \text{poor leaving group} & \text{Tosyl chloride} \\ \text{CH}_3\text{CH}_2 & \xrightarrow{\bullet} \text{OH}_3 + \text{CH}_3 + \text{Cl}^{\Theta} \\ \text{Or} & \text{CH}_3\text{CH}_2 & \xrightarrow{\bullet} \text{OTs} & \uparrow \text{ Better leaving group} \end{array}$$

$$\stackrel{\oplus}{\text{NaOCH}_3} + \text{CH}_3\text{CH}_2 \stackrel{\frown}{\text{OTs}} \xrightarrow{\text{S}_N^2} \text{CH}_3\text{CH}_2 - \text{OCH}_3 + \stackrel{\oplus}{\text{NaOTs}} \stackrel{\ominus}{\text{NaOTs}}$$

$$\begin{array}{c} \overset{\oplus}{\text{KOH}} + \overset{\bullet}{\text{H}} \overset{\bullet}{\text{CH}_2} \overset{\bullet}{\text{CH}_2} \overset{\bullet}{\text{OTs}} \xrightarrow{E_2} & \text{H}_2\text{C} = \text{CH}_2 + \overset{\oplus}{\text{KOTs}} \\ \text{(Alcoholic)} \end{array}$$

18. Find the major product of following reaction:

$$\begin{array}{c} H_3C_{H_3}C_{H_3$$

(A)
$$\frac{H_3C_{III_{III_1}}}{CH_3CH_2}$$
C—CN

(B)
$$CH_3$$
— $CH = C < H_3$

(C) NC—C:
$$\frac{CH_3}{CH_2CH_3}$$

AE0048

What would be the major product of following reactions? 19.

$$OH + Ts - C1 \xrightarrow{Pyridene} \xrightarrow{CH_3CH_2ON_3} \xrightarrow{OCH_3CH_2ON_3} OTS$$

(B)
$$\bigcirc$$
 OCH₂CH₃ (C) \bigcirc OT

)
$$\bigcirc$$
 O—CH = CH₂

AE0049

20. Which of the following order is incorrect?

(A)
$$CH_3 - CH_2 - OH > CH_3 - CH_2 - CH_2 - OH > CH_3 - CH_2 - CH_2 - OH$$

(Solubility in H_2O)

(Boiling point)

(Boiling point)

(D)
$$CH_3$$
-OH > CH_3 -CH₂-OH > CH_3 -CH₂-CH₂-OH

(Boiling point)

AE0051

EXERCISE # S-1

1.
$$A \xrightarrow{Br_2/h\nu} B \xrightarrow{Alc.KOH} C \xrightarrow{Conc.H_2SO_4} D \xrightarrow{O_3} \xrightarrow{Zn/H_2O} (Major product)$$

Find out the structure of 'A':

A)
$$\bigcirc$$
 (B) \bigcirc (C) \bigcirc (D) \bigcirc

2. Predict the reducing agents in following reaction.

(A) LiAlH₄ (B) NaBH₄ (C) H₂ / Pt,
$$\Delta$$
 (D) Both (A) and (B)

AE0052

3. Find out the product when the following compound react with NaBH₄:

$$(A) \ H \longrightarrow OCH_3$$

$$(B) \ HO \longrightarrow OCH_3$$

$$(C) \ H \longrightarrow OCH_3$$

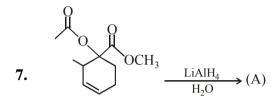
$$(D) \ HO \longrightarrow OCH_3$$

AE0053

4. Compound which does not give alcohol on reduction by LiAlH₄ is/are?

$$\text{(A)} \overset{\text{Me-C-Cl}}{\underset{\text{O}}{\parallel}} \qquad \text{(B)} \ \text{Me-C-NH}_2 \qquad \text{(C)} \overset{\text{Me-CH-CH}_2}{\underset{\text{O}}{\parallel}} \qquad \text{(D)} \ \text{Me-C-O-C-Me}$$

AE0054


- **5.** Choose the incorrect option?
 - (A) Boiling point increases with increase in carbon due to increase in vander wall forces
 - (B) Branching in carbon decreases the boiling point
 - (C) High boiling point of alcohols are mainly due to pressure of intermolecular H-bonding
 - (D) Methoxymethane has higher boiling point than ethanol & propane

AE0055

- **6.** Ethoxyethane & butan-1-ol are miscible to almost same extent (7.5 & 9 gm per 100 ml water respectively because of :
 - (A) Same molecular mass

- (B) They are isomers
- (C) Both can form hydrogen bond with water
- (D) Water is universal solvent

AE0056

Find out 'A' of the reaction

(C)
$$CH_2OH$$

AE0057

8.
$$COOC_2H_5$$
 $LiAlH_4$; Products of the reaction are :

- (A) Racemic
- (B) Diastereomers
- (C) Meso
- (D) Optically pure

AE0058

- **9.** Reduction of R—CH₂OH \longrightarrow RCH₃ can be carried out by :
 - (A) LiAlH₄
- (B) H_2/Ni
- (C) Red P + HI
- (D) NaBH₄ / AlCl₃

AE0059

$$H_3CO$$
 OCH₃

$$\xrightarrow{\text{NaBH}_4}$$
 (X), Product (X) is:

11. Select the correct synthesis

$$(A) \xrightarrow{\text{CI}} \xrightarrow{\text{BH}_3 \cdot \text{THF}} \xrightarrow{\text{H}_2\text{O}_2, \text{OH}^-} \xrightarrow{\text{NaOH}} \xrightarrow{\text{O}}$$

(B)
$$\xrightarrow{\text{Hg(OAc)}_2} \xrightarrow{\text{NaBH}_4} \xrightarrow{\text{NaOH}} \xrightarrow{\text{O}}$$

$$(C) = \underbrace{ \xrightarrow{\text{mCPBA}} }_{\text{CH}_2\text{Cl}_2}$$

(D)
$$\langle \bigcirc \rangle$$
 -Br + (CH₃)₃CONa $\xrightarrow{S_N 2}$ (CH₃)₃CO- $\langle \bigcirc \rangle$

AE0061

12. Identify the final product of following sequence of reactions:

$$OH \xrightarrow{\text{TsCl}} \text{alc. KOH} \xrightarrow{\Delta} \xrightarrow{\text{(i) OsO}_4}$$

$$OH \xrightarrow{\text{Pyridine}} \xrightarrow{\Delta} \text{alc. KOH} \xrightarrow{\Delta} \xrightarrow{\text{(ii) HIO}_4}$$

(D)
$$OH$$
 and its enantiomer

AE0062

13. Which of the following reaction is not possible?

(A)
$$C_6H_5OH + HBr \longrightarrow C_6H_5Br + H_2O$$

(B)
$$(CH_3)_3CCl + NaOCH_3 \longrightarrow (CH_3)_3COCH_3 + NaCl$$

(C)
$$Cl + CH_3ONa \xrightarrow{CH_3OH} OMe$$

(D)
$$C_6H_5MgBr \longrightarrow H_3O^+ \longrightarrow C_6H_5CH_2C(CH_3)_2$$

14. Which of the following reactions proceeds with inversion of configuration?

(A)
$$H \xrightarrow{\text{Me}} OH \xrightarrow{\text{Na}} \xrightarrow{\text{CH}_3Br}$$

(B) H OH
$$\xrightarrow{\text{TsCl}}$$
 $\xrightarrow{\text{CH}_3\text{ONa}}$

(C) H OH
$$\frac{PCl_5}{S_N i}$$
 $\xrightarrow{CH_3ONa}$

(D) H
$$\xrightarrow{\text{Ph}}$$
 OH $\xrightarrow{\text{SOCl}_2}$ $\xrightarrow{\text{KCN}}$ $\xrightarrow{\text{CH}_3}$

AE0064

15.
$$CH_3 - CH - CH = CH_2 \xrightarrow{Reagent R} Alcohol$$
 CH_3

which is true about alcohol and Reagent?

List-I

List-II

(Alcohol)

(Reagent)

(P)
$$B_2H_6$$
, H_2O_2 /NaOH

(Q) $\mathrm{Hg(OAc)}_2$, $\mathrm{H_2O}$ / $\mathrm{NaBH_4}$ followed by P.C.C.

$$\begin{array}{c} OH \\ | \\ (C) CH_{3} - \begin{matrix} \\ \\ \\ \\ CH_{3} \end{matrix} \\ CH_{3} \\ \end{array}$$

 ${\rm (R)~Hg(OAc)}_{2,}\,{\rm H_2O}\ /\ {\rm NaBH_4}$

(D)
$$CH_3 - CH - C - CH_3$$

 CH_3

(S) dil. H₂SO₄

EXERCISE (J-MAIN)

1.	In the following sequence of reactions $\mathrm{CH_3CH_2OH}$	$\xrightarrow{P+I_2}$ A	$\xrightarrow{\text{Mg}} B$	HCHO → C	$\xrightarrow{\text{H}_2\text{O}} \text{D}$
	then compound 'D' is -			[AIEI	EE-2007]

- (1) Butanal
- (2) n–Butyl alcohol
- (3) n-Propyl alcohol (4) Propanal

AE0066

- 2. A liquid was mixed with ethanol and a drop of concentrated H_2SO_4 was added. A compound with a fruity smell was formed. The liquid was:- [AIEEE-2009]
 - (1) CH₃COCH₃
- (2) CH₃COOH
- (3) CH₃OH
- (4) HCHO

AE0067

- 3. From amongst the following alcohols the one that would react fastest with conc. HCl and anhydrous ZnCl₂, is:-
 - (1) 1-Butanol

(2) 2–Butanol

(3) 2-Methylpropan-2-ol

(4) 2–Methylpropanol

AE0068

4. Consider the following reaction:

[AIEEE-2011]

 $C_2H_5OH + H_2SO_4 \rightarrow Produce$

Among the following, which one cannot be formed as a product under any conditions?

- (1) Ethyl-hydrogen sulphate (2) Ethylene
- (3) Acetylene
- (4) Diethyl ether

AE0069

- 5. An unknown alcohol is treated with the "Lucas reagent' to determine whether the alcohol is primary, secondary or tertiary. Which alcohol reacts fastest and by what mechanism: [AIEEE-2013]
 - (1) secondary alcohol by SN1
- (2) tertiary alcohol by SN¹
- (3) secondary alcohol by SN²
- (4) tertiary alcohol by SN²

AE0070

6. Allyl phenyl ether can be prepared by heating:

(**JEE-MAIN-2014**)

- (1) $CH_2=CH-CH_2-Br + C_6H_5ONa$
- (2) C_6H_5 -CH=CH-Br + CH₃-ONa
- (3) $C_6H_5Br + CH_2=CH-CH_2-ONa$
- (4) $CH_2 = CH Br + C_6H_5 CH_2 ONa$

AE0071

- 7. In the Victor-Meyer's test, the colour given by 1°, 2° and 3° alcohols are respectively:-
 - (1) Red, blue, colourless (2) Colourless, red, blue

(JEE-MAIN-2014)

(3) Red, blue, violet

(4) Red, colourless, blue

AE0072

8. Williamson synthesis of ether is an example of

(JEE-MAIN-2014)

(1) Nucleophilic addition

(2) Electrophilic substitution

(3) Nucleophilic substitution

(4) Electrophilic addition

AE0073

9. The gas evolved on heating CH₃MgBr in methanol is:

[JEE-MAIN-On-line-2016]

- (1) Ethane
- (2) Propane
- (3) Methane
- (4) HBr **AE0074**

10. Bouveault–Blanc reduction reaction involves:

[JEE-MAIN-On-line-2016]

- (1) Reduction of an ester with Na/C₂H₅OH
 - (2) Reduction of an ester with H₂/Pd
 - (3) Reduction of a carbonyl compound with Na/Hg and HCl
 - (4) Reduction of an anhydride with LiAlH₄

AE0075

[JEE-MAIN-On-line-(Jan)-2019]

11. The major product the following reaction is:

$$(1) \begin{picture}(100,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0$$

AE0076

12. The major product obtained in the following conversion is: [JEE-MAIN-On-line-(Jan)-2019]

$$(2) \bigcirc OOMe$$

$$Br$$

$$(3) \qquad \begin{array}{c} \text{CH}_{\overline{3}} \\ \text{OMe} \end{array}$$

AE0077

13. The major product in the following conversion is:

[JEE-MAIN-On-line-(Jan)-2019]

$$CH_3O$$
— $CH=CH-CH_3 \xrightarrow{HBr(excess)} ?$

(2) HO
$$\leftarrow$$
 CH-CH₂-CH₃ Br

(3)
$$CH_3O \longrightarrow CH_2 - CH - CH_3$$
Br

(4)
$$CH_3O$$
 — CH — CH_2 — CH_3 Br

node06\B0B0-BA\Kota\JEE(Advanced)\Leader\Che\Sheet\Alcohol & Ether\Eng\02-Exe.p65

14. The major product of the following reactions: [JEE-MAIN-On-line-(April)-2019]

$$\begin{array}{c}
\text{OCH}_{3} \\
\text{Conc HBr(excess)} \\
\text{heat}
\end{array}$$

AE0079

The mojor product of the following reaction is: 15.

[JEE-MAIN-On-line-(April)-2019]

$$OH \xrightarrow{1. PBr_3} OH \xrightarrow{2. KOH(alc.)} OH (3) HO$$

$$(4)$$

AE0080

16. The major product of the following reaction is:

[JEE-MAIN-On-line-(April)-2019]

$$(4) \sum_{NC}^{I}$$

AE0081

Consider the following reactions: **17.**

[JEE-MAIN-On-line-(April)-2019]

A
$$\xrightarrow{\text{Ag}_2\text{O}}$$
 ppt
 $A \xrightarrow{\text{Hg}^{2^+}/\text{H}^+}$ $B \xrightarrow{\text{NaBH}_4}$ $C \xrightarrow{\text{ZnCl}_2}$ Turbidity within 5 minute

'A' is:

(1) CH≡CH

(2) CH₃–C≡CH

(3) $CH_2 = CH_2$ (4) $CH_3 - C = C - CH_3$

18. Heating of 2-chloro-1-phenylbutane with EtOK/EtOH gives X as the major product. Reaction of X with $Hg(OAc)_2/H_2O$ followed by NaBH₄ gives Y as the major product. Y is :

[JEE-MAIN-On-line-(April)-2019]

AE0083

19. In the following reaction squence, structures of A and B, respectively will be:

[JEE-MAIN-(Jan)-2020]

$$\begin{array}{c}
 & \xrightarrow{\text{HBr}} & A \xrightarrow{\text{Na}} & \text{(intramolecular Product) B} \\
 & \xrightarrow{\text{CH}_2\text{Br}} & & \xrightarrow{\text{Ether}} & & & & \\
\end{array}$$

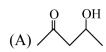
$$(1) \bigcirc \begin{matrix} OH \\ CH_2Br \end{matrix} \& \bigcirc \begin{matrix} OH \\ \end{matrix}$$

$$(2) \bigcirc \begin{array}{c} Br \\ OH \\ CH_2Br \end{array}$$

$$(3) \bigcirc OH \otimes \bigcirc OH$$

$$(4) \bigcirc OH \bigcirc OH \bigcirc OH$$

$$CH_2Br \& \bigcirc OH$$


20. 1-methyl ethylene oxide when treated with an excess of HBr produces :

[JEE-MAIN-(Jan)-2020]

$$(1) = \stackrel{Br}{<}_{CH_3} \qquad (2) \stackrel{Br}{\longrightarrow}_{Br} \quad (3)_{Br} \stackrel{CH_3}{\longrightarrow} \quad (4)^{Br}$$

EXERCISE-(J-ADVANCE)

1. Which one of the following will most readily be dehydrated in acidic condition: [JEE 2000]

AE0086

2. Identify the correct order of boiling point of the following compounds:

[JEE 2002]

CH₃CH₂CH₂CH₂OH CH₃CH₂CH₂CH₂CH₂COOH

- (A) 1 > 2 > 3
- (B) 3 > 1 > 2
- (C) 1 > 3 > 2
- (D) 3 > 2 > 1

AE0087

 $-OH + C_2H_5I \xrightarrow{C_2H_5O^-Na^+(excess)} \xrightarrow{C_2H_5OH(anhydrous)}$ **3.**

[JEE 2003]

- (C) $C_6H_5OC_6H_5$ (D) $C_2H_5OC_2H_5$

AE0088

- 4. Reaction of entainomerically pure acid with 1 chiral carbon and racemic alcohol with 1 chiral carbon gives an ester which is: [JEE 2003]
 - (A) Meso

(B) Optically active mixture

(C) Racemic mixture

(D) Enantionmerically pure

AE0089

5. On acid catalysed hydration, 2-phenyl propene gives: [JEE 2004]

(A) 3-phenyl-2-propanol

(B) 2-phenyl-1-propanol

(C) 1-phenyl-3-propanol

(D) 2-phenyl-2-propanol

AE0090

Phenyl magnesium bromide reacting with t-Butyl alcohol gives 6.

[JEE 2005]

- (A) Ph OH
- (B) Ph H
- (C) Ph-O-C-CH₃
 CH₂

7. In the reaction \bigcirc OCH₃ \longrightarrow the products are

[JEE 2010]

AE0092

8. The major product in the following reaction is

Cl
$$CH_3$$
 $\frac{1. CH_3MgBr, dry ether, 0°C}{2. aq. acid}$

(B)
$$H_2C$$
 CH_3

(D)
$$CH_3$$
 CH_3

AE0093

9. The acidic hydrolysis of ether (X) shown below is fastest when

[JEE 2014]

- (A) one phenyl group is replaced by a methyl group
- (B) one phenyl group is replaced by a para-methoxyphenyl group
- (C) two phenyl groups are replaced by two para-methoxyphenyl group
- (D) no structural change is made to X

AE0094

10. The correct combination of names for isomeric alcohols with molecular formula $C_4H_{10}O$ is/are-

[JEE 2014]

- (A) tert-butanol and 2-methylpropan-2-ol
- (B) tert-butanol and 1, 1-dimethylethan-1-ol
- (C) *n*-butanol and butan-1-ol
- (D) isobutyl alcohol and 2-methylpropan-1-ol

ANSWER KEY

EXERCISE # 0-1 1. 2. **3.** Ans. (B) Ans. (C) Ans. (C) 4. Ans. (C) 5. Ans. (B) Ans. (D) 7. 6. Ans. (C) 8. Ans. (C) 9. 10. Ans. (C) Ans. (B) 11. Ans. (B) 12. Ans. (A) **13.** Ans. (B) 14. Ans. (B) **15.** Ans. (A) **16.** Ans. (B) **17.** Ans. (A) **18. Ans.** (B) 19. Ans. (D) 20. Ans. (D) 21. **Ans.** (C) 22. Ans.(B) 23. Ans. (C) 24. Ans. (A) 26. Ans. (B) 25. Ans. (A) 27. Ans. (A) 28. Ans. (B) 29. Ans. (C) 30. Ans.(C) EXERCISE # O-2 2. 1. Ans. (A) Ans. (C) 3. Ans. (C) 4. Ans. (D) 5. Ans. (C) 6. **Ans.** (C) 7. Ans. (D) 8. Ans. (A) 9. Ans. (B) 10. Ans. (C) 11. Ans. (A) **12.** Ans. (B) **13.** Ans. (B) 14. Ans.(D) **15.** Ans.(A,B,D)16. Ans. (A) 19. 17. Ans. (B,C,D) **18. Ans.** (C) Ans. (A) 20. Ans. (D) EXERCISE # S-1 Ans. (C) 3. 1. Ans. (B) 2. Ans. (B) 4. Ans. (B) 5. 7. Ans. (D) 6. Ans (C) **Ans.** (C) 8. Ans.(B) 11. 9. Ans. (C) 10 Ans. (C) **Ans.** (**A,B,C**) **12.** Ans. (B) 13. **15.** Ans.(A) \rightarrow P; (B) \rightarrow R; (C) \rightarrow S; (D) \rightarrow Q **Ans.** (**A,B,C**) 14. Ans. (B,C,D) EXERCISE # (J-MAIN) 1. Ans.(3) 2. **3.** 4. 5. Ans. (2) Ans. (3) Ans. (3) Ans. (2) 6. Ans. (1) $C_6H_5ONa + CH_2 = CH - CH_2 + Br$

- $C_6H_5O-CH_2-CH=CH_7$ Allyl phenyl ether
- 7. **Ans.** (1)
- Sol. Victor Meyer's Test:

1°Alcohol

$$\begin{array}{c} \text{RCH}_2\text{OH} & \xrightarrow{\text{Conc. HI}} & \text{RCH}_2\text{I} & \xrightarrow{\text{AgNO}_2} \\ & \text{Red P} + \text{I}_2 & \text{RCH}_2\text{NO}_2 & \xrightarrow{\text{(NaNO}_2 + \text{H}_2\text{SO}_4)} \\ & & & & \text{or} \\ & & & \text{HNO}_2 & \\ & & & & \text{II} \\ & & & & \text{N-OH} \\ & & & & \text{Nitrolic acid} \\ & & & & & \text{NaOH} \\ & & & & & \text{Blood Red colour} \end{array}$$

node06\B0B0-BA\Kota\JEE(Advanced)\Leader\Che\Sheet\Alcohol & Ether\Eng\02-Exe.p65

2°Alcohol

$$R_{2}CHOH \xrightarrow{\quad Conc. \ HI \quad or \quad } R_{2}CHI \xrightarrow{\quad AgNO_{2} \quad } R_{2}CHNO_{2} \xrightarrow{\quad (NaNO_{2} + H_{2}SO_{4}) \quad or \quad } R_{2}C-NO_{2} \xrightarrow{\quad NO \quad } R_{2}C-$$

3°Alcohol

8. Ans.(3)

Sol. Nucleophilic substitution

9. Ans. (3)

10. Ans. (1)

11. Ans.(4)

12. Ans. (2)

13. Ans. (2)

14. Ans. (4)

15. Ans.(4)

16. Ans. (1)

17. Ans. (2)

18. Ans. (4)

19. Ans.(4)

20. Ans.(4)

Sol.
$$CH_3 - CH_2 \xrightarrow{HBr} CH_3 - CH_2 \xrightarrow{(1)Br^-} CH_3 - CH_2 \xrightarrow{(2)HBr} CH_3 - CH_2 \xrightarrow{Br} Br$$

EXERCISE-(J-ADVANCE)

- 1. Ans. (A)
- 2. Ans.(B)
- 3. **Ans.**(D)
- 4. Ans. (B)

- 5. Ans. (D)
- 6. Ans. (B)
- 7. Ans. (D)

- 8. Ans. (D)
- Sol. Cl Polar π -bond give nucleophilic addition reaction] give substitution
 - (i) Grignard prefer to give nucleophilic addition on polar π -bond and form anion intermediate.

$$Cl$$
 + Me Mg Cl — Cl O Me

(ii) In next step anion give intramolecular nucleophilic substitution reaction & form 5 membered ring.

$$CI \xrightarrow{O^{-}Me} \longrightarrow O$$

- 9. **Ans.** (C)
- Sol.

OR
$$\stackrel{H^{\oplus}}{\longrightarrow} Ph$$
 $\stackrel{Ph}{\longrightarrow} C - \stackrel{Q}{\longrightarrow} - R$ $\stackrel{RDS}{\longrightarrow} Ph - \stackrel{\Phi}{\longrightarrow} Ph$ $\stackrel{Ph}{\longrightarrow} H_2O$ $\stackrel{Ph}{\longrightarrow} Ph$ $\stackrel{H}{\longrightarrow} Ph$ $\stackrel{Ph}{\longrightarrow} Ph$

If 2 Ph groups are substituted by 2 MeO groups then carbocation formed in above sequence is more stable and rate of above hydrolysis increases

10. Ans. (A,C,D)

The combination of names for isomeric alcohols with molecular formula $C_4H_{10}O$ is/are

Formula	Names		
CH ₃ CH ₂ CH ₂ CH ₂ OH	n-butyl alcohol / n-butanol / butan-1-ol		
CH ₃ -CH-CH ₂ -OH CH ₃	isobutyl alcohol / 2-methyl propan-1-ol		
CH ₃ -CH ₂ -CH-OH CH ₃	Secondary butyl alcohol / butan-2-ol		
CH ₃ CH ₃ -C-OH CH ₃	Tertiary butyl alcohol / tert butanol / 2-methyl propan-2-ol / 1,1-dimethyl ethan-1-ol		

 $Reference: National\ Institute\ of\ standards\ and\ technology\ (NIST)$