SOLUTIONS OF TRIANGLE

The process of calculating the sides and angles of triangle using given information is called solution of triangle.

In a \triangle ABC, the angles are denoted by capital letters A, B and C and the length of the sides opposite these angle are denoted by small letter a, b and c respectively.

1. **SINE FORMULAE:**

In any triangle ABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = \lambda = \frac{abc}{2\Delta} = 2R$$

where R is circumradius and Δ is area of triangle.

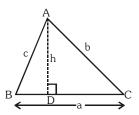


Illustration 1: Angles of a triangle are in 4:1:1 ratio. The ratio between its greatest side and perimeter is

(A)
$$\frac{3}{2+\sqrt{3}}$$

(B)
$$\frac{\sqrt{3}}{2+\sqrt{3}}$$

(A)
$$\frac{3}{2+\sqrt{3}}$$
 (B) $\frac{\sqrt{3}}{2+\sqrt{3}}$ (C) $\frac{\sqrt{3}}{2-\sqrt{3}}$ (D) $\frac{1}{2+\sqrt{3}}$

(D)
$$\frac{1}{2+\sqrt{3}}$$

Solution:

Angles are in ratio 4:1:1.

angles are 120°, 30°, 30°.

If sides opposite to these angles are a, b, c respectively, then a will be the greatest side.

Now from sine formula $\frac{a}{\sin 120^{\circ}} = \frac{b}{\sin 30^{\circ}} = \frac{c}{\sin 30^{\circ}}$

$$\Rightarrow \frac{a}{\sqrt{3}/2} = \frac{b}{1/2} = \frac{c}{1/2}$$

$$\Rightarrow \frac{a}{\sqrt{3}} = \frac{b}{1} = \frac{c}{1} = k \text{ (say)}$$

then $a = \sqrt{3}k$, perimeter = $(2 + \sqrt{3})k$

$$\therefore \text{ required ratio} = \frac{\sqrt{3}k}{(2+\sqrt{3})k} = \frac{\sqrt{3}}{2+\sqrt{3}}$$
Ans. (B)

Illustration 2: In triangle ABC, if b = 3, c = 4 and $\angle B = \pi/3$, then number of such triangles is -

(A) 1

(B)2

(C)0

(D) infinite

Solution:

Using sine formulae $\frac{\sin B}{h} = \frac{\sin C}{c}$

$$\Rightarrow \frac{\sin \pi/3}{3} = \frac{\sin C}{4} \Rightarrow \frac{\sqrt{3}}{6} = \frac{\sin C}{4} \Rightarrow \sin C = \frac{2}{\sqrt{3}} > 1 \text{ which is not possible.}$$

Hence there exist no triangle with given elements.

Ans. (C)

Illustration 3: The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smallest one. Determine the sides of the triangle.

Solution: Let the sides be n, n + 1, n + 2 cms.

i.e.
$$AC = n$$
, $AB = n + 1$, $BC = n + 2$

Smallest angle is B and largest one is A.

Here,
$$\angle A = 2\angle B$$

Also,
$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\Rightarrow$$
 3\(\angle B + \angle C = 180\circ \Rightarrow \angle C = 180\circ - 3\angle B

We have, sine law as,

$$\frac{\sin A}{n+2} = \frac{\sin B}{n} = \frac{\sin C}{n+1} \implies \frac{\sin 2B}{n+2} = \frac{\sin B}{n} = \frac{\sin(180-3B)}{n+1}$$

$$\Rightarrow \frac{\sin 2B}{n+2} = \frac{\sin B}{n} = \frac{\sin 3B}{n+1}$$

from (i) and (ii);

$$\frac{2\sin B\cos B}{n+2} = \frac{\sin B}{n} \quad \Rightarrow \quad \cos B = \frac{n+2}{2n} \qquad \qquad (iv)$$

and from (ii) and (iii);

$$\frac{\sin B}{n} = \frac{3\sin B - 4\sin^3 B}{n+1} \qquad \Rightarrow \qquad \frac{\sin B}{n} = \frac{\sin B(3 - 4\sin^2 B)}{n+1}$$

$$\Rightarrow \frac{n+1}{n} = 3 - 4(1 - \cos^2 B)$$
(v)

from (iv) and (v), we get

$$\frac{n+1}{n} = -1 + 4\left(\frac{n+2}{2n}\right)^2 \implies \frac{n+1}{n} + 1 = \left(\frac{n^2 + 4n + 4}{n^2}\right)$$

$$\Rightarrow \frac{2n+1}{n} = \frac{n^2 + 4n + 4}{n^2} \Rightarrow 2n^2 + n = n^2 + 4n + 4$$

$$\Rightarrow n^2 - 3n - 4 = 0 \Rightarrow (n-4)(n+1) = 0$$

$$n = 4 \text{ or } -1$$

where $n \neq -1$

$$\therefore$$
 n = 4. Hence the sides are 4, 5, 6

Ans.

Do yourself - 1:

- (i) If in a $\triangle ABC$, $\angle A = \frac{\pi}{6}$ and $b : c = 2 : \sqrt{3}$, find $\angle B$.
- (ii) Show that, in any $\triangle ABC$: $a \sin(B-C) + b \sin(C-A) + c \sin(A-B) = 0$.
- (iii) If in a $\triangle ABC$, $\frac{\sin A}{\sin C} = \frac{\sin(A-B)}{\sin(B-C)}$, show that a^2 , b^2 , c^2 are in A.P.

COSINE FORMULAE:

(a)
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

(b)
$$\cos B = \frac{c^2 + a^2 - b^2}{2ca}$$
 (c) $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

(c)
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

or
$$a^2 = b^2 + c^2 - 2bc \cos A$$

In a triangle ABC, if B = 30° and c = $\sqrt{3}$ b, then A can be equal to -Illustration 4:

(A)
$$45^{\circ}$$

$$(B) 60^{\circ}$$

$$(C) 90^{\circ}$$

(D)
$$120^{\circ}$$

Solution:

We have
$$\cos B = \frac{c^2 + a^2 - b^2}{2ca} \Rightarrow \frac{\sqrt{3}}{2} = \frac{3b^2 + a^2 - b^2}{2 \times \sqrt{3}b \times a}$$

$$\Rightarrow$$
 $a^2 - 3ab + 2b^2 = 0 \Rightarrow (a - 2b)(a - b) = 0$

$$\Rightarrow$$
 Either a = b \Rightarrow A = 30°

or
$$a = 2b \implies a^2 = 4b^2 = b^2 + c^2 \implies A = 90^\circ$$
.

Ans. (C)

In a triangle ABC, $(a^2-b^2-c^2)$ tan A + $(a^2-b^2+c^2)$ tan B is equal to -Illustration 5:

(A)
$$(a^2 + b^2 - c^2)$$
 tan C

(B)
$$(a^2 + b^2 + c^2) \tan C$$

(C)
$$(b^2 + c^2 - a^2) \tan C$$

(D) none of these

Solution:

Using cosine law:

The given expression is equal to -2 bc $\cos A \tan A + 2$ ac $\cos B \tan B$

$$= 2abc \left(-\frac{\sin A}{a} + \frac{\sin B}{b} \right) = 0$$

Ans. (D)

Do yourself - 2:

- If a: b: c = 4:5:6, then show that $\angle C = 2\angle A$. **(i)**
- In any $\triangle ABC$, prove that (ii)

(a)
$$\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} = \frac{a^2 + b^2 + c^2}{2abc}$$

(b)
$$\frac{b^2}{a}\cos A + \frac{c^2}{b}\cos B + \frac{a^2}{c}\cos C = \frac{a^4 + b^4 + c^4}{2abc}$$

3. PROJECTION FORMULAE:

- $b \cos C + c \cos B = a$ (a)
- **(b)** $c \cos A + a \cos C = b$
- (c) $a \cos B + b \cos A = c$

ALLEN

Illustration 6: In a $\triangle ABC$, $\cos^2 \frac{A}{2} + a\cos^2 \frac{C}{2} = \frac{3b}{2}$, then show a, b, c are in A.P.

Solution: Here, $\frac{c}{2}(1+\cos A) + \frac{a}{2}(1+\cos C) = \frac{3b}{2}$

$$\Rightarrow$$
 a + c + (c cos A + a cos C) = 3b

$$\Rightarrow$$
 a + c + b = 3b {using projection formula}

$$\Rightarrow$$
 a + c = 2b

which shows a, b, c are in A.P.

Do yourself - 3:

(i) In a
$$\triangle ABC$$
, if $\angle A = \frac{\pi}{4}$, $\angle B = \frac{5\pi}{12}$, show that $a + c\sqrt{2} = 2b$.

(ii) In a
$$\triangle ABC$$
, prove that: (a) $b(a\cos C - c\cos A) = a^2 - c^2$ (b) $2\left(b\cos^2\frac{C}{2} + c\cos^2\frac{B}{2}\right) = a + b + c$

4. NAPIER'S ANALOGY (TANGENT RULE):

(a)
$$\tan\left(\frac{B-C}{2}\right) = \frac{b-c}{b+c}\cot\frac{A}{2}$$
 (b) $\tan\left(\frac{C-A}{2}\right) = \frac{c-a}{c+a}\cot\frac{B}{2}$ (c) $\tan\left(\frac{A-B}{2}\right) = \frac{a-b}{a+b}\cot\frac{C}{2}$

Illustration 7: In a \triangle ABC, the tangent of half the difference of two angles is one-third the tangent of half the sum of the angles. Determine the ratio of the sides opposite to the angles.

Solution: Here, $\tan\left(\frac{A-B}{2}\right) = \frac{1}{3}\tan\left(\frac{A+B}{2}\right)$ (i)

using Napier's analogy, $\tan\left(\frac{A-B}{2}\right) = \frac{a-b}{a+b} \cdot \cot\left(\frac{C}{2}\right)$ (ii)

from (i) & (ii);

$$\frac{1}{3}\tan\left(\frac{A+B}{2}\right) = \frac{a-b}{a+b}.\cot\left(\frac{C}{2}\right) \implies \frac{1}{3}\cot\left(\frac{C}{2}\right) = \frac{a-b}{a+b}.\cot\left(\frac{C}{2}\right)$$

{as A + B + C =
$$\pi$$
 : $\tan\left(\frac{B+C}{2}\right) = \tan\left(\frac{\pi}{2} - \frac{C}{2}\right) = \cot\frac{C}{2}$ }

$$\Rightarrow \frac{a-b}{a+b} = \frac{1}{3} \text{ or } 3a-3b = a+b$$

$$2a = 4b$$
 or $\frac{a}{b} = \frac{2}{1} \Rightarrow \frac{b}{a} = \frac{1}{2}$

Thus the ratio of the sides opposite to the angles is b : a = 1 : 2.

Ans.

Do yourself - 4:

(i) In any
$$\triangle ABC$$
, prove that $\frac{b-c}{b+c} = \frac{\tan\left(\frac{B-C}{2}\right)}{\tan\left(\frac{B+C}{2}\right)}$

(ii) If
$$\triangle ABC$$
 is right angled at C, prove that : (a) $\tan \frac{A}{2} = \sqrt{\frac{c-b}{c+b}}$ (b) $\sin(A-B) = \frac{a^2-b^2}{a^2+b^2}$

(b)
$$\sin(A-B) = \frac{a^2 - b^2}{a^2 + b^2}$$

5. **HALF ANGLE FORMULAE:**

 $s = \frac{a+b+c}{2}$ = semi-perimeter of triangle.

(a) (i)
$$\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$
 (ii) $\sin \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{ca}}$ (iii) $\sin \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{ab}}$

(ii)
$$\sin \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{ca}}$$

(iii)
$$\sin \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{ab}}$$

(b) (i)
$$\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}$$
 (ii) $\cos \frac{B}{2} = \sqrt{\frac{s(s-b)}{ca}}$ (iii) $\cos \frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}}$

(ii)
$$\cos \frac{B}{2} = \sqrt{\frac{s(s-b)}{ca}}$$

(iii)
$$\cos \frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}}$$

(c) (i)
$$\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$
 (ii) $\tan \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{s(s-b)}}$ (iii) $\tan \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$ Δ

$$\frac{A}{c} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$
 (ii) $\tan \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{s(s-b)}}$
$$= \frac{\Delta}{s(s-a)} = \frac{\Delta}{s(s-b)}$$

(iii)
$$\tan \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$$
$$= \frac{\Delta}{s(s-c)}$$

Area of Triangle (**d**)

> $\Delta = \sqrt{s(s-a)(s-b)(s-c)} = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B = \frac{1}{2}ab\sin C = \frac{1}{2}ap_1 = \frac{1}{2}bp_2 = \frac{1}{2}cp_3,$ where p₁,p₂,p₃ are altitudes from vertices A,B,C respectively.

Illustration 8: If in a triangle ABC, CD is the angle bisector of the angle ACB, then CD is equal to-

(A)
$$\frac{a+b}{2ab}\cos\frac{C}{2}$$

(B)
$$\frac{2ab}{a+b}\sin\frac{C}{2}$$

(C)
$$\frac{2ab}{a+b}\cos\frac{C}{2}$$

(A)
$$\frac{a+b}{2ab}\cos\frac{C}{2}$$
 (B) $\frac{2ab}{a+b}\sin\frac{C}{2}$ (C) $\frac{2ab}{a+b}\cos\frac{C}{2}$ (D) $\frac{b\sin\angle DAC}{\sin(B+C/2)}$

Solution:

 $\Delta CAB = \Delta CAD + \Delta CD$

$$\Rightarrow \frac{1}{2} \operatorname{absinC} = \frac{1}{2} \operatorname{b.CD.sin} \left(\frac{C}{2} \right) + \frac{1}{2} \operatorname{a.CD.sin} \left(\frac{C}{2} \right)$$

$$\Rightarrow$$
 CD(a + b) $\sin\left(\frac{C}{2}\right) = ab\left(2\sin\left(\frac{C}{2}\right)\cos\left(\frac{C}{2}\right)\right)$

So
$$CD = \frac{2ab\cos(C/2)}{(a+b)}$$

and in
$$\triangle CAD$$
, $\frac{CD}{\sin \angle DAC} = \frac{b}{\sin \angle CDA}$ (by sine rule)

$$\Rightarrow CD = \frac{b \sin \angle DAC}{\sin(B + C/2)}$$

Ans. (**C**,**D**)

If Δ is the area and 2s the sum of the sides of a triangle, then show $\Delta \leq \frac{s^2}{3\sqrt{3}}$. Illustration 9:

We have, 2s = a + b + c, $\Delta^2 = s(s - a)(s - b)(s - c)$ **Solution:** Now, A.M. \geq G.M.

$$\frac{(s-a)+(s-b)+(s-c)}{3} \ge \{(s-a)(s-b)(s-c)\}^{1/3}$$

or
$$\frac{3s-2s}{3} \ge \left(\frac{\Delta^2}{s}\right)^{1/3}$$

or
$$\frac{s}{3} \ge \left(\frac{\Delta^2}{s}\right)^{1/3}$$

or
$$\frac{\Delta^2}{s} \le \frac{s^3}{27}$$
 \Rightarrow $\Delta \le \frac{s^2}{3\sqrt{3}}$

Ans.

Do yourself - 5:

(i) Given a = 6, b = 8, c = 10. Find

(a) sinA

(b) $\tan A$ (c) $\sin \frac{A}{2}$ (d) $\cos \frac{A}{2}$ (e) $\tan \frac{A}{2}$

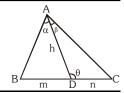
(f) Δ

Prove that in any $\triangle ABC$, (abcs) $\sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2} = \Delta^2$. (ii)

m-n THEOREM: 6.

$$(m+n) \cot \theta = m \cot \alpha - n \cot \beta$$

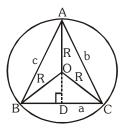
$$(m+n) \cot \theta = n \cot B - m \cot C$$
.



7. RADIUS OF THE CIRCUMCIRCLE 'R':

Circumcentre is the point of intersection of perpendicular bisectors of the sides and distance between circumcentre & vertex of triangle is called circumradius 'R'.

$$R = \frac{a}{2\sin A} = \frac{b}{2\sin B} = \frac{c}{2\sin C} = \frac{abc}{4\Delta}.$$



RADIUS OF THE INCIRCLE 'r': 8.

Point of intersection of internal angle bisectors is incentre and perpendicular distance of incentre from any side is called inradius 'r'.

$$r = \frac{\Delta}{s} = (s-a)\tan\frac{A}{2} = (s-b)\tan\frac{B}{2} = (s-c)\tan\frac{C}{2} = 4R\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}.$$

$$=a\frac{\sin\frac{B}{2}\sin\frac{C}{2}}{\cos\frac{A}{2}}=b\frac{\sin\frac{A}{2}\sin\frac{C}{2}}{\cos\frac{B}{2}}=c\frac{\sin\frac{B}{2}\sin\frac{A}{2}}{\cos\frac{C}{2}}$$

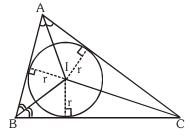


Illustration 10: In a triangle ABC, if a:b:c=4:5:6, then ratio between its circumradius and inradius

(A)
$$\frac{16}{7}$$

(B)
$$\frac{16}{9}$$

(C)
$$\frac{7}{16}$$

(D)
$$\frac{11}{7}$$

Solution:

$$\frac{R}{r} = \frac{abc}{4\Delta} / \frac{\Delta}{s} = \frac{(abc)s}{4\Delta^2} \implies \frac{R}{r} = \frac{abc}{4(s-a)(s-b)(s-c)} \dots (i)$$

:
$$a:b:c=4:5:6 \implies \frac{a}{4} = \frac{b}{5} = \frac{c}{6} = k \text{ (say)}$$

$$\Rightarrow$$
 a = 4k, b = 5k, c = 6k

$$\therefore s = \frac{a+b+c}{2} = \frac{15k}{2}, s-a = \frac{7k}{2}, s-b = \frac{5k}{2}, s-c = \frac{3k}{2}$$

using (i) in these values
$$\frac{R}{r} = \frac{(4k)(5k)(6k)}{4\left(\frac{7k}{2}\right)\left(\frac{5k}{2}\right)\left(\frac{3k}{2}\right)} = \frac{16}{7}$$
 Ans. (A)

Illustration 11: If A, B, C are the angles of a triangle, prove that : $\cos A + \cos B + \cos C = 1 + \frac{r}{D}$.

 $\cos A + \cos B + \cos C = 2\cos \left(\frac{A+B}{2}\right) \cdot \cos \left(\frac{A-B}{2}\right) + \cos C$ **Solution:** $=2\sin\frac{C}{2}\cdot\cos\left(\frac{A-B}{2}\right)+1-2\sin^2\frac{C}{2}=1+2\sin\frac{C}{2}\left|\cos\left(\frac{A-B}{2}\right)-\sin\left(\frac{C}{2}\right)\right|$ $= 1 + 2\sin\frac{C}{2}\left[\cos\left(\frac{A-B}{2}\right) - \cos\left(\frac{A+B}{2}\right)\right] \qquad \left\{\because \frac{C}{2} = 90^{\circ} - \left(\frac{A+B}{2}\right)\right\}$ $= 1 + 2\sin\frac{C}{2}.2\sin\frac{A}{2}.\sin\frac{B}{2} = 1 + 4\sin\frac{A}{2}.\sin\frac{B}{2}.\sin\frac{C}{2}$ $=1+\frac{r}{R}$ {as, $r = 4R \sin A/2 \cdot \sin B/2 \cdot \sin C/2$ }

$$\Rightarrow$$
 $\cos A + \cos B + \cos C = 1 + \frac{r}{R}$. Hence proved.

Do yourself - 6:

- If in $\triangle ABC$, a = 3, b = 4 and c = 5, find (i)
- R
- (ii) In a \triangle ABC, show that :

(a)
$$\frac{a^2 - b^2}{c} = 2R \sin(A - B)$$

(a)
$$\frac{a^2 - b^2}{c} = 2R \sin(A - B)$$
 (b) $r \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} = \frac{\Delta}{4R}$ (c) $a + b + c = \frac{abc}{2Rr}$

(c)
$$a+b+c=\frac{abc}{2Rr}$$

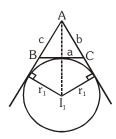
Let $\Delta \& \Delta'$ denote the areas of a Δ and that of its incircle. Prove that

$$\Delta : \Delta' = \left(\cot\frac{A}{2}.\cot\frac{B}{2}.\cot\frac{C}{2}\right): \pi$$

ALLEN

9. **RADII OF THE EX-CIRCLES:**

Point of intersection of two external angles and one internal angle bisectors is excentre and perpendicular distance of excentre from any side is called exradius. If r₁ is the radius of escribed circle opposite to $\angle A$ of $\triangle ABC$ and so on, then -



(a)
$$r_1 = \frac{\Delta}{s-a} = s \tan \frac{A}{2} = 4R \sin \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} = \frac{a \cos \frac{B}{2} \cos \frac{C}{2}}{\cos \frac{A}{2}}$$

(b)
$$r_2 = \frac{\Delta}{s - b} = s \tan \frac{B}{2} = 4R \cos \frac{A}{2} \sin \frac{B}{2} \cos \frac{C}{2} = \frac{b \cos \frac{A}{2} \cos \frac{C}{2}}{\cos \frac{B}{2}}$$

(c)
$$r_3 = \frac{\Delta}{s - c} = s \tan \frac{C}{2} = 4R \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2} = \frac{c \cos \frac{A}{2} \cos \frac{B}{2}}{\cos \frac{C}{2}}$$

I₁, I₂ and I₃ are taken as ex-centre opposite to vertex A, B, C repsectively.

Value of the expression $\frac{b-c}{r_1} + \frac{c-a}{r_2} + \frac{a-b}{r_3}$ is equal to -Illustration 12:

Solution:

$$\frac{(b-c)}{r_1} + \frac{(c-a)}{r_2} + \frac{(a-b)}{r_3}$$

$$\Rightarrow (b-c)\left(\frac{s-a}{\Delta}\right) + (c-a)\left(\frac{s-b}{\Delta}\right) + (a-b).\left(\frac{s-c}{\Delta}\right)$$

$$\Rightarrow \frac{(s-a)(b-c)+(s-b)(c-a)+(s-c)(a-b)}{\Delta}$$

$$=\frac{s(b-c+c-a+a-b)-[ab-ac+bc-ba+ac-bc]}{\Delta}=\frac{0}{\Delta}=0$$

Thus,
$$\frac{b-c}{r_1} + \frac{c-a}{r_2} + \frac{a-b}{r_3} = 0$$

Ans. (D)

If $r_1 = r_2 + r_3 + r$, prove that the triangle is right angled. Illustration 13:

We have, $r_1 - r = r_2 + r_3$ **Solution:**

$$\Delta$$
 Δ Δ Δ

$$\Rightarrow \frac{\Delta}{s-a} - \frac{\Delta}{s} = \frac{\Delta}{s-b} + \frac{\Delta}{s-c} \Rightarrow \frac{s-s+a}{s(s-a)} = \frac{s-c+s-b}{(s-b)(s-c)}$$

$$\Rightarrow \frac{a}{s(s-a)} = \frac{2s - (b+c)}{(s-b)(s-c)}$$
 {as, 2s = a + b + c}

$$\{as, 2s = a + b + c\}$$

$$\Rightarrow \frac{a}{s(s-a)} = \frac{a}{(s-b)(s-c)} \Rightarrow s^2 - (b+c) s + bc = s^2 - as$$

$$s^2 - (b + c) s + bc = s^2 - as$$

$$\Rightarrow s(-a+b+c) = bc
\Rightarrow \frac{(b+c-a)(a+b+c)}{2} = bc
\Rightarrow (b+c)^2 - (a)^2 = 2bc
\Rightarrow b^2 + c^2 + 2bc - a^2 = 2bc
\Rightarrow b^2 + c^2 = a^2$$

Ans.

Do yourself - 7:

In an equilateral $\triangle ABC$, R = 2, find **(i)**

 $\angle A = 90^{\circ}$.

- (a)
- (b) r_1 (c) a
- In a \triangle ABC, show that (ii)

(a)
$$r_1 r_2 + r_2 r_3 + r_3 r_1 = s^2$$

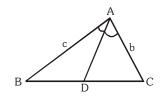
(a)
$$r_1 r_2 + r_2 r_3 + r_3 r_1 = s^2$$
 (b) $\frac{1}{4} r^2 s^2 \left(\frac{1}{r} - \frac{1}{r_1} \right) \left(\frac{1}{r} - \frac{1}{r_2} \right) \left(\frac{1}{r} - \frac{1}{r_3} \right) = R$

(c)
$$\sqrt{rr_1r_2r_3} = \Delta$$

ANGLE BISECTORS & MEDIANS: 10.

An angle bisector divides the base in the ratio of corresponding sides.

$$\frac{BD}{CD} = \frac{c}{b}$$
 \Rightarrow $BD = \frac{ac}{b+c}$ & $CD = \frac{ab}{b+c}$



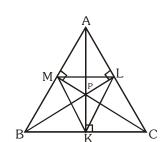
If m_a and β_a are the lengths of a median and an angle bisector from the angle A then,

$$m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$$
 and $\beta_a = \frac{2bc\cos\frac{A}{2}}{b+c}$

Note that $m_a^2 + m_b^2 + m_c^2 = \frac{3}{4}(a^2 + b^2 + c^2)$

11. **ORTHOCENTRE:**

Point of intersection of altitudes is orthocentre & the triangle KLM (a) which is formed by joining the feet of the altitudes is called the pedal triangle.



- The distances of the orthocentre from the angular points of the $\triangle ABC$ **(b)** are 2R cosA, 2R cosB, & 2R cosC.
- The distance of P from sides are 2R cosB cosC, 2R cosC cosA and **(c)** 2R cosA cosB.

Do yourself - 8:

- (i) If x, y, z are the distance of the vertices of $\triangle ABC$ respectively from the orthocentre, then prove that $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = \frac{abc}{xyz}$
- (ii) If p_1 , p_2 , p_3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides, prove that

(a)
$$p_1p_2p_3 = \frac{a^2b^2c^2}{8R^3}$$

(b)
$$\Delta = \sqrt{\frac{1}{2} R p_1 p_2 p_3}$$

- (iii) In a \triangle ABC, AD is altitude and H is the orthocentre prove that AH : DH = (tanB + tanC) : tanA
- (iv) In a \triangle ABC, the lengths of the bisectors of the angle A, B and C are x, y, z respectively.

Show that
$$\frac{1}{x}\cos\frac{A}{2} + \frac{1}{y}\cos\frac{B}{2} + \frac{1}{z}\cos\frac{C}{2} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$
.

12. THE DISTANCES BETWEEN THE SPECIAL POINTS:

- (a) The distance between circumcentre and orthocentre is = $R\sqrt{1-8\cos A\cos B\cos C}$
- **(b)** The distance between circumcentre and incentre is $=\sqrt{R^2-2Rr}$
- (c) The distance between incentre and orthocentre is = $\sqrt{2r^2 4R^2 \cos A \cos B \cos C}$
- (d) The distances between circumcentre & excentres are

$$OI_1 = R\sqrt{1 + 8\sin\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}} = \sqrt{R^2 + 2Rr_1}$$
 & so on.

- **Illustration 14:** Prove that the distance between the circumcentre and the orthocentre of a triangle ABC is $R\sqrt{1-8\cos A\cos B\cos C}$.
- Solution: Let O and P be the circumcentre and the orthocentre respectively. If OF is the perpendicular to AB, we have $\angle OAF = 90^{\circ} \angle AOF = 90^{\circ} C$. Also $\angle PAL = 90^{\circ} C$.

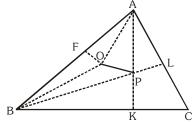
Hence,
$$\angle OAP = A - \angle OAF - \angle PAL = A - 2(90^{\circ} - C) = A + 2C - 180^{\circ}$$

$$= A + 2C - (A + B + C) = C - B.$$

Also
$$OA = R$$
 and $PA = 2R\cos A$.

Now in $\triangle AOP$,

$$OP^2 = OA^2 + PA^2 - 2OA$$
. PA cosOAP



$$= R^{2} + 4R^{2} \cos^{2} A - 4R^{2} \cos A \cos(C - B)$$

$$= R^{2} + 4R^{2} \cos A[\cos A - \cos(C - B)]$$

$$= R^{2} - 4R^{2} \cos A[\cos(B + C) + \cos(C - B)] = R^{2} - 8R^{2} \cos A \cos B \cos C.$$

Hence OP =
$$R\sqrt{1-8\cos A\cos B\cos C}$$
.

Ans.

13. SOLUTION OF TRIANGLES:

The three sides a,b,c and the three angles A,B,C are called the elements of the triangle ABC. When any three of these six elements (except all the three angles) of a triangle are given, the triangle is known completely; that is the other three elements can be expressed in terms of the given elements and can be evaluated. This process is called the solution of triangles.

* If the three sides a,b,c are given, angle A is obtained from $\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$

or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$. B and C can be obtained in the similar way.

* If two sides b and c and the included angle A are given, then $\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}$ gives

 $\frac{B-C}{2}$. Also $\frac{B+C}{2} = 90^{\circ} - \frac{A}{2}$, so that B and C can be evaluated. The third side is given by

$$a = b \frac{\sin A}{\sin B}$$

or
$$a^2 = b^2 + c^2 - 2bc \cos A$$
.

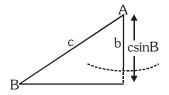
* If two sides b and c and an angle opposite the one of them (say B) are given then

$$\sin C = \frac{c}{b} \sin B$$
, $A = 180^{\circ} - (B + C)$ and $a = \frac{b \sin A}{\sin B}$ given the remaining elements.

Case I:

 $b < c \sin B$.

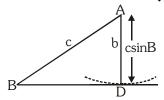
We draw the side c and angle B. Now it is obvious from the figure that there is no triangle possible.



ALLEN

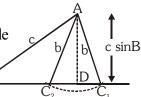
Case II:

 $b = c \sin B$ and B is an acute angle, there is only one triangle possible. and it is right-angled at C.



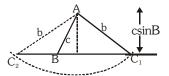
Case III:

 $b > c \sin B$, b < c and B is an acute angle, then there are two triangles possible for two values of angle C.



Case IV:

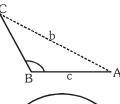
 $b > c \sin B$, c < b and B is an acute angle, then there is only one triangle.



Case V:

 $b > c \sin B$, c > b and B is an obtuse angle.

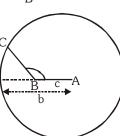
For any choice of point C, b will be greater than c which is a contradication as c > b (given). So there is no triangle possible.



Case VI:

 $b > c \sin B$, c < b and B is an obtuse angle.

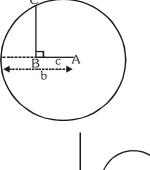
We can see that the circle with A as centre and b as radius will cut the line only in one point. So only one triangle is possible.



Case VII:

b > c and $B = 90^{\circ}$.

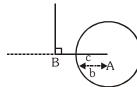
Again the circle with A as centre and b as radius will cut the line only in one point. So only one triangle is possible.



Case VIII:

 $b \le c$ and $B = 90^{\circ}$.

The circle with A as centre and b as radius will not cut the line in any point. So no triangle is possible.



This is, sometimes, called an ambiguous case.

Alternative Method:

By applying cosine rule, we have $cosB = \frac{a^2 + c^2 - b^2}{2ac}$

$$\Rightarrow \quad a^2 - (2c \cos B)a + (c^2 - b^2) = 0 \Rightarrow a = c \cos B \pm \sqrt{\left(c \cos B\right)^2 - \left(c^2 - b^2\right)}$$

$$\Rightarrow$$
 $a = c \cos B \pm \sqrt{b^2 - (c \sin B)^2}$

This equation leads to following cases:

Case-I: If b < csinB, no such triangle is possible.

Case-II: Let $b = c \sin B$. There are further following case:

(a) B is an obtuse angle \Rightarrow cosB is negative. There exists no such triangle.

(b) B is an acute angle \Rightarrow cosB is positive. There exists only one such triangle.

Case-III: Let $b > c \sin B$. There are further following cases:

(a) B is an acute angle \Rightarrow cosB is positive. In this case triangle will exist if and only if $c \cos B > \sqrt{b^2 - (c \sin B)^2}$ or $c > b \Rightarrow$ Two such triangle is possible. If c < b, only one such triangle is possible.

(b) B is an obtuse angle \Rightarrow cosB is negative. In this case triangle will exist if and only if $\sqrt{b^2-(c\sin B)^2}>|c\cos B|\Rightarrow b>c.$ So in this case only one such triangle is possible. If b< c there exists no such triangle.

This is called an ambiguous case.

- * If one side a and angles B and C are given, then $A = 180^{\circ} (B + C)$, and $b = \frac{a \sin B}{\sin A}$, $c = \frac{a \sin C}{\sin A}$.
- * If the three angles A,B,C are given, we can only find the ratios of the sides a,b,c by using sine rule (since there are infinite similar triangles possible).

Illustration 15: In the ambiguous case of the solution of triangles, prove that the circumcircles of the two triangles are of same size.

Solution: Let us say b,c and angle B are given in the ambiguous case. Both the triangles will have b and its opposite angle as B. so $\frac{b}{\sin B} = 2R$ will be given for both the triangles. So their circumradii and therefore their sizes will be same.

VB0B0-BAVKotaVEE(Advanced) Neader/Walths\Sheet\SOT + Binomial\Eng\01.50T.p6

Illustration 16: If a,b and A are given in a triangle and c_1, c_2 are the possible values of the third side, prove that $c_1^2 + c_2^2 - 2c_1c_2 \cos 2A = 4a^2\cos^2 A$.

Solution:
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$\Rightarrow c^2 - 2bc \cos A + b^2 - a^2 = 0.$$

$$c_1 + c_2 = 2b\cos A \text{ and } c_1c_2 = b^2 - a^2.$$

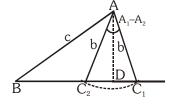
$$\Rightarrow c_1^2 + c_2^2 - 2c_1c_2\cos 2A = (c_1 + c_2)^2 - 2c_1c_2(1 + \cos 2A)$$

$$= 4b^2 \cos^2 A - 2(b^2 - a^2)2 \cos^2 A = 4a^2\cos^2 A.$$

Illustration 17: If b,c,B are given and b < c, prove that
$$\cos\left(\frac{A_1 - A_2}{2}\right) = \frac{c \sin B}{b}$$
.

Solution: $\angle C_2AC_1$ is bisected by AD.

$$\Rightarrow \text{ In } \Delta AC_2D, \cos\left(\frac{A_1 - A_2}{2}\right) = \frac{AD}{AC_2} = \frac{c\sin B}{b}$$



Hence proved.

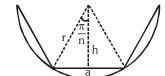
Do yourself - 9:

- (i) If b,c,B are given and b<c, prove that $\sin\left(\frac{A_1 A_2}{2}\right) = \frac{a_1 a_2}{2b}$
- (ii) In a \triangle ABC, b,c,B (c > b) are gives. If the third side has two values a_1 and a_2 such that

$$a_1 = 3a_2$$
, show that $\sin B = \sqrt{\frac{4b^2 - c^2}{3c^2}}$.

14. REGULAR POLYGON:

A regular polygon has all its sides equal. It may be inscribed or circumscribed.



- (a) Inscribed in circle of radius r:
 - (i) $a = 2h \tan \frac{\pi}{n} = 2r \sin \frac{\pi}{n}$
 - (ii) Perimeter (P) and area (A) of a regular polygon of n sides inscribed in a circle of radius r are given by $P = 2nr \sin \frac{\pi}{n}$ and $A = \frac{1}{2}nr^2 \sin \frac{2\pi}{n}$
- (b) Circumscribed about a circle of radius r:
 - (i) $a = 2r \tan \frac{\pi}{n}$
 - (ii) Perimeter (P) and area (A) of a regular polygon of n sides circumscribed about a given circle of radius r is given by $P = 2nr \tan \frac{\pi}{n}$ and

$$A = nr^2 \tan \frac{\pi}{n}$$

Do yourself - 10:

If the perimeter of a circle and a regular polygon of n sides are equal, then

prove that
$$\frac{\text{area of the circle}}{\text{area of polygon}} = \frac{\tan \frac{\pi}{n}}{\frac{\pi}{n}}$$
.

(ii) The ratio of the area of n-sided regular polygon, circumscribed about a circle, to the area of the regular polygon of equal number of sides inscribed in the circle is 4:3. Find the value of n.

SOME NOTES: 15.

- (a) (i) If a $\cos B = b \cos A$, then the triangle is isosceles.
 - If a $\cos A = b \cos B$, then the triangle is isosceles or right angled.
- **(b)** In right angle triangle
 - $a^2 + b^2 + c^2 = 8R^2$
- (ii) $\cos^2 A + \cos^2 B + \cos^2 C = 1$

- In equilateral triangle (c)
 - (i) R = 2r

- (ii) $r_1 = r_2 = r_3 = \frac{3R}{2}$
- (iii) $r: R: r_1 = 1:2:3$
- (iv) area = $\frac{\sqrt{3}a^2}{4}$ (v) $R = \frac{a}{\sqrt{3}}$
- **(d)** The circumcentre lies (1) inside an acute angled triangle (2) outside an obtuse angled triangle & (3) mid point of the hypotenuse of right angled triangle.
 - The orthocentre of right angled triangle is the vertex at the right angle. (ii)
 - The orthocentre, centroid & circumcentre are collinear & centroid divides the line segment (iii) joining orthocentre & circumcentre internally in the ratio 2: 1 except in case of equilateral triangle. In equilateral triangle, all these centres coincide
- Area of a cyclic quadrilateral = $\sqrt{(s-a)(s-b)(s-c)(s-d)}$ **(e)**

where a, b, c, d are lengths of the sides of quadrilateral and $s = \frac{a+b+c+d}{2}$.

ANSWERS FOR DO YOURSELF

(i) 90°

- (i) (a) $\frac{3}{5}$ (b) $\frac{3}{4}$ (c) $\frac{1}{\sqrt{10}}$ (d) $\frac{3}{\sqrt{10}}$ (e) $\frac{1}{3}$ (i) (a) 6 (b) $\frac{5}{2}$ (c) 1 (i) (a) 1 (b) 3 (c) $2\sqrt{3}$

- **10:** (ii) 6

ELEMENTARY EXERCISE

- Angles A, B and C of a triangle ABC are in A.P. If $\frac{b}{c} = \sqrt{\frac{3}{2}}$, then $\angle A$ is equal to 1.
 - (A) $\frac{\pi}{6}$

- (C) $\frac{5\pi}{12}$

TS0001

If K is a point on the side BC of an equilateral triangle ABC and if $\angle BAK = 15^{\circ}$, then the ratio of lengths 2. $\frac{AK}{AR}$ is TS0002

- (A) $\frac{3\sqrt{2}(3+\sqrt{3})}{2}$ (B) $\frac{\sqrt{2}(3+\sqrt{3})}{2}$ (C) $\frac{\sqrt{2}(3-\sqrt{3})}{2}$
- In a triangle ABC, \angle A = 60° and b : c = $\left(\sqrt{3}+1\right)$: 2 then (\angle B \angle C) has the value equal to **3.**
 - $(A) 15^{\circ}$
- $(B) 30^{\circ}$
- (C) 22.5 °

TS0014

- In an acute triangle ABC, \angle ABC = 45°, AB = 3 and AC = $\sqrt{6}$. The angle \angle BAC, is 4.
- (B) 65°
- (C) 75°
- (D) 15° or 75° TS0009
- Let ABC be a right triangle with length of side AB = 3 and hypotenuse AC = 5. 5.

If D is a point on BC such that $\frac{BD}{DC} = \frac{AB}{AC}$, then AD is equal to

- (A) $\frac{4\sqrt{3}}{2}$
- (B) $\frac{3\sqrt{5}}{2}$
- (C) $\frac{4\sqrt{5}}{3}$
- (D) $\frac{5\sqrt{3}}{4}$

TS0003

- In a triangle ABC, if a = 6, b = 3 and $\cos(A B) = \frac{4}{5}$, the area of the triangle is 6.
 - (A) 8

(B)9

- (C) 12
- (D) $\frac{15}{2}$

TS0018

- In $\triangle ABC$, if a = 2b and A = 3B, then the value of $\frac{c}{b}$ is equal to 7.
 - (A)3

- (B) $\sqrt{2}$
- (C) 1

(D) $\sqrt{3}$

TS0004

- If the sides of a triangle are $\sin \alpha$, $\cos \alpha$, $\sqrt{1 + \sin \alpha \cos \alpha}$, $0 < \alpha < \frac{\pi}{2}$, the largest angle is 8.
- $(B) 90^{\circ}$
- (C) 120°
- (D) 150°

- If the angle A, B and C of a triangle are in an arithmetic progression and if a, b and c denote the lengths of 9. the sides opposite to A, B and C respectively, then the value of expression $E = \left(\frac{a}{c}\sin 2C + \frac{c}{a}\sin 2A\right)$, is
 - $(A) \frac{1}{2}$

- (B) $\frac{\sqrt{3}}{2}$
- (C) 1

(D) $\sqrt{3}$

TS0019

	<u>`</u>			3				
10.	If in a triangle $\sin A$: $\sin C = \sin (A - B)$: $\sin (B - C)$, then a^2 , b^2 , c^2							
	(A) are in A.P.	(B) are in G.P.	(C) are in H.P.	(D) none of the	se			
11.	In triangle ABC, if cot $\frac{A}{2} = \frac{b+c}{a}$, then triangle ABC must be							
	[Note: All symbols used have usual meaning in $\triangle ABC$.]							
	(A) isosceles (B) equilateral (C) right angled			(D) isoceles right angled				
12.	Consider a triangle ABC and let a, b and c denote the lengths of the sides opposite to vertices A, B and respectively. If $a=1$, $b=3$ and $C=60^{\circ}$, then $\sin^2 B$ is equal to							
	(A) $\frac{27}{28}$	(B) $\frac{3}{28}$	(C) $\frac{81}{28}$	(D) $\frac{1}{3}$	TS0010			
13.	The ratio of the sides of a triangle ABC is $1:\sqrt{3}:2$. Then ratio of $A:B:C$ is							
	(A) 3:5:2	(B) 1 : $\sqrt{3}$: 2	(C) 3:2:1	(D) 1:2:3	TS0006			
14.	In triangle ABC, If $s = 3 + \sqrt{3} + \sqrt{2}$, $3B - C = 30^{\circ}$, $A + 2B = 120^{\circ}$, then the length of longest side of triangle is [Note: All symbols used have usual meaning in triangle ABC.]							
	(A) 2	(B) $2\sqrt{2}$	(C) $2(\sqrt{3}+1)$	(D) $\sqrt{3} - 1$	TS0011			
15.	In a triangle $\tan A$: $\tan B$: $\tan C = 1$: 2: 3, then a^2 : b^2 : c^2 equals							
	(A) 5:8:9	(B) 5:8:12	(C) 3:5:8	(D) 5:8:10	TS0008			
16.	In $\triangle ABC$, if a,b,c (taken in that order) are in A.P. then $\cot \frac{A}{2} \cot \frac{C}{2} =$							
	[Note: All symbols used	have usual meaning in tria	ngle ABC.]					
	(A) 1	(B) 2	(C) 3	(D) 4	TS0017			
17.	In $\triangle ABC$ if $a = 8$, $b = 9$, $c = 10$, then the value of $\frac{\tan C}{\sin B}$ is							
	(A) $\frac{32}{9}$	(B) $\frac{24}{7}$	(C) $\frac{21}{4}$	(D) $\frac{18}{5}$	TS0012			
18.	In triangle ABC, if $\Delta = a^2 - (b - c)^2$, then $\tan A =$							
	[Note: All symbols used have usual meaning in triangle ABC.]							
	(A) $\frac{15}{16}$	(B) $\frac{1}{2}$	(C) $\frac{8}{17}$	(D) $\frac{8}{15}$	TS0015			
19.	In a triangle ABC, if the	sides a, b, c are roots of x ²	$3 - 11x^2 + 38x - 40 = 0$. If 3	$\sum \left(\frac{\cos A}{a}\right) = \frac{p}{q},$	then find			
	the least value of $(p+q)$ where $p,q \in N$.							
20.	ABC is a triangle such	that $\sin (2A + B) = \sin (C$	$(C - A) = -\sin(B + 2C) =$	$\frac{1}{2}$. If A, B, C are	e in A.P.,			

find A, B, C.

EXERCISE (O-1)

- A triangle has vertices A, B and C, and the respective opposite sides have lengths a, b and c. This triangle 1. is inscribed in a circle of radius R. If b = c = 1 and the altitude from A to side BC has length $\sqrt{\frac{2}{3}}$, then R equals
 - (A) $\frac{1}{\sqrt{3}}$
- (B) $\frac{2}{\sqrt{2}}$
- (C) $\frac{\sqrt{3}}{2}$
- (D) $\frac{\sqrt{3}}{2\sqrt{2}}$ TS0022
- 2. A circle is inscribed in a right triangle ABC, right angled at C. The circle is tangent to the segment AB at D and length of segments AD and DB are 7 and 13 respectively. Area of triangle ABC is equal to
 - (A)91

(B)96

- (C) 100
- (D) 104

TS0028

- In a triangle ABC, if a = 13, b = 14 and c = 15, then angle A is equal to **3.** (All symbols used have their usual meaning in a triangle.)
 - (A) $\sin^{-1}\frac{4}{5}$
- (B) $\sin^{-1}\frac{3}{5}$ (C) $\sin^{-1}\frac{3}{4}$
- (D) $\sin^{-1}\frac{2}{3}$ TS0024
- In a triangle ABC, if $b = (\sqrt{3} 1)$ a and $\angle C = 30^{\circ}$, then the value of (A B) is equal to 4.
 - (All symbols used have usual meaning in a triangle.)
 - $(A)30^{\circ}$

- $(C)60^{\circ}$
- (D) 75°
- TS0030
- In triangle ABC, if AC = 8, BC = 7 and D lies between A and B such that AD = 2, BD = 4, then the length **5.** CD equals
 - (A) $\sqrt{46}$
- (B) $\sqrt{48}$
- (C) $\sqrt{51}$
- (D) $\sqrt{75}$ TS0025
- In a triangle ABC, if $\angle C = 105^{\circ}$, $\angle B = 45^{\circ}$ and length of side AC = 2 units, then the length of the side AB 6. is equal to
 - (A) $\sqrt{2}$
- (B) $\sqrt{3}$
- (C) $\sqrt{2} + 1$
- (D) $\sqrt{3} + 1$ TS0023
- In a triangle ABC, if $(a+b+c)(a+b-c)(b+c-a)(c+a-b) = \frac{8a^2b^2c^2}{a^2+b^2+c^2}$, then the triangle is 7.

[Note: All symbols used have usual meaning in triangle ABC.]

TS0034

- (A) isosceles
- (B) right angled
- (D) obtuse angled
- In triangle ABC, if 2b = a + c and $A C = 90^{\circ}$, then sin B equals 8.

[Note: All symbols used have usual meaning in triangle ABC.]

- (A) $\frac{\sqrt{7}}{2}$
- (B) $\frac{\sqrt{5}}{2}$
- (C) $\frac{\sqrt{7}}{4}$
- (D) $\frac{\sqrt{5}}{2}$
- 9. The sides of a triangle are three consecutive integers. The largest angle is twice the smallest one. The area of triangle is equal to TS0031
 - (A) $\frac{5}{4}\sqrt{7}$
- (B) $\frac{15}{2}\sqrt{7}$
- (C) $\frac{15}{4}\sqrt{7}$
- (D) $5\sqrt{7}$

If
$$\cos \alpha = \frac{a}{b+c}$$
, $\cos \beta = \frac{b}{c+a}$, $\cos \gamma = \frac{c}{a+b}$ then $\tan^2 \left(\frac{\alpha}{2}\right) + \tan^2 \left(\frac{\gamma}{2}\right)$ is equal to

[Note: All symbols used have usual meaning in triangle ABC.]

(A) 1

(B) $\frac{1}{2}$

(C) $\frac{1}{3}$

(D) $\frac{2}{3}$

TS0032

11. AD and BE are the medians of a triangle ABC. If AD = 4, \angle DAB = $\frac{\pi}{6}$, \angle ABE = $\frac{\pi}{3}$, then area of triangle ABC equals

(A) $\frac{8}{3}$

- (B) $\frac{16}{3}$
- (C) $\frac{32}{3}$
- (D) $\frac{32}{9}\sqrt{3}$ TS0033

12. In triangle ABC, if $\sin^3 A + \sin^3 B + \sin^3 C = 3 \sin A \cdot \sin B \cdot \sin C$, then triangle is

TS0021

- (A) obtuse angled
- (B) right angled
- (C) obtuse right angled
- (D) equilateral

13. For right angled isosceles triangle, $\frac{r}{R}$ =

[Note: All symbols used have usual meaning in triangle ABC.]

TS0035

- (A) $\tan \frac{\pi}{12}$
- (B) $\cot \frac{\pi}{12}$
- (C) $\tan \frac{\pi}{8}$
- (D) $\cot \frac{\pi}{8}$

14. In triangle ABC, If $\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$ then angle C is equal to

[Note: All symbols used have usual meaning in triangle ABC.]

- $(A)30^{\circ}$
- (B) 45°

- (C) 60°
- (D) 90°

TS0029

EXERCISE (O-2)

Multiple Correct Answer Type:

- In a triangle ABC, let $2a^2 + 4b^2 + c^2 = 2a(2b + c)$, then which of the following holds good? [Note: All symbols used have usual meaning in a triangle.]
 - $(A)\cos B = \frac{-7}{8}$

 $(B) \sin (A-C) = 0$

 $(C) \frac{r}{r_1} = \frac{1}{5}$

(D) $\sin A : \sin B : \sin C = 1 : 2 : 1$

TS0043

- 2. In a triangle ABC, if a = 4, $b = 8 \angle C = 60^{\circ}$, then which of the following relations is (are) correct? [Note: All symbols used have usual meaning in triangle ABC.]
 - (A) The area of triangle ABC is $8\sqrt{3}$
 - (B) The value of $\sum \sin^2 A = 2$
 - (C) In radius of triangle ABC is $\frac{2\sqrt{3}}{3+\sqrt{3}}$
 - (D) The length of internal angle bisector of angle C is $\frac{4}{\sqrt{3}}$

- (All symbols used have usual meaning in a triangle.)
- (A) (a + c b) (a c + b) = 4bc

- (B) $b^2 \sin 2C + c^2 \sin 2B = ab$
- (C) a = 3, b = 5, c = 7 and $C = \frac{2\pi}{3}$
- (D) $\cos\left(\frac{A-C}{2}\right) = \cos\left(\frac{A+C}{2}\right)$
- 4. In a triangle ABC, which of the following quantities denote the area of the triangle?
 - $(A) \; \frac{a^2 b^2}{2} \Biggl(\frac{\sin A \sin B}{\sin (A B)} \Biggr)$

(B) $\frac{r_1 r_2 r_3}{\sqrt{\sum r_1 r_2}}$

(C) $\frac{a^2 + b^2 + c^2}{\cot A + \cot B + \cot C}$

(D) $r^2 \cot \frac{A}{2} \cdot \cot \frac{B}{2} \cot \frac{C}{2}$

TS0044

TS0038

- 5. In \triangle ABC, angle A, B and C are in the ratio 1 : 2 : 3, then which of the following is (are) correct? (All symbol used have usual meaning in a triangle.)
 - (A) Circumradius of $\triangle ABC = c$

(B) a : b : $c = 1 : \sqrt{3} : 2$

(C) Perimeter of $\triangle ABC = 3 + \sqrt{3}$

(D) Area of $\triangle ABC = \frac{\sqrt{3}}{8} c^2$

TS0040

6. In triangle ABC, let b = 10, $c = 10\sqrt{2}$ and $R = 5\sqrt{2}$ then which of the following statement(s) is (are) correct?

[Note: All symbols used have usual meaning in triangle ABC.]

- (A) Area of triangle ABC is 50.
- (B) Distance between orthocentre and circumcentre is $5\sqrt{2}$
- (C) Sum of circumradius and inradius of triangle ABC is equal to 10
- (D) Length of internal angle bisector of \angle ACB of triangle ABC is $\frac{5}{2\sqrt{2}}$

TS0046

- 7. In a triangle ABC, let BC = 1, AC = 2 and measure of angle C is 30° . Which of the following statement(s) is (are) correct?
 - $(A) 2 \sin A = \sin B$
 - (B) Length of side AB equals $5-2\sqrt{3}$
 - (C) Measure of angle A is less than 30°
 - (D) Circumradius of triangle ABC is equal to length of side AB $\,$

TS0041

- 8. Given an acute triangle ABC such that $\sin C = \frac{4}{5}$, $\tan A = \frac{24}{7}$ and AB = 50. Then-
 - (A) centroid, orthocentre and incentre of ΔABC are collinear
 - (B) $\sin B = \frac{4}{5}$
 - $(C) \sin B = \frac{4}{7}$
 - (D) area of $\triangle ABC = 1200$

TS0036

- 9. In \triangle ABC, angle A is 120°, BC + CA = 20 and AB + BC = 21, then
 - (A)AB > AC

(B) AB < AC

(C) \triangle ABC is isosceles

(D) area of $\triangle ABC = 14\sqrt{3}$

EXERCISE (S-1)

1. Given a triangle ABC with sides a=7, b=8 and c=5. If the value of the expression $\left(\sum \sin A\right)\left(\sum \cot \frac{A}{2}\right)$ can be expressed in the form $\frac{p}{q}$ where $p,q\in N$ and $\frac{p}{q}$ is in its lowest form find the value of (p+q).

TS0052

- 2. If two times the square of the diameter of the circumcircle of a triangle is equal to the sum of the squares of its sides then prove that the triangle is right angled.

 TS0053
- In acute angled triangle ABC, a semicircle with radius r_a is constructed with its base on BC and tangent to the other two sides. r_b and r_c are defined similarly. If r is the radius of the incircle of triangle ABC then prove that, $\frac{2}{r} = \frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_b}$.
- 4. If the length of the perpendiculars from the vertices of a triangle A, B, C on the opposite sides are

$$p_1, p_2, p_3$$
 then prove that $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} = \frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$.

5. With usual notations, prove that in a triangle ABC

$$Rr (\sin A + \sin B + \sin C) = \Delta$$

TS0056

6. With usual notations, prove that in a triangle ABC

$$\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \frac{s^2}{\Lambda}$$
TS0054

7. With usual notations, prove that in a triangle ABC

$$\cot A + \cot B + \cot C = \frac{a^2 + b^2 + c^2}{4\Delta}$$
 TS0057

- **8.** If a,b,c are the sides of triangle ABC satisfying $\log\left(1+\frac{c}{a}\right) + \log a \log b = \log 2$.
 - Also $a(1-x^2) + 2bx + c(1+x^2) = 0$ has two equal roots. Find the value of sinA + sinB + sinC. **TS0051**
- **9.** With usual notations, prove that in a triangle ABC

$$\frac{b-c}{r_1} + \frac{c-a}{r_2} + \frac{a-b}{r_3} = 0$$
TS0060

10. With usual notations, prove that in a triangle ABC

$$\frac{r_1}{(s-b)(s-c)} + \frac{r_2}{(s-c)(s-a)} + \frac{r_3}{(s-a)(s-b)} = \frac{3}{r}$$
TS0061

11. With usual notations, prove that in a triangle ABC

$$\frac{abc}{s} \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} = \Delta$$
TS0062

12. With usual notations, prove that in a triangle ABC

$$\frac{1}{r^2} + \frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_3^2} = \frac{a^2 + b^2 + c^2}{\Delta^2}$$
TS0063

13. If $r_1 = r + r_2 + r_3$ then prove that the triangle is a right angled triangle.

node06\B0B0-BA\Kota\JEE(Advanced)\Leader\Maths\Sheet\SOT + Binomial\E

ALLEN

EXERCISE (S-2)

- 1. With usual notation, if in a \triangle ABC, $\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13}$; then prove that, $\frac{\cos A}{7} = \frac{\cos B}{19} = \frac{\cos C}{25}$.
- 2. Given a triangle ABC with AB = 2 and AC = 1. Internal bisector of \angle BAC intersects BC at D. If AD = BD and \triangle is the area of triangle ABC, then find the value of $12\triangle^2$.
- 3. For any triangle ABC, if B = 3C, show that $\cos C = \sqrt{\frac{b+c}{4c}}$ & $\sin \frac{A}{2} = \frac{b-c}{2c}$.
- 4. In a triangle ABC if $a^2 + b^2 = 101c^2$ then find the value of $\frac{\cot C}{\cot A + \cot B}$.
- Two sides of a triangle are of lengths $\sqrt{6}$ and 4 and the angle opposite to smaller side is 30° . How many such triangles are possible? Find the length of their third side and area.
- 6. The triangle ABC (with side lengths a, b, c as usual) satisfies $\log a^2 = \log b^2 + \log c^2 \log (2bc \cos A)$. What can you say about this triangle?
- 7. The sides of a triangle are consecutive integers n, n+1 and n+2 and the largest angle is twice the smallest angle. Find n.

EXERCISE (JM)

- 1. If 5, 5r, 5r² are the lengths of the sides of a triangle, then r cannot be equal to : [JEE(Main)-Jan 2019]
 - $(1) \frac{3}{2}$

(2) $\frac{3}{4}$

- $(3) \frac{5}{4}$
- (4) $\frac{7}{4}$ TS0076
- 2. With the usual notation, in $\triangle ABC$, if $\angle A + \angle B = 120^{\circ}$, $a = \sqrt{3} + 1$ and $b = \sqrt{3} 1$, then the ratio $\angle A : \angle B$, is:

 [JEE(Main)-Jan 2019]
 - (1)7:1

- (2) 5 : 3
- (3) 9:7
- (4) 3 : 1 **TS0077**
- 3. In a triangle, the sum of lengths of two sides is x and the product of the lengths of the same two sides is y. If $x^2 c^2 = y$, where c is the length of the third side of the triangle, then the circumradius of the triangle is:

 [JEE(Main)-Jan 2019]
 - $(1) \frac{y}{\sqrt{3}}$
- $(2) \frac{c}{\sqrt{3}}$
- (3) $\frac{c}{3}$
- (4) $\frac{3}{2}$ y **TS0078**
- 4. Given $\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13}$ for a $\triangle ABC$ with usual notation. If $\frac{\cos A}{\alpha} = \frac{\cos B}{\beta} = \frac{\cos C}{\gamma}$, then the ordered triad (α, β, γ) has a value :-
 - (1) (3, 4, 5)
- (2) (19, 7, 25)
- (3) (7, 19, 25)
- (4) (5, 12, 13) **TS0079**
- 5. If the lengths of the sides of a triangle are in A.P. and the greatest angle is double the smallest, then a ratio of lengths of the sides of this triangle is: [JEE(Main)-Apr 2019]
 - (1) 5 : 9 : 13
- (2) 5 : 6 : 7
- (3)4:5:6
- (4) 3 : 4 : 5 **TS0080**

6.	The angles A, B and C of a triangle ABC are in A.P. and a: $b = 1$: $\sqrt{3}$. If $c = 4$ cm, then the area (in								
	sq. cm) of this triangle is:				[JEE(Main)-Apr 2019]				
	(1)	$4\sqrt{3}$	(2) $\frac{2}{\sqrt{3}}$	(3) $2\sqrt{3}$	(4) $\frac{4}{\sqrt{3}}$	TS0081			
			EXER	CISE (JA)					
1.		et ABC and ABC' be two non-congruent triangles with sides AB = 4, AC = AC' = $2\sqrt{2}$ and $2 = 30^{\circ}$. The absolute value of the difference between the areas of these triangles is [JEE 2009, 5]							
2.	(a)								
		$\frac{a}{c}\sin 2C + \frac{c}{a}\sin 2A$	_						
		(A) $\frac{1}{2}$	$(B) \frac{\sqrt{3}}{2}$	(C) 1	(D) $\sqrt{3}$	TS0083			
	(b)	e sides opposite to ver	rtices A,B						
	and C respectively. Suppose $a = 6$, $b = 10$ and the area of the triangle is $15\sqrt{3}$. If $\angle AC$ obtuse and if r denotes the radius of the incircle of the triangle, then r^2 is equal to								
	(c) Let ABC be a triangle such that $\angle ACB = \frac{\pi}{6}$ and let a,b and c denote the leading opposite to A,B and C respectively. The value(s) of x for which $a = x^2 + x - x^2 + x - x^2 + x - x - x^2 + x - x - x - x - x - x - x - x - x - x$								
		c = 2x + 1 is/are			[JEE 2010, 3+3+3]				
		$(A) - \left(2 + \sqrt{3}\right)$	(B) $1 + \sqrt{3}$	(C) $2 + \sqrt{3}$	(D) $4\sqrt{3}$	TS0085			
3.	Let PQR be a triangle of area Δ with $a = 2$, $b = \frac{7}{2}$ and $c = \frac{5}{2}$, where a, b and c are the lengths of the sides								
	of t		site to the angles	at P, Q and R respect	tively. Then $\frac{2 \sin P}{2 \sin P}$				

 $(A) \frac{3}{4\Delta}$

(B) $\frac{45}{4\Delta}$

(C) $\left(\frac{3}{4\Delta}\right)^2$

(D) $\left(\frac{45}{4\Delta}\right)^2$ TS0086

4. In a triangle PQR, P is the largest angle and $\cos P = \frac{1}{3}$. Further the incircle of the triangle touches the sides PQ, QR and RP at N, L and M respectively, such that the lengths of PN, QL and RM are consecutive even integers. Then possible length(s) of the side(s) of the triangle is (are)

[JEE(Advanced) 2013, 3, (-1)]

(A) 16

(B) 18

(C) 24

(D) 22

TS0087

(A)
$$\frac{3y}{2x(x+c)}$$

(B)
$$\frac{3y}{2c(x+c)}$$

(C)
$$\frac{3y}{4x(x+c)}$$

(A)
$$\frac{3y}{2x(x+c)}$$
 (B) $\frac{3y}{2c(x+c)}$ (C) $\frac{3y}{4x(x+c)}$ (D) $\frac{3y}{4c(x+c)}$ **TS0088**

- In a triangle XYZ, let x,y,z be the lengths of sides opposite to the angles X,Y,Z, respectively and 2s 6. = x + y + z. If $\frac{s-x}{4} = \frac{s-y}{3} = \frac{s-z}{2}$ and area of incircle of the triangle XYZ is $\frac{8\pi}{3}$, then-
 - (A) area of the triangle XYZ is $6\sqrt{6}$
 - (B) the radius of circumcircle of the triangle XYZ is $\frac{35}{6}\sqrt{6}$

(C)
$$\sin \frac{X}{2} \sin \frac{Y}{2} \sin \frac{Z}{2} = \frac{4}{35}$$

TS0089

(D)
$$\sin^2\left(\frac{X+Y}{2}\right) = \frac{3}{5}$$

[JEE(Advanced)-2016, 4(-2)]

- In a triangle PQR, let \angle PQR = 30° and the sides PQ and QR have lengths $10\sqrt{3}$ and 10, respectively. 7. Then, which of the following statement(s) is (are) TRUE? [JEE(Advanced)-2018, 4(-2)]
 - (A) $\angle QPR = 45^{\circ}$
 - (B) The area of the triangle PQR is $25\sqrt{3}$ and \angle QRP = 120°
 - (C) The radius of the incircle of the triangle PQR is $10\sqrt{3}-15$
 - (D) The area of the circumcircle of the triangle PQR is 100π .

TS0090

8. In a non-right-angled triangle $\triangle PQR$, let p, q, r denote the lengths of the sides opposite to the angles at P, Q, R respectively. The median from R meets the side PQ at S, the perpendicular from P meets the side QR at E, and RS and PE intersect at O. If $p = \sqrt{3}$, q = 1, and the radius of the circumcircle of the $\triangle PQR$ equals 1, then which of the following options is/are correct?

[JEE(Advanced)-2019, 4(-1)]

(1) Area of
$$\triangle SOE = \frac{\sqrt{3}}{12}$$

(2) Radius of incircle of
$$\triangle PQR = \frac{\sqrt{3}}{2}(2-\sqrt{3})$$

(3) Length of RS =
$$\frac{\sqrt{7}}{2}$$

(4) Length of OE =
$$\frac{1}{6}$$

ANSWERS

ELEMENTARY EXERCISE

5. B

- **1.** C **2.** C
- **3.** B
- **4.** C
- **6.** B
 - **7.** D **8.** C

- **9.** D
- **10.** A
- **11.** C
- **12.** A **13.** D
- **14.** C
- 15. A
- **16.** C

- **17.** A **18.** D
- **19.** 25
- **20.** 45°,60°,75°

EXERCISE (O-1)

- **1.** D **2.** A
- **3.** A
- **4.** C **5.** C **6.** D **7.** B **8.** C

- **9.** C **10.** D
- **11.** D
- **12.** D **13.** C **14.** C

EXERCISE (O-2)

- **1.** B,C **2.** A,B
- **3.** B,C
- **4.** A,B,D **5.** B,D **6.** A,B,C **7.** A,C,D

8. A,B,D **9.** A,D

EXERCISE (S-1)

1. 107 8. $\frac{12}{5}$

EXERCISE (S-2)

- **2.** 9 **4.** 50 **5.** Two tringle $(2\sqrt{3}-\sqrt{2})$, $(2\sqrt{3}+\sqrt{2})$, $(2\sqrt{3}-\sqrt{2})$ & $(2\sqrt{3}+\sqrt{2})$ sq. units
- **6.** triangle is isosceles
- **7.** 4

EXERCISE (JM)

- **1.** 4
- **2.** 1
- **3.** 2
- **4.** 3 **5.** 3 **6.** 3

EXERCISE (JA)

- **1.** 4 **2.** (a) D, (b) 3, (c) B

- **3.** C **4.** B,D **5.** B **6.** A,C,D
- **7.** B,C,D **8.** 2,3,4

BINOMIAL THEOREM

1. BINOMIAL EXPRESSION :

Any algebraic expression which contains two dissimilar terms is called binomial expression.

For example :
$$x - y$$
, $xy + \frac{1}{x}$, $\frac{1}{z} - 1$, $\frac{1}{(x - y)^{1/3}} + 3$ etc.

2. **BINOMIAL THEOREM:**

The formula by which any positive integral power of a binomial expression can be expanded in the form of a series is known as **BINOMIAL THEOREM.**

If $x, y \in R$ and $n \in N$, then:

$$(x+y)^n = {^nC_0}x^n + {^nC_1}x^{n-1}y + {^nC_2}x^{n-2}y^2 + \dots + {^nC_r}x^{n-r}y^r + \dots + {^nC_n}y^n = \sum_{r=0}^n {^nC_r}x^{n-r}y^r$$

This theorem can be proved by induction.

Observations:

- (a) The number of terms in the expansion is (n+1) i.e. one more than the index.
- (b) The sum of the indices of x & y in each term is n.
- (c) The binomial coefficients of the terms (${}^{n}C_{0}$, ${}^{n}C_{1}$) equidistant from the beginning and the end are equal. i.e. ${}^{n}C_{r} = {}^{n}C_{r-1}$
- (d) Symbol ${}^{n}C_{r}$ can also be denoted by $\binom{n}{r}$, C(n,r) or A_{r}^{n} .

Some important expansions:

(i)
$$(1 + x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_nx^n$$
.

(ii)
$$(1-x)^n = {}^nC_0 - {}^nC_1x + {}^nC_2x^2 + \dots + (-1)^n \cdot {}^nC_nx^n$$

Note: The coefficient of x^r in $(1 + x)^n = {}^nC_r$ & that in $(1-x)^n = (-1)^r$ nC_r

Illustration 1: Expand: $(y+2)^6$.

Solution:
$${}^{6}C_{0}y^{6} + {}^{6}C_{1}y^{5}.2 + {}^{6}C_{2}y^{4}.2^{2} + {}^{6}C_{3}y^{3}.2^{3} + {}^{6}C_{4}y^{2}.2^{4} + {}^{6}C_{5}y^{1}.2^{5} + {}^{6}C_{6}.2^{6}.2^{6}$$

$$= y^{6} + 12y^{5} + 60y^{4} + 160y^{3} + 240y^{2} + 192y + 64.$$

Illustration 2: Write first 4 terms of
$$\left(1 - \frac{2y^2}{5}\right)^7$$

Solution:
$${}^{7}C_{0}, {}^{7}C_{1}\left(-\frac{2y^{2}}{5}\right), {}^{7}C_{2}\left(-\frac{2y^{2}}{5}\right)^{2}, {}^{7}C_{3}\left(-\frac{2y^{2}}{5}\right)^{3}$$

Illustration 3: If in the expansion of $(1+x)^m (1-x)^n$, the coefficients of x and x^2 are 3 and -6 respectively then m is -

Solution:
$$(1+x)^m (1-x)^n = \left[1+mx+\frac{(m)(m-1).x^2}{2}+.....\right] \left[1-nx+\frac{n(n-1)}{2}x^2+.....\right]$$

Coefficient of
$$x = m - n = 3$$

Coefficient of
$$x^2 = -mn + \frac{n(n+1)}{2} + \frac{m(m-1)}{2} = -6$$

Solving (i) and (ii), we get

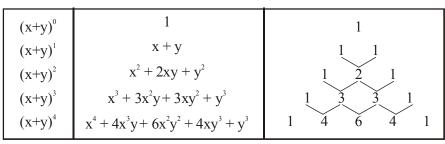
$$m = 12$$
 and $n = 9$.

Do yourself - 1:

(i) Expand
$$\left(3x^2 - \frac{x}{2}\right)^5$$

(ii) Expand
$$(y + x)^n$$

Pascal's triangle:



Pascal's triangle

- (i) **Pascal's triangle -** A triangular arrangement of numbers as shown. The numbers give the binomial coefficients for the expansion of $(x + y)^n$. The first row is for n = 0, the second for n = 1, etc. Each row has 1 as its first and last number. Other numbers are generated by adding the two numbers immediately to the left and right in the row above.
- (ii) Pascal triangle is formed by binomial coefficient.
- (iii) The number of terms in the expansion of $(x+y)^n$ is (n + 1) i.e. one more than the index.
- (iv) The sum of the indices of x & y in each term is n.
- (v) Power of first variable (x) decreases while of second variable (y) increases.
- (vi) Binomial coefficients are also called combinatorial coefficients.
- (vii) Binomial coefficients of the terms equidistant from the begining and end are equal.
- (viii) r^{th} term from the beginning in the expansion of $(x + y)^n$ is same as r^{th} term from end in the expansion of $(y + x)^n$.
- (ix) r^{th} term from the end in $(x + y)^n$ is $(n r + 2)^{th}$ term from the beginning.

3. IMPORTANT TERMS IN THE BINOMIAL EXPANSION:

- (a) General term: The general term or the $(r+1)^{th}$ term in the expansion of $(x+y)^n$ is given by $T_{r+1} = {}^nC_r x^{n-r} y^r$
- **Illustration 4:** Find: (a) The coefficient of x^7 in the expansion of $\left(ax^2 + \frac{1}{bx}\right)^{11}$
 - (b) The coefficient of x^{-7} in the expansion of $\left(ax^2 + \frac{1}{bx}\right)^{11}$

Also, find the relation between a and b, so that these coefficients are equal.

Ans.

In the expansion of $\left(ax^2 + \frac{1}{by}\right)^{11}$, the general term is: **Solution:**

$$T_{r+1} = {}^{11}C_r(ax^2)^{11-r} \left(\frac{1}{bx}\right)^r = {}^{11}C_r.\frac{a^{11-r}}{b^r}.x^{22-3r}$$

putting
$$22 - 3r = 7$$

 $\therefore 3r = 15 \implies r = 5$

$$T_6 = {}^{11}C_5 \frac{a^6}{b^5} \cdot x^7$$

Hence the coefficient of x^7 in $\left(ax^2 + \frac{1}{bx}\right)^{11}$ is ${}^{11}C_5a^6b^{-5}$.

Note that binomial coefficient of sixth term is ${}^{11}C_5$.

In the expansion of $\left(ax - \frac{1}{bx^2}\right)^{11}$, general term is: (b)

$$T_{r+1} = {}^{11}C_r(ax)^{11-r} \left(\frac{-1}{bx^2}\right)^r = (-1)^{r+1}C_r \frac{a^{11-r}}{b^r}.x^{11-3r}$$

putting 11 - 3r = -7

$$\therefore 3r = 18 \implies r = 6$$

$$T_7 = (-1)^6 \cdot {}^{11}C_6 \frac{a^5}{b^6} \cdot x^{-7}$$

Hence the coefficient of x^{-7} in $\left(ax - \frac{1}{bx^2}\right)^{11}$ is ${}^{11}C_6a^5b^{-6}$. Ans.

Also given:

Coefficient of x^7 in $\left(ax^2 + \frac{1}{bx}\right)^{11}$ = coefficient of x^{-7} in $\left(ax - \frac{1}{bx^2}\right)^{11}$

$$\Rightarrow {}^{11}C_5 a^6 b^{-5} = {}^{11}C_6 a^5 b^{-6}$$

$$\Rightarrow {}^{11}C_5 a^6 b^{-5} = {}^{11}C_6 a^5 b^{-6}$$

\Rightarrow ab = 1 (: ${}^{11}C_5 = {}^{11}C_6$)

which is the required relation between a and b.

Ans.

Find the number of rational terms in the expansion of $(9^{1/4} + 8^{1/6})^{1000}$. Illustration 5: The general term in the expansion of $(9^{1/4} + 8^{1/6})^{1000}$ is **Solution:**

$$T_{r+1} = {}^{1000}C_r \left(9^{\frac{1}{4}}\right)^{1000-r} \left(8^{\frac{1}{6}}\right)^r = {}^{1000}C_r 3^{\frac{1000-r}{2}} 2^{\frac{r}{2}}$$

The above term will be rational if exponents of 3 and 2 are integers

It means $\frac{1000-r}{2}$ and $\frac{r}{2}$ must be integers

The possible set of values of r is $\{0, 2, 4, \dots, 1000\}$

Hence, number of rational terms is 501

Ans.

(b) Middle term:

The middle term(s) in the expansion of $(x + y)^n$ is (are):

- If n is even, there is only one middle term which is given by $T_{(n+2)/2} = {}^{n}C_{n/2}$. $x^{n/2}$. $y^{n/2}$ **(i)**
- If n is odd, there are two middle terms which are $T_{(n+1)/2}$ & $T_{[(n+1)/2]+1}$ (ii)

Important Note:

Middle term has greatest binomial coefficient and if there are 2 middle terms their coefficients will be equal.

$$\Rightarrow \quad {}^{n}C_{r} \text{ will be maximum} \qquad \qquad When \ r = \frac{n}{2} \text{ if n is even} \\ \text{When } r = \frac{n-1}{2} \text{ or } \frac{n+1}{2} \text{ if n is odd}$$

 \Rightarrow The term containing greatest binomial coefficient will be middle term in the expansion of $(1 + x)^n$

Illustration 6: Find the middle term in the expansion of $\left(3x - \frac{x^3}{6}\right)^9$

Solution: The number of terms in the expansion of $\left(3x - \frac{x^3}{6}\right)^9$ is 10 (even). So there are two middle terms.

i.e. $\left(\frac{9+1}{2}\right)^{th}$ and $\left(\frac{9+3}{2}\right)^{th}$ are two middle terms. They are given by T_5 and T_6

$$T_5 = T_{4+1} = {}^{9}C_{4}(3x)^{5} \left(-\frac{x^{3}}{6}\right)^{4} = {}^{9}C_{4}3^{5}x^{5}. \quad \frac{x^{12}}{6^{4}} = \frac{9 \cdot 8 \cdot 7 \cdot 6}{1 \cdot 2 \cdot 3 \cdot 4} \cdot \frac{3^{5}}{2^{4} \cdot 3^{4}} x^{17} = \frac{189}{8} x^{17}$$

and
$$T_6 = T_{5+1} = {}^9C_5(3x)^4 \left(-\frac{x^3}{6}\right)^5 = -{}^9C_43^4 \cdot x^4 \cdot \frac{x^{15}}{6^5} = \frac{-9.8.7.6}{1.2.3.4} \cdot \frac{3^4}{2^5.3^5} x^{19} = -\frac{21}{16} x^{19}$$
 Ans.

(c) Term independent of x:

Term independent of x does not contain x; Hence find the value of r for which the exponent of x is zero.

Illustration 7: The term independent of x in $\left[\sqrt{\frac{x}{3}} + \sqrt{\left(\frac{3}{2x^2}\right)}\right]^{10}$ is -

(B)
$$\frac{5}{12}$$

(D) none of these

Solution: General term in the expansion is

$$^{10}C_r \left(\frac{x}{3}\right)^{\frac{r}{2}} \left(\frac{3}{2x^2}\right)^{\frac{10-r}{2}} = ^{10}C_r x^{\frac{3r}{2}-10} \cdot \frac{3^{5-r}}{2^{\frac{10-r}{2}}}$$
 For constant term, $\frac{3r}{2} = 10 \Rightarrow r = \frac{20}{3}$

which is not an integer. Therefore, there will be no constant term.

Ans. (D)

Do yourself - 2:

(i) Find the 7th term of
$$\left(3x^2 - \frac{1}{3}\right)^{10}$$

(ii) Find the term independent of x in the expansion : $\left(2x^2 - \frac{3}{x^3}\right)^{25}$

(iii) Find the middle term in the expansion of: (a) $\left(\frac{2x}{3} - \frac{3}{2x}\right)^6$ (b) $\left(2x^2 - \frac{1}{x}\right)^7$

(d) Numerically greatest term:

Let numerically greatest term in the expansion of $(a + b)^n$ be T_{r+1} .

$$\Rightarrow \begin{cases} |T_{r+1}| \ge |T_r| \\ |T_{r+1}| \ge |T_{r+2}| \end{cases} \text{ where } T_{r+1} = {}^{n}C_r a^{n-r} b^r$$

Solving above inequalities we get $\frac{n+1}{1+\left|\frac{a}{b}\right|}-1 \le r \le \frac{n+1}{1+\left|\frac{a}{b}\right|}$

Case I: When $\frac{n+1}{1+\left|\frac{a}{b}\right|}$ is an integer equal to m, then T_m and T_{m+1} will be numerically greatest term

Case II: When $\frac{n+1}{1+\left|\frac{a}{b}\right|}$ is not an integer and its integral part is m, then T_{m+1} will be the numerically greatest term.

Illustration 8: Find numerically greatest term in the expansion of $(3 - 5x)^{11}$ when $x = \frac{1}{5}$

Using
$$\frac{n+1}{1+\left|\frac{a}{b}\right|}-1 \le r \le \frac{n+1}{1+\left|\frac{a}{b}\right|}$$

$$\frac{11+1}{1+\left|\frac{3}{-5x}\right|} - 1 \le r \le \frac{11+1}{1+\left|\frac{3}{-5x}\right|}$$

solving we get $2 \le r \le 3$

$$\therefore$$
 r = 2, 3

so, the greatest terms are T_{2+1} and T_{3+1} .

$$\therefore$$
 Greatest term (when $r = 2$)

$$T_3 = {}^{11}C_2.3^9 (-5x)^2 = 55.3^9 = T_4$$

From above we say that the value of both greatest terms are equal.

Ans.

Illustration 9: Given T_3 in the expansion of $(1-3x)^6$ has maximum numerical value. Find the range of 'x'.

Using
$$\frac{n+1}{1+\left|\frac{a}{b}\right|}-1 \le r \le \frac{n+1}{1+\left|\frac{a}{b}\right|}$$

$$\frac{6+1}{1+\left|\frac{1}{-3x}\right|} - 1 \le 2 \le \frac{7}{1+\left|\frac{1}{-3x}\right|}$$

Let
$$|\mathbf{x}| = \mathbf{t}$$

$$\frac{21t}{3t+1} - 1 \le 2 \le \frac{21t}{3t+1}$$

$$\begin{cases} \frac{21t}{3t+1} \le 3 \\ \frac{21t}{3t+1} \ge 2 \end{cases} \Rightarrow \begin{cases} \frac{4t-1}{3t+1} \le 0 \Rightarrow t \in \left[-\frac{1}{3}, \frac{1}{4}\right] \\ \frac{15t-2}{3t+1} \ge 0 \Rightarrow t \in \left(-\infty, -\frac{1}{3}\right] \cup \left[\frac{2}{15}, \infty\right) \end{cases}$$

Common solution $t \in \left[\frac{2}{15}, \frac{1}{4}\right] \implies x \in \left[-\frac{1}{4}, -\frac{2}{15}\right] \cup \left[\frac{2}{15}, \frac{1}{4}\right]$

Do yourself -3:

- (i) Find the numerically greatest term in the expansion of $(3-2x)^9$, when x=1.
- (ii) In the expansion of $\left(\frac{1}{2} + \frac{2x}{3}\right)^n$ when $x = -\frac{1}{2}$, it is known that 3^{rd} term is the greatest term. Find the possible integral values of n.

4. PROPERTIES OF BINOMIAL COEFFICIENTS:

$$(1+x)^{n} = C_{0} + C_{1}x + C_{2}x^{2} + C_{3}x^{3} + \dots + C_{n}x^{n} = \sum_{r=0}^{n} {}^{n}C_{r}r^{r}; n \in \mathbb{N}$$
(i)

where $C_0, C_1, C_2, \dots, C_n$ are called combinatorial (binomial) coefficients.

(a) The sum of all the binomial coefficients is 2^n .

Put x = 1, in (i) we get

$$C_0 + C_1 + C_2 + \dots + C_n = 2^n \implies \sum_{r=0}^{n} {}^{n}C_r = 0$$
(ii)

(b) Put x=-1 in (i) we get

$$C_0 - C_1 + C_2 - C_3 - \cdots + C_n = 0 \Rightarrow \sum_{r=0}^{n} (-1)^r {}^n C_r = 0$$
 ...(iii)

(c) The sum of the binomial coefficients at odd position is equal to the sum of the binomial coefficients at even position and each is equal to 2^{n-1} .

From (ii) & (iii),
$$C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n-1}$$

(**d**)
$${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$$

(e)
$$\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$$

(f)
$${}^{n}C_{r} = \frac{n}{r} {}^{n-1}C_{r-1} = \frac{n}{r} \cdot \frac{n-1}{r-1} {}^{n-2}C_{r-2} = \dots = \frac{n(n-1)(n-2).....(n-r+1)}{r(r-1)(r-2)......1}$$

(g)
$${}^{n}C_{r} = \frac{r+1}{n+1} \cdot {}^{n+1}C_{r+1}$$

ALLEN

Solution:

Illustration 10: Prove that :
$${}^{25}C_{10} + {}^{24}C_{10} + \dots + {}^{10}C_{10} = {}^{26}C_{11}$$

Solution: LHS = ${}^{10}C_{10} + {}^{11}C_{10} + {}^{12}C_{10} + \dots + {}^{25}C_{10}$

⇒ ${}^{11}C_{11} + {}^{11}C_{10} + {}^{12}C_{10} + \dots + {}^{25}C_{10}$

⇒ ${}^{12}C_{11} + {}^{12}C_{10} + \dots + {}^{25}C_{10}$

⇒ ${}^{13}C_{11} + {}^{13}C_{10} + \dots + {}^{25}C_{10}$

and so on. ∴ LHS = ${}^{26}C_{11}$

LHS = coefficient of x^{10} in $\{(1+x)^{10} + (1+x)^{11} + \dots (1+x)^{25}\}$

$$\Rightarrow \quad \text{coefficient of } x^{10} \text{ in } \left[(1+x)^{10} \frac{\{1+x\}^{16} - 1}{1+x-1} \right]$$

$$\Rightarrow$$
 coefficient of x^{10} in $\frac{\left[\left(1+x\right)^{26}-\left(1+x\right)^{10}\right]}{x}$

$$\Rightarrow$$
 coefficient of x^{11} in $\left[(1+x)^{26} - (1+x)^{10} \right] = {}^{26}C_{11} - 0 = {}^{26}C_{11}$

A student is allowed to select at most n books from a collection of (2n + 1) books. If the Illustration 11: total number of ways in which he can select books is 63, find the value of n.

Solution:

Given student selects at most n books from a collection of (2n + 1) books. It means that he selects one book or two books or three books or or n books. Hence, by the

$${}^{2n+1}C_1 + {}^{2n+1}C_2 + {}^{2n+1}C_3 + \dots + {}^{2n+1}C_n = 63$$
 ...(i)

$${}^{2n+1}C_0 + {}^{2n+1}C_1 + {}^{2n+1}C_2 + {}^{2n+1}C_3 + \dots + {}^{2n+1}C_{2n+1} = 2^{2n+1}$$
 ...(ii)

Since
$${}^{2n+1}C_0 + {}^{2n+1}C_1 + {}^{2n+1}C_2 + {}^{2n+1}C_3 + \dots + {}^{2n+1}C_{2n+1} = 2^{2n+1}$$

Since ${}^{2n+1}C_0 = {}^{2n+1}C_{2n+1} = 1$, equation (ii) can also be written as $2 + ({}^{2n+1}C_1 + {}^{2n+1}C_2 + {}^{2n+1}C_3 + \dots + {}^{2n+1}C_n) + ({}^{2n+1}C_{n+1} + {}^{2n+1}C_{n+2} + {}^{2n+1}C_{n+3} + \dots + {}^{2n+1}C_{2n-1} + {}^{2n+1}C_{2n}) = 2^{2n+1}$
 $\Rightarrow 2 + ({}^{2n+1}C_1 + {}^{2n+1}C_2 + {}^{2n+1}C_3 + \dots + {}^{2n+1}C_n) + ({}^{2n+1}C_1 + {}^{2n+1}C_1 + {}^{2n+1}C_1 + {}^{2n+1}C_1 + {}^{2n+1}C_1) = 2^{2n+1}$

$$(: ^{2n+1}C_r = ^{2n+1}C_{2n+1-r})$$

$$\Rightarrow 2 + 2 (^{2n+1}C_1 + ^{2n+1}C_2 + ^{2n+1}C_3 + \dots + ^{2n+1}C_n) = 2^{2n+1}$$

$$\Rightarrow 2 + 2.63 = 2^{2n+1}$$

$$\Rightarrow 1 + 63 = 2^{2n}$$

$$\Rightarrow 64 = 2^{2n} \Rightarrow 2^6 = 2^{2n}$$

$$\therefore 2n = 6$$
[from (i)]

Hence, n = 3. Ans.

Illustration 12: Prove that :

(i)
$$C_1 + 2C_2 + 3C_3 + \dots + nC_n = n \cdot 2^{n-1}$$

(ii)
$$C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1}-1}{n+1}$$

Solution:

(i) L.H.S. =
$$\sum_{r=1}^{n} r \cdot {}^{n}C_{r} = \sum_{r=1}^{n} r \cdot \frac{n}{r} \cdot {}^{n-1}C_{r-1}$$

= $n \sum_{r=1}^{n} {}^{n-1}C_{r-1} = n \cdot \left[{}^{n-1}C_{0} + {}^{n-1}C_{1} + \dots + {}^{n-1}C_{n-1} \right]$
= $n \cdot 2^{n-1}$

$$(1+x)^n = {}^{n}C_0 + {}^{n}C_1x + {}^{n}C_2x^2 + \dots + {}^{n}C_nx^n \qquad \dots \dots \dots \dots (A)$$

Differentiating (A), we get

$$n(1+x)^{n-1} = C_1 + 2C_2x + 3C_3x^2 + \dots + n.C_nx^{n-1}$$

Put x = 1,

$$C_1 + 2C_2 + 3C_3 + \dots + n.C_n = n.2^{n-1}$$

(ii) L.H.S.
$$= \sum_{r=0}^{n} \frac{C_r}{r+1} = \frac{1}{n+1} \sum_{r=0}^{n} \frac{n+1}{r+1} {}^{n}C_r$$

$$= \frac{1}{n+1} \sum_{r=0}^{n} {}^{n+1}C_{r+1} = \frac{1}{n+1} \left[{}^{n+1}C_1 + {}^{n+1}C_2 + \dots + {}^{n+1}C_{n+1} \right] = \frac{1}{n+1} \left[2^{n+1} - 1 \right]$$

Aliter: (Using method of integration)

Integrating (A), we get

$$\frac{(1+x)^{n+1}}{n+1} + C = C_0 x + \frac{C_1 x^2}{2} + \frac{C_2 x^3}{3} + \dots + \frac{C_n x^{n+1}}{n+1}$$
 (where C is a constant)

Put x = 0, we get, $C = -\frac{1}{n+1}$

$$\therefore \frac{(1+x)^{n+1}-1}{n+1} = C_0 x + \frac{C_1 x^2}{2} + \frac{C_2 x^3}{3} + \dots + \frac{C_n x^{n+1}}{n+1}$$

Put
$$x = 1$$
, we get $C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1} - 1}{n+1}$

Put x = -1, we get
$$C_0 - \frac{C_1}{2} + \frac{C_2}{3} - \dots = \frac{1}{n+1}$$

Illustration 13: If $(1+x)^n = \sum_{r=0}^n {^nC_r}x^r$, then prove that $C_1^2 + 2.C_2^2 + 3.C_3^2 + \dots + n.C_n^2 = \frac{(2n-1)!}{((n-1)!)^2}$

Solution: $(1+x)^n = C_0 + C_1 x + C_2 x^2 + C_2 x^3 + \dots + C_n x^n$

Differentiating both the sides, w.r.t. x, we get

$$n(1+x)^{n-1} = C_1 + 2C_2x + 3C_2x^2 + \dots + n.C_nx^{n-1}$$
 (ii)

also, we have

$$(x+1)^n = C_0 x^n + C_1 x^{n-1} + C_2 x^{n-2} + \dots + C_n$$
(iii)

Multiplying (ii) & (iii), we get

$$(C_1 + 2C_2x + 3C_3x^2 + \dots + C_nx^{n-1})(C_0x^n + C_1x^{n-1} + C_2x^{n-2} + \dots + C_n) = n(1+x)^{2n-1}$$

Equating the coefficients of x^{n-1} , we get

$$C_1^2 + 2C_2^2 + 3C_3^2 + \dots + n.C_n^2 = n.^{2n-1}C_{n-1} = \frac{(2n-1)!}{((n-1)!)^2}$$
 Ans.

Illustration 14: Prove that: $C_0 - 3C_1 + 5C_2 - \dots (-1)^n (2n + 1)C_n = 0$

Solution: $T_r = (-1)^r (2r + 1)^n C_r = 2(-1)^r r \cdot {}^n C_r + (-1)^r {}^n C_r$

$$\Sigma T_r = 2\sum_{r=1}^n (-1)^r.r.\frac{n}{r}.^{n-1}C_{r-1} + \sum_{r=0}^n (-1)^{r-n}C_r = 2\sum_{r=1}^n (-1)^r.^{n-1}C_{r-1} + \sum_{r=0}^n (-1)^r.^{n}C_r = 2\sum_{r=1}^n (-1)^r.^{n-1}C_r = 2\sum_{r=0}^n (-1)^r.^{n-1}C_r = 2\sum_{r=$$

$$= 2 \left[{\,}^{n-1}C_0 - {\,}^{n-1}C_1 + \ldots \right] + \left[{\,}^{n}C_0 - {\,}^{n}C_1 + \ldots \ldots \right] = 0$$

iode06\B0B0-BA\Kota\JEE(Advanced)\Leader\Malhs\Sheet\SOT + Binomia\\Eng\02.Binom

Illustration 15: Prove that $\binom{2n}{0}^2 - \binom{2n}{1}^2 + \binom{2n}{0}^2 - \dots + (-1)^n \binom{2n}{0}^2 = (-1)^n$. $\binom{2n}{0}$

Solution:
$$(1-x)^{2n} = {}^{2n}C_0 - {}^{2n}C_1x + {}^{2n}C_2x^2 - \dots + (-1)^n {}^{2n}C_{2n}x^{2n}$$
(i)

and
$$(x + 1)^{2n} = {}^{2n}C_0x^{2n} + {}^{2n}C_1x^{2n-1} + {}^{2n}C_2x^{2n-2} + ... + {}^{2n}C_{2n}$$
(ii)

Multiplying (i) and (ii), we get

$$(x^{2} - 1)^{2n} = (^{2n}C_{0} - ^{2n}C_{1}x + \dots + (-1)^{n} {^{2n}C_{2n}}x^{2n}) \times (^{2n}C_{0}x^{2n} + ^{2n}C_{1}x^{2n-1} + \dots + ^{2n}C_{2n}) \quad \dots (iii)$$

Now, coefficient of x^{2n} in R.H.S.

$$= {\binom{2n}{C_0}}^2 - {\binom{2n}{C_1}}^2 + {\binom{2n}{C_2}}^2 - \dots + {(-1)}^n {\binom{2n}{C_{2n}}}^2$$

 \therefore General term in L.H.S., $T_{r+1} = {}^{2n}C_r(x^2)^{2n-r}(-1)^r$

Putting 2(2n - r) = 2n

$$\therefore$$
 r = n

$$T_{n+1} = {}^{2n}C_n x^{2n} (-1)^n$$

Hence coefficient of x^{2n} in L.H.S. = $(-1)^n$. 2n C_n

But (iii) is an identity, therefore coefficient of x^{2n} in R.H.S. = coefficient of x^{2n} in L.H.S.

$$\Rightarrow (^{2n}C_0)^2 - (^{2n}C_1)^2 + (^{2n}C_2)^2 - \dots + (-1)^n (^{2n}C_{2n})^2 = (-1)^n. ^{2n}C_n$$

Illustration 16: Prove that : ${}^{n}C_{0}$. ${}^{2n}C_{n} - {}^{n}C_{1}$. ${}^{2n-2}Cn_{n} + {}^{n}C_{2}$. ${}^{2n-4}Cn_{n} + \dots = 2^{n}$

Solution: L.H.S. = Coefficient of x^n in $[{}^nC_0(1+x)^{2n} - {}^nC_1(1+x)^{2n-2}]$

= Coefficient of x^n in $[(1 + x)^2 - 1]^n$

= Coefficient of x^n in $x^n(x + 2)^n = 2^n$

Illustration 17: If $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$ then show that the sum of the products of

the C_i 's taken two at a time represented by : $\sum_{0 \le i < j \le n} C_i C_j$ is equal to $2^{2n-1} - \frac{2n!}{2 \cdot n! \cdot n!}$

Solution: Since $(C_0 + C_1 + C_2 + + C_{n-1} + C_n)^2$

$$= C_0^2 + C_1^2 + C_2^2 + \dots + C_{n-1}^2 + C_n^2 + 2(C_0C_1 + C_0C_2 + C_0C_3 + \dots + C_0C_n + C_1C_2 + C_1C_3 + \dots + C_1C_n + C_2C_3 + C_2C_4 + \dots + C_2C_n + \dots + C_nC_n)$$

$$(2^{n})^{2} = {}^{2n}C_{n} + 2\sum_{0 \le i \le n} \sum_{c_{i} \in C_{j}} C_{i}C_{j}$$

Hence $\sum_{0 \le i \le n} C_i C_j = 2^{2n-1} - \frac{2n!}{2 n! n!}$

Illustration 18: If $(1+x)^n = C_0 + C_1x + C_2x^2 + + C_nx^n$ then prove that $\sum_{0 \le i < j \le n} (C_i + C_j)^2 = (n-1)^{2n}C_n + 2^{2n}$

Solution: L.H.S. $\sum_{0 \le i \le n} \sum_{n \le i \le n} (C_i + C_j)^2$

$$= (C_0 + C_1)^2 + (C_0 + C_2)^2 + \dots + (C_0 + C_n)^2 + (C_1 + C_2)^2 + (C_1 + C_3)^2 + \dots + (C_1 + C_n)^2 + (C_2 + C_3)^2 + (C_2 + C_4)^2 + \dots + (C_2 + C_n)^2 + \dots + (C_{n-1} + C_n)^2$$

$$= n(C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2) + 2 \sum_{0 \le i \le j \le n} \sum_{0 \le j \le j \le n} C_i C_j$$

=
$$n \cdot {^{2n}C_n} + 2 \cdot \left\{ 2^{2n-1} - \frac{2n!}{2 \cdot n! \cdot n!} \right\}$$
 {from Illustration 17}
= $n \cdot {^{2n}C_n} + 2^{2n} - {^{2n}C_n} = (n-1) \cdot {^{2n}C_n} + 2^{2n} = R.H.S.$

Do yourself - 4:

(i)
$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} =$$

(A)
$$2^{n-1}$$

(C)
$$2^{n}$$

(D)
$$2^{n+1}$$

(ii) If
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$
, $n \in \mathbb{N}$. Prove that

(a)
$$3C_0 - 8C_1 + 13C_2 - 18C_3 + \dots$$
 upto $(n+1)$ terms = 0, if $n \ge 2$.

(b)
$$2C_0 + 2^2 \frac{C_1}{2} + 2^3 \frac{C_2}{3} + 2^4 \frac{C_3}{4} + \dots + 2^{n+1} \frac{C_n}{n+1} = \frac{3^{n+1} - 1}{n+1}$$

(c)
$$C_0^2 + \frac{C_1^2}{2} + \frac{C_2^2}{3} + \dots + \frac{C_n^2}{n+1} = \frac{(2n+1)!}{((n+1)!)^2}$$

5. MULTINOMIAL THEOREM:

Using binomial theorem, we have $(x + a)^n = \sum_{r=0}^n {^nC_r} x^{n-r} a^r$, $n \in N$

$$= \sum_{r=0}^{n} \frac{n!}{(n-r)! \, r!} \, x^{n-r} a^r = \sum_{r+s=n} \frac{n!}{r! \, s!} \, x^s a^r \; , \; \text{where} \; s+r = n$$

This result can be generalized in the following form.

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{r_1 + r_2 + \dots + r_k = n} \frac{n!}{r_1! r_2! \dots r_k!} x_1^{r_1} x_2^{r_2} \dots x_k^{r_k}$$

The general term in the above expansion $\frac{n!}{r_1!r_2!r_3!....r_k!}.x_1^{r_1}x_2^{r_2}x_3^{r_3}.....x_k^{r_k}$

The number of terms in the above expansion is equal to the number of non-negative integral solution of the equation $r_1 + r_2 + \dots + r_k = n$ because each solution of this equation gives a term in the above expansion. The number of such solutions is ${}^{n+k-1}C_{k-1}$

Particular cases:

(i)
$$(x + y + z)^n = \sum_{r+s+t=n} \frac{n!}{r!s!t!} x^r y^s z^t$$

The above expansion has ${}^{n+3-1}C_{3-1} = {}^{n+2}C_2$ terms

(ii)
$$(x + y + z + u)^n = \sum_{p+q+r+s=n} \frac{n!}{p!q!r!s!} x^p y^q z^r u^s$$

There are $^{n+4-1}C_{4-1} = ^{n+3}C_3$ terms in the above expansion.

Illustration 19: Find the coefficient of $x^2 y^3 z^4 w$ in the expansion of $(x - y - z + w)^{10}$

Solution:

$$(x-y-z+w)^{10} = \sum_{p+q+r+s=10} \frac{n!}{p!q!r!s!} (x)^p (-y)^q (-z)^r (w)^s$$

We want to get $x^2y^3z^4w$ this implies that p = 2, q = 3, r = 4, s = 1

.. Coefficient of
$$x^2y^3z^4w$$
 is $\frac{10!}{2! \ 3! \ 4! \ 1!}(-1)^3(-1)^4 = -12600$

Ans.

ALLEN

Illustration 20: Find the total number of terms in the expansion of $(1 + x + y)^{10}$ and coefficient of x^2y^3 .

Solution: Total number of terms = ${}^{10+3-1}C_{3-1} = {}^{12}C_2 = 66$

Coefficient of
$$x^2y^3 = \frac{10!}{2! \times 3! \times 5!} = 2520$$
 Ans.

Illustration 21: Find the coefficient of x^5 in the expansion of $(2 - x + 3x^2)^6$.

Solution: The general term in the expansion of
$$(2 - x + 3x^2)^6 = \frac{6!}{r!s!t!} 2^r (-x)^s (3x^2)^t$$
,

where r + s + t = 6.

$$= \frac{6!}{r! s! t!} 2^{r} \times (-1)^{s} \times (3)^{t} \times x^{s+2t}$$

For the coefficient of x^5 , we must have s + 2t = 5.

But,
$$r + s + t = 6$$
,

$$\therefore$$
 s = 5 - 2t and r = 1 + t, where $0 \le r$, s, t ≤ 6 .

Now
$$t = 0 \implies r = 1, s = 5$$
.

$$t=1 \implies r=2, s=3.$$

$$t=2 \Rightarrow r=3, s=1.$$

Thus, there are three terms containing x⁵ and coefficient of x⁵

$$= \frac{6!}{1! \ 5! \ 0!} \times 2^{1} \times (-1)^{5} \times 3^{0} + \frac{6!}{2! \ 3! \ 1!} \times 2^{2} \times (-1)^{3} \times 3^{1} + \frac{6!}{3! \ 1! \ 2!} \times 2^{3} \times (-1)^{1} \times 3^{2}$$
$$= -12 - 720 - 4320 = -5052.$$

Illustration 22: If $(1+x+x^2)^n = \sum_{r=0}^{2n} a_r x^r$, then prove that (a) $a_r = a_{2n-r}$ (b) $\sum_{r=0}^{n-1} a_r = \frac{1}{2}(3^n - a_n)$

Solution: (a) We have

$$(1+x+x^2)^n = \sum_{r=0}^{2n} a_r x^r$$
(A)

Replace x by $\frac{1}{x}$

$$\therefore \qquad \left(1 + \frac{1}{x} + \frac{1}{x^2}\right)^n = \sum_{r=0}^{2n} a_r \left(\frac{1}{x}\right)^r$$

$$\Rightarrow$$
 $(x^2 + x + 1)^n = \sum_{r=0}^{2n} a_r x^{2n-r}$

$$\Rightarrow \sum_{r=0}^{2n} a_r x^r = \sum_{r=0}^{2n} a_r x^{2n-r}$$
 {Using (A)}

Equating the coefficient of x^{2n-r} on both sides, we get

$$a_{2n-r}=a_r \text{ for } 0 \leq r \leq 2n.$$

Hence $a_r = a_{2n-r}$.

Ans.

(b) Putting x=1 in given series, then

$$a_0 + a_1 + a_2 + \dots + a_{2n} = (1+1+1)^n$$

 $a_0 + a_1 + a_2 + \dots + a_{2n} = 3^n$ (1)

But $a_r = a_{2n-r}$ for $0 \le r \le 2n$

series (1) reduces to

$$2(a_0 + a_1 + a_2 + \dots + a_{n-1}) + a_n = 3^n$$
.

$$\therefore a_0 + a_1 + a_2 + \dots + a_{n-1} = \frac{1}{2} (3^n - a_n)$$

Do yourself - 5:

Find the coefficient of x^2y^5 in the expansion of $(3 + 2x - y)^{10}$.

APPLICATION OF BINOMIAL THEOREM: 6.

Illustration 23: If $(6\sqrt{6}+14)^{2n+1} = [N] + F$ and F = N - [N]; where [.] denotes greatest integer function, then NF is equal to

(A)
$$20^{2n+1}$$

(D)
$$40^{2n+1}$$

Solution:

Since
$$(6\sqrt{6} + 14)^{2n+1} = [N] + F$$

Let us assume that $f = (6\sqrt{6} - 14)^{2n+1}$; where $0 \le f < 1$.

Now, [N] + F - f =
$$(6\sqrt{6} + 14)^{2n+1} - (6\sqrt{6} - 14)^{2n+1}$$

$$=2\left[\frac{2n+1}{2}C_{1}\left(6\sqrt{6}\right)^{2n}\left(14\right)+\frac{2n+1}{2}C_{3}\left(6\sqrt{6}\right)^{2n-2}\left(14\right)^{3}+...\right]$$

[N] + F - f = even integer.

Now 0 < F < 1 and 0 < f < 1

so $-1 \le F - f \le 1$ and F - f is an integer so it can only be zero

Thus NF =
$$(6\sqrt{6} + 14)^{2n+1} (6\sqrt{6} - 14)^{2n+1} = 20^{2n+1}$$
.

Ans. (**A**,**B**)

Find the last three digits in 11⁵⁰. Illustration 24:

Solution:

Expansion of $(10 + 1)^{50} = {}^{50}C_0 10^{50} + {}^{50}C_1 10^{49} + \dots + {}^{50}C_{48} 10^2 + {}^{50}C_{49} 10 + {}^{50}C_{50}$ $=\underbrace{{}^{50}\text{C}_{0}10^{50} + {}^{50}\text{C}_{1}10^{49} + \dots + {}^{50}\text{C}_{47}10^{3}}_{10007} + 49 \times 25 \times 100 + 500 + 1$

$$\Rightarrow$$
 1000 K + 123001

Last 3 digits are 001.

Prove that $2222^{5555} + 5555^{2222}$ is divisible by 7. Illustration 25:

When 2222 is divided by 7 it leaves a remainder 3. **Solution:**

So adding & subtracting 3⁵⁵⁵⁵, we get:

$$E = \underbrace{2222^{5555} - 3^{5555}}_{E_1} + \underbrace{3^{5555} + 5555^{2222}}_{E_2}$$

For E_1 : Now since 2222–3 = 2219 is divisible by 7, therefore E_1 is divisible by 7

 $(:: x^n - a^n \text{ is divisible by } x - a)$

For E₂: 5555 when devided by 7 leaves remainder 4.

So adding and subtracting 42222, we get:

$$E_2 = 3^{5555} + 4^{2222} + 5555^{2222} - 4^{2222}$$
$$= (243)^{1111} + (16)^{1111} + (5555)^{2222} - 4^{2222}$$

Again $(243)^{1111} + 16^{1111}$ and $(5555)^{2222} - 4^{2222}$ are divisible by 7

(: $x^n + a^n$ is divisible by x + a when n is odd)

Hence $2222^{5555} + 5555^{2222}$ is divisible by 7.

Do yourself - 6:

- (i) Prove that $5^{25} 3^{25}$ is divisible by 2.
- (ii) Find the remainder when the number 9^{100} is divided by 8.
- (iii) Find last three digits in 19^{100} .
- (iv) Let $R = (8 + 3\sqrt{7})^{20}$ and [.] denotes greatest integer function, then prove that :

(b)
$$R - [R] = 1 - \frac{1}{(8 + 3\sqrt{7})^{20}}$$

(v) Find the digit at unit's place in the number $17^{1995} + 11^{1995} - 7^{1995}$.

7. BINOMIAL THEOREM FOR NEGATIVE OR FRACTIONAL INDICES:

If
$$n \in Q$$
, then $(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots \infty$ provided $|x| < 1$.

Note:

- (i) When the index n is a positive integer the number of terms in the expansion of $(1+x)^n$ is finite i.e. (n+1) & the coefficient of successive terms are : nC_0 , nC_1 , nC_2 , nC_n
- (ii) When the index is other than a positive integer such as negative integer or fraction, the number of terms in the expansion of $(1+x)^n$ is infinite and the symbol nC_r cannot be used to denote the coefficient of the general term.
- (iii) Following expansion should be remembered (|x| < 1).

(a)
$$(1+x)^{-1}=1-x+x^2-x^3+x^4-...$$

(b)
$$(1-x)^{-1}=1+x+x^2+x^3+x^4+.... \infty$$

(c)
$$(1+x)^{-2}=1-2x+3x^2-4x^3+...$$

(d)
$$(1-x)^{-2}=1+2x+3x^2+4x^3+....$$
 ∞

(e)
$$(1+x)^{-3} = 1 - 3x + 6x^2 - 10x^3 + \dots + \frac{(-1)^r(r+1)(r+2)}{2!}x^r + \dots$$

(f)
$$(1-x)^{-3} = 1 + 3x + 6x^2 + 10x^3 + \dots + \frac{(r+1)(r+2)}{2!}x^r + \dots$$

(iv) The expansions in ascending powers of x are only valid if x is 'small'. If x is large i.e. |x| > 1 then we may find it convenient to expand in powers of 1/x, which then will be small.

8. **APPROXIMATIONS:**

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{1.2}x^2 + \frac{n(n-1)(n-2)}{1.2.3}x^3.....$$

If x < 1, the terms of the above expansion go on decreasing and if x be very small, a stage may be reached when we may neglect the terms containing higher powers of x in the expansion. Thus, if x be so small that its square and higher powers may be neglected then $(1 + x)^n = 1 + nx$, approximately. This is an approximate value of $(1 + x)^n$

Illustration 26: If x is so small such that its square and higher powers may be neglected then find the approximate value of $\frac{(1-3x)^{1/2} + (1-x)^{5/3}}{(4+x)^{1/2}}$

 $\frac{(1-3x)^{1/2} + (1-x)^{5/3}}{(4+x)^{1/2}} = \frac{1-\frac{3}{2}x+1-\frac{5x}{3}}{2\left(1+\frac{x}{4}\right)^{1/2}} = \frac{1}{2}\left(2-\frac{19}{6}x\right)\left(1+\frac{x}{4}\right)^{-1/2} = \frac{1}{2}\left(2-\frac{19}{6}x\right)\left(1-\frac{x}{8}\right)$ Solution:

$$=\frac{1}{2}\left(2-\frac{x}{4}-\frac{19}{6}x\right)=1-\frac{x}{8}-\frac{19}{12}x=1-\frac{41}{24}x$$
 Ans.

Illustration 27: The value of cube root of 1001 upto five decimal places is –

 $(1001)^{1/3} = (1000+1)^{1/3} = 10\left(1 + \frac{1}{1000}\right)^{1/3} = 10\left\{1 + \frac{1}{3} \cdot \frac{1}{1000} + \frac{1/3(1/3-1)}{2!} \cdot \frac{1}{1000^2} + \dots\right\}$ **Solution:** $= 10\{1 + 0.0003333 - 0.00000011 +\} = 10.00333$ Ans. (B)

The sum of $1 + \frac{1}{4} + \frac{1.3}{48} + \frac{1.3.5}{4812} + \dots \infty$ is -Illustration 28:

(A)
$$\sqrt{2}$$

(B)
$$\frac{1}{\sqrt{2}}$$
 (C) $\sqrt{3}$

(C)
$$\sqrt{3}$$

Comparing with $1 + nx + \frac{n(n-1)}{2!}x^2 + \dots$ **Solution:**

$$nx = 1/4$$
(i)

and
$$\frac{n(n-1)x^2}{2!} = \frac{1.3}{4.8}$$

or
$$\frac{nx(nx-x)}{2!} = \frac{3}{32} \implies \frac{1}{4} \left(\frac{1}{4} - x\right) = \frac{3}{16}$$
 (by (i))

$$\Rightarrow \left(\frac{1}{4} - x\right) = \frac{3}{4} \Rightarrow x = \frac{1}{4} - \frac{3}{4} = -\frac{1}{2} \qquad \dots (ii)$$

putting the value of x in (i)

$$n(-1/2) = 1/4 \Rightarrow n = -1/2$$

: sum of series =
$$(1 + x)^n = (1 - 1/2)^{-1/2} = (1/2)^{-1/2} = \sqrt{2}$$
 Ans. (A)

9. **EXPONENTIAL SERIES:**

- e is an irrational number lying between 2.7 & 2.8. Its value correct upto 10 places of decimal is 2.7182818284.
- Logarithms to the base 'e' are known as the Napierian system, so named after Napier, their **(b)** inventor. They are also called Natural Logarithm.
- $e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots \infty$; where x may be any real or complex number & $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n}$
- $a^{x}=1+\frac{x}{1!}\ln a+\frac{x^{2}}{2!}\ln a+\frac{x^{3}}{3!}\ln a+\dots \infty$, where a>0
- (e) $e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots \infty$

LOGARITHMIC SERIES: 10.

- $\ln (1+x) = x \frac{x^2}{2} + \frac{x^3}{2} \frac{x^4}{4} + \dots \infty$, where $-1 < x \le 1$
- **(b)** $\ln (1-x) = -x \frac{x^2}{2} \frac{x^3}{3} \frac{x^4}{4} + \dots \infty$, where $-1 \le x < 1$

(i) $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ell n 2$ (ii) $e^{\ln x} = x$; for all x > 0Remember:

(iii) $\ell n2 = 0.693$

(iv) $\ell n10 = 2.303$

ANSWERS FOR DO YOURSELF

1. (i)
$${}^{5}C_{0}x(3x^{2})^{5} + {}^{5}C_{1}(3x^{2})^{4} \left(-\frac{x}{2}\right) + {}^{5}C_{2}(3x^{2})^{3} \left(-\frac{x}{2}\right)^{2} + {}^{5}C_{3}(3x^{2})^{2} \left(-\frac{x}{2}\right)^{3} + {}^{5}C_{4}(3x^{2})^{1} \left(-\frac{x}{2}\right)^{4} + {}^{5}C_{5} \left(-\frac{x}{2}\right)^{5}$$

$$\textbf{(ii)} \ ^{n}C_{0}y^{n} + {^{n}C_{1}}y^{n-1}.x + {^{n}C_{2}}.y^{n-2}.x^{2} + + {^{n}C_{n}}.x^{n}$$

2: (i)
$$\frac{70}{3}$$
x⁸; (ii) $\frac{25!}{10! \ 5!}$ 2¹⁵3¹⁰; (iii) (a) -20; (b) -560x⁵, 280x²

- (i) $4^{th} & 5^{th}$ i.e. 489888 (ii) n = 4, 5, 6

- (i) C
- (i) -272160 or $-{}^{10}C_5 \times {}^{5}C_2 \times 108$
- **(ii)** 1
- (iii) 801
- **(v)** 1

EXERCISE (O-1) [SINGLE CORRECT CHOICE TYPE]

1. If the coefficients of $x^7 & x^8$ in the expansion of $\left[2 + \frac{x}{3}\right]^n$ are equal, then the value of n is:

- (A) 15
- (B)45
- (C) 55

BT0001

If the constant term of the binomial expansion $\left(2x - \frac{1}{x}\right)^n$ is -160, then n is equal to -2.

(A)4

BT0003

The coefficient of x^{49} in the expansion of $(x-1)\left(x-\frac{1}{2}\right)\left(x-\frac{1}{2^2}\right)...\left(x-\frac{1}{2^{49}}\right)$ is equal to -3.

(A)
$$-2\left(1-\frac{1}{2^{50}}\right)$$

- (B) +ve coefficient of x (C) –ve coefficient of x (D) $-2\left(1 \frac{1}{2^{49}}\right)$

BT0004

Number of rational terms in the expansion of $(\sqrt{2} + \sqrt[4]{3})^{100}$ is: 4.

- (A) 25

- (D)28

BT0007

The expression $[x + (x^3 - 1)^{1/2}]^5 + [x - (x^3 - 1)^{1/2}]^5$ is a polynomial of degree 5.

(A)5

BT0006

Given $(1 - 2x + 5x^2 - 10x^3)(1 + x)^n = 1 + a_1x + a_2x^2 + \dots$ and that $a_1^2 = 2a_2$ then the value of n is-

(A) 6

BT0008

The sum of the co-efficients of all the even powers of x in the expansion of $(2x^2 - 3x + 1)^{11}$ is -7.

- (B) 3.6^{10}
- $(C) 6^{11}$
- (D) none

BT0009

Let $\binom{n}{k}$ represents the combination of 'n' things taken 'k' at a time, then the value of the sum

$$\binom{99}{97} + \binom{98}{96} + \binom{97}{95} + \dots + \binom{3}{1} + \binom{2}{0}$$
 equals -

BT0011

$$(A) \begin{pmatrix} 99 \\ 97 \end{pmatrix} \qquad (B) \begin{pmatrix} 100 \\ 98 \end{pmatrix} \qquad (C) \begin{pmatrix} 99 \\ 98 \end{pmatrix}$$

- $(D) \begin{pmatrix} 100 \\ 97 \end{pmatrix}$

[COMPREHENSION TYPE]

Paragraph for question nos. 9 to 11

If $n \in N$ and if $(1+4x+4x^2)^n = \sum_{r=0}^{2n} a_r x^r$, where $a_0, a_1, a_2, \dots, a_{2n}$ are real numbers.

- The value of $2\sum_{r=0}^{n} a_{2r}^{r}$, is
 - (A) $9^n 1$
- (B) $9^n + 1$
- (C) $9^{n} 2$
- (D) $9^n + 2$

BT0012

- The value of $2\sum_{r=1}^{n} a_{2r-1}$, is-

BT0012

The value of a_{2n-1} is -11.

- (A) 2^{2n}
- $(C)(n-1)2^{2n}$
- (D) $(n+1)2^{2n}$

BT0012

ALLEN

EXERCISE (O-2)

[SINGLE CORRECT CHOICE TYPE]

- Greatest term in the binomial expansion of $(a + 2x)^9$ when a = 1 & $x = \frac{1}{3}$ is: 1.
- (B) $4^{th} & 5^{th}$
- (C) only 4th
- (D) only 5th
- BT0019

- If $\sum_{r=1}^{10} r(r-1)^{-10} C_r = k. 2^9$, then k is equal to-2.
 - (A) 10
- (C) 90
- (D) 100
- BT0022
- The sum $\frac{\binom{11}{0}}{\binom{1}{1}} + \frac{\binom{11}{1}}{\binom{1}{2}} + \frac{\binom{11}{2}}{\binom{1}{2}} + \dots + \frac{\binom{11}{11}}{\binom{11}{12}} \text{ equals } \left(\text{where } \binom{n}{r} \text{denotes } {}^{n}C_{r} \right)$ **3.**
 - (A) $\frac{2^{11}}{12}$
- (B) $\frac{2^{12}}{12}$
- (C) $\frac{2^{11}-1}{12}$ (D) $\frac{2^{12}-1}{12}$
- BT0023

[MULTIPLE CORRECT CHOICE TYPE]

- In the expansion of $\left(\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x-x^{1/2}}\right)^{10}$, the term which does not contain x is-4.

- BT0016
- (A) ${}^{11}C_4 {}^{10}C_3$ (B) ${}^{10}C_7$ (C) ${}^{10}C_4$ (D) ${}^{11}C_5 {}^{10}C_5$ Let $(1+x^2)^2 (1+x)^n = A_0 + A_1x + A_2x^2 + \dots$ If A_0, A_1, A_2 are in A.P. then the value of n is(A) 2 (B) 3 5.

- BT0017

In the expansion of $\left(x^3 + 3.2^{-\log_{\sqrt{2}}\sqrt{x^3}}\right)^{11}$ 6.

BT0015

- (A) there appears a term with the power x^2
- (B) there does not appear a term with the power x^2
- (C) there appears a term with the power x^{-3}
- (D) the ratio of the co-efficient of x^3 to that of x^{-3} is 1/3
- If it is known that the third term of the binomial expansion $\left(x+x^{\log_{10}x}\right)^5$ is 10^6 then x is equal to-7.
 - (A) 10
- (B) $10^{-5/2}$
- (C) 100
- (D)5
- BT0014

EXERCISE (S-1)

- If the coefficients of $(2r+4)^{th}$, $(r-2)^{th}$ terms in the expansion of $(1+x)^{18}$ are equal, find r. **BT0029** If the coefficients of the r^{th} , $(r+1)^{th}$ & $(r+2)^{th}$ terms in the expansion of $(1+x)^{14}$ are in AP, find r. 1.
 - (b)
 - If the coefficients of 2^{nd} , 3^{rd} & 4^{th} terms in the expansion of $(1+x)^{2n}$ are in AP, show (c) that $2n^2 - 9n + 7 = 0$.
- Find the term independent of x in the expansion of (i) $\left[\sqrt{\frac{x}{3}} + \frac{\sqrt{3}}{2x^2}\right]^{10}$ (ii) $\left[\frac{1}{2}x^{1/3} + x^{-1/5}\right]^8$ 2.
- Prove that the ratio of the coefficient of x^{10} in $(1-x^2)^{10}$ & the term independent of x in $\left(x-\frac{2}{x}\right)^{10}$ is **3.** 1:32. BT0033
- Find the sum of the series $\sum_{r=0}^{n} (-1)^{r} \cdot {^{n}C_{r}} \left| \frac{1}{2^{r}} + \frac{3^{r}}{2^{2r}} + \frac{7^{r}}{2^{3r}} + \frac{15^{r}}{2^{4r}} + \dots \right|$ up to m terms 4. BT0058

- **5.** Find numerically greatest term in the expansion of:
 - (i) $(2+3x)^9$ when $x = \frac{3}{2}$

BT0038

(ii) $(3-5x)^{15}$ when $x = \frac{1}{5}$

BT0039

- 6. Find the term independent of x in the expansion of $(1 + x + 2x^3) \left(\frac{3x^2}{2} \frac{1}{3x} \right)^9$.
- 7. Let $(1+x^2)^2 \cdot (1+x)^n = \sum_{K=0}^{n+4} a_K \cdot x^K$. If a_1 , a_2 & a_3 are in AP, find n.

BT0035

- 8. Let $f(x) = 1 x + x^2 x^3 + \dots + x^{16} x^{17} = a_0 + a_1(1+x) + a_2(1+x)^2 + \dots + a_{17}(1+x)^{17}$, find the value of a_2 .
- 9. Let $N = {}^{2000}C_1 + 2 \cdot {}^{2000}C_2 + 3 \cdot {}^{2000}C_3 + \dots + 2000 \cdot {}^{2000}C_{2000}$. Prove that N is divisible by 2^{2003} .
- 10. Find the coefficient of
 - (a) $x^2y^3z^4$ in the expansion of $(ax by + cz)^9$.

BT0061

(b) $a^2 b^3 c^4 d$ in the expansion of $(a - b - c + d)^{10}$.

BT0062

- 11. Find the coefficient of
 - (a) x^4 in the expansion of $(1 + x + x^2 + x^3)^{11}$

` BT0059

(b) x^4 in the expansion of $(2-x+3x^2)^6$

BT0060

12. Find the coefficient of x^r in the expression:

$$(x+3)^{n-1} + (x+3)^{n-2}(x+2) + (x+3)^{n-3}(x+2)^2 + \dots + (x+2)^{n-1}$$

BT0037

- 13. Given that $(1 + x + x^2)^n = a_0 + a_1 x + a_2 x^2 + \dots + a_{2n} x^{2n}$, find the values of:
- BT0057

- (i) $a_0 + a_1 + a_2 + \dots + a_{2n}$
- (ii) $a_0 a_1 + a_2 a_3 \dots + a_{2n}$
- **14.** Prove the following identities using the theory of permutation where C_0 , C_1 , C_2 ,, C_n are the combinatorial coefficients in the expansion of $(1+x)^n$, $n \in N$:

 $^{100}C_{10} + 5. \, ^{100}C_{11} + 10. \, ^{100}C_{12} + 10. \, ^{100}C_{13} + 5. \, ^{100}C_{14} + ^{100}C_{15} = ^{105}C_{90}$

BT0047

- 15. If C_0 , C_1 , C_2 ,, C_n are the combinatorial coefficients in the expansion of $(1 + x)^n$, $n \in \mathbb{N}$, then prove the following:
 - (a) $C_1 + 2C_2 + 3C_3 + \dots + n \cdot C_n = n \cdot 2^{n-1}$

BT0048

(b) $C_0 + 2C_1 + 3C_2 + \dots + (n+1)C_n = (n+2)2^{n-1}$

BT0049

(c) $C_0 + 3C_1 + 5C_2 + \dots + (2n+1)C_n = (n+1) 2^n$

BT0050

(d) $(C_0 + C_1)(C_1 + C_2)(C_2 + C_3) \dots (C_{n-1} + C_n) = \frac{C_0 \cdot C_1 \cdot C_2 \cdot \dots \cdot C_{n-1} (n+1)^n}{n!}$

BT0051

(e) $1 \cdot C_0^2 + 3 \cdot C_1^2 + 5 \cdot C_2^2 + \dots + (2n+1) \cdot C_n^2 = \frac{(n+1)(2n)!}{n! \, n!}$

BT0052

- **16.** Prove that
 - (a) $\frac{C_1}{C_0} + \frac{2C_2}{C_1} + \frac{3C_3}{C_2} + \dots + \frac{n.C_n}{C_{n-1}} = \frac{n(n+1)}{2}$

BT0053

(b) $C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1}-1}{n+1}$

BT0054

(c) $2 \cdot C_0 + \frac{2^2 \cdot C_1}{2} + \frac{2^3 \cdot C_2}{3} + \frac{2^4 \cdot C_3}{4} + \dots \frac{2^{n+1} \cdot C_n}{n+1} = \frac{3^{n+1} - 1}{n+1}$

BT0055

(d) $C_o - \frac{C_1}{2} + \frac{C_2}{3} - \dots + (-1)^n \frac{C_n}{n+1} = \frac{1}{n+1}$

BT0056

EXERCISE (S-2)

1. Prove that $\sum_{K=0}^{n} {}^{n}C_{K} \sin Kx \cdot \cos(n-K)x = 2^{n-1} \sin nx$.

BT0071

2. Let $a = (4^{1/401} - 1)$ and let $b_n = {}^{n}C_1 + {}^{n}C_2$. $a + {}^{n}C_3$. $a^2 + \dots + {}^{n}C_n$. a^{n-1} . Find the value of $(b_{2006} - b_{2005})$

BT0066

- 3. Let a and b be the coefficient of x^3 in $(1+x+2x^2+3x^3)^4$ and $(1+x+2x^2+3x^3+4x^4)^4$ respectively. Find the value of (a-b).
- 4. Find the sum of the roots (real or complex) of the equation $x^{2001} + \left(\frac{1}{2} x\right)^{2001} = 0$.
- 5. Find the coefficient of x^{49} in the polynomial

$$\left(x - \frac{C_1}{C_0}\right) \left(x - 2^2 \cdot \frac{C_2}{C_1}\right) \left(x - 3^2 \cdot \frac{C_3}{C_2}\right) \dots \left(x - 50^2 \cdot \frac{C_{50}}{C_{49}}\right), \text{ where } C_r = {}^{50}C_r.$$

- **6.** If $\binom{n}{r}$ denotes ${}^{n}C_{r}$, then
 - (a) Evaluate: $2^{15} \binom{30}{0} \binom{30}{15} 2^{14} \binom{30}{1} \binom{29}{14} + 2^{13} \binom{30}{2} \binom{28}{13} \dots \binom{30}{15} \binom{15}{0}$
 - (b) Prove that : $\sum_{r=1}^{n} {n-1 \choose n-r} {n \choose r} = {2n-1 \choose n-1}$
 - (c) Prove that : $\binom{n}{r} \binom{r}{k} = \binom{n}{k} \binom{n-k}{r-k}$

EXERCISE (JM)

1. Let $S_1 = \sum_{j=1}^{10} j(j-1)^{10} C_j$, $S_2 = \sum_{j=1}^{10} j^{10} C_j$ and $S_3 = \sum_{j=1}^{10} j^{2^{10}} C_j$. [AIEEE-2010]

Statement-1: $S_3 = 55 \times 2^9$.

Statement-2: $S_1 = 90 \times 2^8$ and $S_2 = 10 \times 2^8$.

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- (2) Statement–1 is true, Statement–2 is true; Statement–2 is not a correct explanation for Statement–1.
- (3) Statement-1 is true, Statement-2 is false.
- (4) Statement–1 is false, Statement–2 is true.

BT0075

- 2. The coefficient of x^7 in the expansion of $(1 x x^2 + x^3)^6$ is :- [AIEEE 2011]
 - (1) 144
- (2) 132

- (3) 144
- (4) 132 **BT0076**

3. If n is a positive integer, then $(\sqrt{3} + 1)^{2n} - (\sqrt{3} - 1)^{2n}$ is:

- [AIEEE 2012]
- (1) a rational number other than positive integers (2) an irrational number
- (3) an odd positive integer

- (4) an even positive integer
- BT0077

E

(1)4

then (a, b) is equal to :-

4.

5.

(4)310

[JEE-Main 2013]

[JEE(Main)-2014]

BT0078

	$(1)\left(16,\frac{251}{3}\right)$	$(2)\left(14,\frac{251}{3}\right)$	$(3)\left(14,\frac{272}{3}\right)$	$(4)\left(16,\frac{272}{3}\right)$	BT0079
6.	The sum of coefficien is:	ts of integral powers o	f x in the binomial expa	ansion of (1 – [JEE(Main	
	$(1) \ \frac{1}{2} (3^{50} - 1)$	$(2) \ \frac{1}{2} \Big(2^{50} + 1 \Big)$	$(3) \ \frac{1}{2} \Big(3^{50} + 1 \Big)$	$(4) \ \frac{1}{2} \Big(3^{50} \Big)$	BT0080
7.	If the number of terms in	the expansion of $\left(1 - \frac{2}{x} + \frac{4}{x}\right)$	$\left(\frac{1}{2}\right)^n$, $x \ne 0$, is 28, then the su	ım of the coeffic	cients of
	all the terms in this expan	sion, is:-		[JEE(Main)-2016]
	(1) 729		(3) 2187		BT0081
8.	The value of $(^{21} C_1 - ^{10}C_1)$ is :-	$(C_1) + (^{21}C_2 - ^{10}C_2) + (^{21}C_3)$	$C_3 - {}^{10}C_3) + ({}^{21}C_4 - {}^{10}C_4)$	+ + (²¹ C ₁₀	
	$(1) 2^{20} - 2^{10}$	$(2) 2^{21} - 2^{11}$	$(3) 2^{21} - 2^{10}$	$(4) 2^{20} - 2^9$	BT0082
9.	The sum of the co-efficient $(x > 1)$ is -	nts of all odd degree terms	in the expansion of $(x + \sqrt{x})$	$(3-1)^{5} + (x-\sqrt{2})$ [JEE(Main	
	(1) 0	(2) 1	(3) 2	(4)-1	BT0083
10.	If the fractional part of the	the number $\frac{2^{403}}{15}$ is $\frac{k}{15}$, then	nk is equal to:	[JEE(Main)-	2019]
	(1) 14	(2) 6	(3) 4	(4) 8	BT0084
11.	The coefficient of t ⁴ in th	the expansion of $\left(\frac{1-t^6}{1-t}\right)^3$ is	S	[JEE(Main)-	2019]
	(1) 12	(2) 15	(3) 10	(4) 14	BT0085
12.	If $\sum_{r=0}^{25} \left\{ {}^{50}C_r \cdot {}^{50-r}C_{25-r} \right\} = K$	$\binom{50}{C_{25}}$, then K is equal to :		[JEE(Main)-	2019]
	$(1) 2^{25} - 1$	$(2)(25)^2$	$(3) 2^{25}$	$(4) 2^{24}$	BT0086
13.	The sum of the real values	of x for which the middle to	erm in the binomial expansion	$\operatorname{conof}\left(\frac{x^3}{3} + \frac{3}{x}\right)$	equals
	5670 is :			[JEE(Main)-	
	(1) 6	(2) 8	(3) 0	(4) 4	BT0087

The term independent of x in expansion of $\left(\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x-x^{1/2}}\right)^{10}$ is :

If the coefficients of x^3 and x^4 in the expansion of $(1 + ax + bx^2)(1 - 2x)^{18}$ in powers of x are both zero,

(2) 120

		1 0 1-1	1 1-2		[.IEE(Main)- 2019]	
14.	The value of r for which	$^{20}C_{r}$ $^{20}C_{0}$ + $^{20}C_{r-1}$	$^{20}C_1 + ^{20}C_{r-2}$ 20	${}^{0}C_{2} + \dots {}^{20}C_{0}$	²⁰ C _r is maximum,	is

(1)20

(2) 15

(3) 11

(4) 10

BT0088

15. Let
$$(x + 10)^{50} + (x - 10)^{50} = a_0 + a_1 x + a_2 x^2 + \dots + a_{50} x^{50}$$
, for all $x \in \mathbb{R}$, then $\frac{a_2}{a_0}$ is equal to:

[JEE(Main)- 2019]

- (1) 12.50
- (2) 12.00
- (3) 12.75
- (4) 12.25

BT0089

16. Let
$$S_n = 1 + q + q^2 + \dots + q^n$$
 and $T_n = 1 + \left(\frac{q+1}{2}\right) + \left(\frac{q+1}{2}\right)^2 + \dots + \left(\frac{q+1}{2}\right)^n$, where q is a real number and $q \neq 1$. If ${}^{101}C_1 + {}^{101}C_2.S_1 + \dots + {}^{101}C_{101}.S_{100} = \alpha T_{100}$, then α is equal to :-[JEE(Main)- 2019] (1) 2^{100} (2) 200 (3) 2^{99} (4) 202 BT0090

17. The total number of irrational terms in the binomial expansion of $(7^{1/5} - 3^{1/10})^{60}$ is:

[JEE(Main)- 2019]

(1)55

(2) 49

(3)48

(4) 54

BT0091

18. If some three consecutive in the binomial expansion of $(x + 1)^n$ is powers of x are in the ratio 2:15:70, then the average of these three coefficient is:- [JEE(Main)- 2019]

(1)964

(2)625

- (3)227
- (4) 232

BT0092

19. The coefficient of x^{18} in the product $(1+x)(1-x)^{10}(1+x+x^2)^9$ is :

[JEE(Main)- 2019]

(1) - 84

(2)84

(3) 126

(4) -126 **BT0093**

20. If ${}^{20}C_1 + (2^2){}^{20}C_2 + (3^2){}^{20}C_3 + \dots + (20^2){}^{20}C_{20} = A(2^\beta)$, then the ordered pair (A, β) is equal to: [JEE(Main)- 2019]

- (1)(420, 18)
- (2) (380, 19)
- (3)(380, 18)
- (4) (420, 19) **BT0094**
- **21.** The term independent of x in the expansion of $\left(\frac{1}{60} \frac{x^8}{81}\right) \cdot \left(2x^2 \frac{3}{x^2}\right)^6$ is equal to :

[JEE(Main)- 2019]

(1)36

- (2) 108
- (3) 72
- (4) 36

BT0095

EXERCISE (JA)

- For $r=0,\ 1,...,10$, let A_r , B_r and C_r denote, respectively, the coefficient of x^r in the expansions of $(1+x)^{10}$, $(1+x)^{20}$ and $(1+x)^{30}$. Then $\sum_{r=1}^{10}A_r(B_{10}B_r-C_{10}A_r)$ is equal to -
 - (A) $B_{10} C_{10}$
- (B) $A_{10} (B_{10}^2 C_{10} A_{10})$ (C) 0
- (D) $C_{10} B_{10}$

[JEE 2010, 5]

2. The coefficients of three consecutive terms of $(1 + x)^{n+5}$ are in the ratio 5 : 10 : 14. Then n = **BT0102** [JEE (Advanced) 2013, 4M, -1M]

- 3. Coefficient of x^{11} in the expansion of $(1 + x^2)^4(1 + x^3)^7(1 + x^4)^{12}$ is -
 - (A) 1051
- (B) 1106
- (C) 1113
- (D) 1120

BT0103

[JEE(Advanced)-2014, 3(-1)]

- 4. The coefficient of x^9 in the expansion of $(1+x)(1+x^2)(1+x^3)...(1+x^{100})$ is [JEE 2015, 4M, -0M] BT0104
- 5. Let m be the smallest positive integer such that the coefficient of x^2 in the expansion of $(1 + x)^2 + (1 + x)^3 + \dots + (1 + x)^{49} + (1 + mx)^{50}$ is $(3n + 1)^{51}C_3$ for some positive integer n. Then the value of n is

 [JEE(Advanced)-2016, 3(0)]

BT0105

6. Let $X = {\binom{10}{C_1}}^2 + 2{\binom{10}{C_2}}^2 + 3{\binom{10}{C_3}}^2 + ... + 10{\binom{10}{C_{10}}}^2$, where ${\binom{10}{C_1}}^2$, where ${\binom{10}{C_1}}^2$, $r \in \{1, 2, ..., 10\}$ denote binomial coefficients. Then, the value of $\frac{1}{1430}X$ is ______. [JEE(Advanced)-2018, 3(0)]

BT0106

7. Suppose $\det\begin{bmatrix} \sum_{k=0}^{n} k & \sum_{k=0}^{n} {^{n}C_{k} k^{2}} \\ \sum_{k=0}^{n} {^{n}C_{k} k} & \sum_{k=0}^{n} {^{n}C_{k} 3^{k}} \end{bmatrix} = 0$, holds for some positive integer n. Then $\sum_{k=0}^{n} {^{n}C_{k} \over k+1}$ equals

BT0107

[JEE(Advanced)-2019, 3(0)]

ANSWER KEY

EXERCISE (O-1)

- **1.** C
- **2.** B
- **3.** A
- **4.** B
- **5.** C **6.** A **7.** B

- **8.** D
- **9.** B
- **10.** A
- **11.** B

EXERCISE (O-2)

- **1.** B
- **2.** B
- **3.** D
- **4.** A,C,D **5.** A,B **6.** B,C,D **7.** A,B

EXERCISE (S-1)

- **1.** (a) r = 6 (b) r = 5 or 9 **2.** (i) $\frac{5}{12}$ (ii) $T_6 = 7$ **4.** $\frac{(2^{mn} 1)}{(2^n 1)(2^{mn})}$
- 5. (i) $T_7 = \frac{7.3^{13}}{2}$ (ii) 455×3^{12} 6. $\frac{17}{54}$ 7. n = 2 or 3 or 4 8. 816

- **10.** (a) $-1260 \cdot a^2b^3c^4$; (b) -12600 **11.** (a) 990 (b) 3660 **12.** ${}^{n}C_{r}(3^{n-r}-2^{n-r})$

13. (i) 3ⁿ (ii) 1

EXERCISE (S-2)

- **2.** 2^{10} **3.** 0 **4.** 500 **5.** -22100 **6.** (a) $\binom{30}{15}$

EXERCISE (JM)

- **1.** 3
- **2.** 1 **3.** 2 **4.** 3 **5.** 4 **6.** 3

7. Bonus

Note: In the problem 'number of terms should be 13 instead of 28', then (1) will be the answer

- **8.** 1
- **9.** 3
- **10.** 4
- **11.** 2
- **12.** 3
- **13.** 3

- **15.** 4
- **16.** 1 **17.** 4
- **18.** 4
- **19.** 2
- **20.** 1
- **21.** 4

EXERCISE (JA)

- **1.** D
- **2.** 6 **3.** C

- **4.** 8 **5.** 5 **6.** 646
 - **7.** 6.20

Important Notes