ko6\B0B0-BA\Kata\JEE(Advanced)\Enthuse\Chemistry\Sheet\Module-Salt Analysis, Heating Effect & s, d-Block\Eng\(i) Salt Analysis.p65

SALT ANALYSIS

Analysis always does not mean breaking of substance into its ultimate constituents. Finding out the nature of substance and identity of its constituents is also analysis and is known as *qualitative analysis*. Qualitative analysis of inorganic salts means the identification of cations and anions present in the salt or a mixture of salts. Inorganic salts may be obtained by complete or partial neutralisation of acid with base or vice-versa. In the formation of a salt, the part contributed by the *acid* is called *anion* and the part contributed by the *base* is called *cation*. For example, in the salts CuSO₄ and NaCl, Cu²⁺ and Na⁺ ions are cations and SO₄²⁻ and Cl⁻ ions are anions. Qualitative analysis is carried out on various scales. Amount of substance employed in these is different. In macro analysis, 0.1 to 0.5 g of substance and about 20 mL of solution is used. For semimicro analysis, 0.05 g substance and 1 mL solution is needed while for micro analysis amount required is very small. Qualitative analysis is carried out through the reactions which are easily perceptible to our senses such as sight and smell. Such reactions involve:

- (a) Formation of a precipitate
- (b) Change in colour
- (c) Evolution of gas etc.Systematic analysis of an inorganic salt involves the following steps:
- (i) Preliminary examination of solid salt and its solution.
- (ii) Determination of anions by reactions carried out in solution (wet tests) and confirmatory tests.
- (iii) Determination of cations by reactions carried out in solution (wet tests) and confirmatory tests. Although these tests are not conclusive but sometimes they give quite important clues for the presence of certain anions or cations. These tests can be performed within 10^{-15} minutes. These involve noting the general appearance and physical properties, such as colour, smell, solubility etc. of the salt. These are named as *dry tests*.

Heating of dry salt, blow pipe test, flame tests, borax bead test, sodium carbonate bead test, charcoal cavity test etc. come under dry tests.

Solubility of a salt in water and the pH of aqueous solutions give important information about the nature of ions present in the salt. If a solution of the salt is acidic or basic in nature, this means that it is being hydrolysed in water. If the solution is basic in nature then salt may be some carbonate or sulphide etc. If the solution shows acidic nature then it may be an acid salt or salt of weak base and strong acid. In this case it is best to neutralise the solution with sodium carbonate before testing it for anions.

Gases evolved in the preliminary tests with dil. H₂SO₄/dil. HCl and conc. H₂SO₄ also give good indication about the presence of acid radicals (See Tables 1 and 3). *Preliminary tests should always be performed before starting the confirmatory tests for the ions.*

EXPERIMENT 1.1

Aim

To detect one cation and one anion in the given salt from the following ions:

$$Cations - Pb^{2+}, \ Cu^{2+}, \ As^{3+}, \ Al^{3+}, \ Fe^{3+}, \ Mn^{2+}, \ Ni^{2+}, \ Zn^{2+}, \ Co^{2+}, \ Ca^{2+}, \ Sr^{2+}, \ Ba^{2+}, \ Mg^{2+}, NH_4^{\ +} + Mg^{2+}, N$$

Anions -
$$CO_3^{2-}$$
, S^{2-} , SO_4^{2-} , NO_2^{-} , NO_3^{-} , Cl^- , Br^- , l^- , PO_4^{3-} , CH_3COO^- .

(Insoluble salts to be excluded)

Theory

Two basic principles of great use in the analysis are:

- (i) the Solubility product
- (ii) the Common ion effect.

When ionic product of a salt exceeds its solubility product, precipitation takes place. Ionic product of salt is controlled by making use of common ion effect.

Material Required

• Boiling tube : As per need

• Test tubes : As per requirement

Measuring cylinder : One
Test tube stand : One
Test tube holder : One
Delivery tube : One

CorksFilter paperReagentsAs per needAs per need

Step - I : Preliminary Test with Dilute Sulphuric Acid \rightarrow In this test the action of dilute sulphuric acid (procedure is given below) on the salt is noted at room temperature and on warming.

Carbonate (CO_3^{2-}), sulphide (S^{2-}), sulphite (SO_3^{2-}), nitrite (NO_2^{-}) and acetate (CH_3COO^-) react with dilute sulphuric acid to evolve different gases. Study of the characteristics of the gases evolved gives information about the anions. Summary of characteristic properties of gases is given in Table 1.

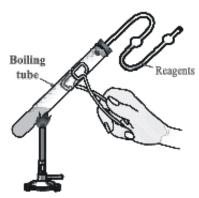


Fig. 1.1 Testing a Gas

Procedure

(a) Take 0.1 g of the salt in a test tube and add 1–2 mL of dilute sulphuric acid. Observe the change, if any, at room temperature. If no gas is evolved, warm the content of the test tube. If gas is evolved test it by using the apparatus shown in Fig.1 and identify the gas evolved (See Table 1).

Table 1: Preliminary test with dilute sulphuric acid

Observations	Inference	
Observations	Gas Evolved	Possible Anion
A colourless, odourless gas is evolved with brisk effervescence, which turns lime water milky.	CO_2	Carbonate (CO ₃ ²⁻)
Colourless gas with the smell of rotten eggs is evolved which turns lead acetate paper black.	H_2S	Sulphide (S ²⁻)
Colourless gas with a pungent smell, like burning sulphur which turns acidified potassium dichromate solution green.	SO_2	Sulphite (SO ₃ ²⁻)
Brown fumes which turn acidified potassium iodide solution containing starch solution blue.	NO_2	Nitrite (NO ₂)
Colourless vapours with smell of vinegar. Vapours turn blue litmus red.	CH ₃ COOH vapours	Acetate, (CH ₃ COO ⁻)

Confirmatory tests for ${\rm CO_3^{2-}}$, ${\rm S^{2-}}$, ${\rm SO_3^{2-}}$, ${\rm NO_2^{-}}$ and ${\rm CH_3COO^{-}}$

Confirmatory (wet) tests for anions are performed by using water extract when salt is soluble in water and by using sodium carbonate extract when salt is insoluble in water. Confirmation of CO_3^{2-} is done by using aqueous solution of the salt or by using solid salt as such because sodium carbonate extract contains carbonate ions. Water extract is made by dissolving salt in water. Preparation of sodium carbonate extract is given below.

Preparation of sodium carbonate extract

Take 1 g of salt in a porcelain dish or boiling tube. Mix about 3 g of solid sodium carbonate and add 15 mL of distilled water to it. Stir and boil the content for about 10 minutes. Cool, filter and collect the filtrate in a test tube and label it as sodium carbonate extract.

Confirmatory tests for acid radicals, which react with dilute sulphuric acid are given in Table 2.

Table 2 : Confirmatory tests for CO_3^{2-} , S^{2-} , SO_3^{2-} , NO_3^- , CH_3COO^-

Anion	Confirmatory Test		
Carbonate (CO ₃ ²)	Take 0.1 g of salt in a test tube, add dilute sulphuric acid. CO ₂ gas is evolved with brisk effervescence which turns lime water milky. On passing the gas for some more time, milkiness disappears.		
Sulphide (S ²⁻)	Take 1 mL of water extract and make it alkaline by adding ammonium hydroxide or sodium carbonate extract. Add a drop of sodium nitroprusside solution. Purple or violet colouration appears.		
Sulphite (SO ₃ ²⁻)	 (a) Take 1 mL of water extract or sodium carbonate extract in a test tube and add barium chloride solution. A white precipitate is formed which dissolves in dilute hydrochloric acid and sulphur dioxide gas is also evolved (b) Take the precipitate of step (a) in a test tube and add a few drops of potassium permanganate solution acidified with dil. H₂SO₄. Colour of potassium permanganate solution gets discharged. 		
Nitrite (NO ₂)	 (a) Take 1 mL of water extract in a test tube. Add a few drops of potassium iodide solution and a few drops of starch solution, acidify with acetic acid. Blue colour appears. (b) Acidify 1 mL of water extract with acetic acid. Add 2-3 drops of sulphanilic acid solution followed by 2-3 drops of 1-naphthylamine reagent. Appearance of red colour indicates the presence of nitrite ion. 		
Acetate, (CH ₃ COO ⁻)	 (a) Take 0.1 g of salt in a china dish. Add 1 mL of ethanol and 0.2 mL conc. H₂SO₄ and heat. Fruity odour confirms the presence of acetate ion. (b) Take 0.1 g of salt in a test tube, add 1-2 mL distilled water, shake well filter if necessary. Add 1 to 2 mL neutral ferric chloride solution to the filtrate. Deep red colour appears which disappears on boiling and a brown-red precipitate is formed. 		

Chemistry of Confirmatory Tests

1. Test for Carbonate ion [CO₃²⁻]

If there is effervescence with the evolution of a colourless and odourless gas on adding dil. H_2SO_4 to the solid salt, this indicates the presence of carbonate ion.

The gas turns lime water milky due to the formation of CaCO₃

If ${\rm CO_2}$ gas is passed in excess through lime water, the milkiness disappears due to the formation of calcium hydrogen carbonate which is soluble in water.

$$CaCO_3 + CO_2 + H_2O \longrightarrow Ca(HCO_3)_2$$

2. Test for Sulphide ion $[S^{2-}]$

(a) With warm dilute H₂SO₄ a sulphide gives hydrogen sulphide gas which smells like rotten eggs. A piece of filter paper dipped in lead acetate solution turns black on exposure to the gas due to the formation of lead sulphide which is black in colour.

Lead sulphide

Black precipitate

(b) If the salt is soluble in water, take the solution of salt in water make it alkaline with ammonium hydroxide and add sodium nitroprusside solution. If it is insoluble in water take sodium carbonate extract and add a few drops of sodium nitroprusside solution. Purple or violet colouration due to the formation of complex compound Na₄[Fe(CN)₅NOS] confirms the presence of sulphide ion in the salt.

$$Na_2S + Na_2 [Fe(CN)_5NO] \longrightarrow Na_4 [Fe(CN)_5NOS]$$

Sodium nitroprusside Complex of Purple colour

3. Test for Sulphite ion [SO₃²⁻]

(a) On treating sulphite with warm dil. H_2SO_4 , SO_2 gas is evolved which is suffocating with the smell of burning sulphur.

$$Na_{2}SO_{3} + H_{2}SO_{4} \longrightarrow Na_{2}SO_{4} + H_{2}O + SO_{2}$$

The gas turns potassium dichromate paper acidified with dil. H₂SO₄, green.

$$K_2Cr_2O_7 + H_2SO_4 + 3SO_2 \longrightarrow K_2SO_4 + Cr_2(SO_4)_3 + H_2O_4$$

Chromiun

sulphate (green)

(b) An aqueous solution or sodium carbonate extract of the salt produces a white precipitate of barium sulphite on addition of barium chloride solution.

$$Na_2SO_3 + BaCl_2 \longrightarrow 2NaCl + BaSO_3$$
White ppt

This precipitate gives following tests.

(i) This precipitate on treatment with dilute HCl, dissolves due to decomposition of sulphite by dilute HCl. Evolved SO_2 gas can be tested.

$$BaSO_3 + 2HCl \longrightarrow BaCl_2 + H_2O + SO_2$$

(ii) Precipitate of sulphite decolourises acidified potassium permanganate solution.

$$BaSO_3 + H_2SO_4 \longrightarrow BaSO_4 + H_2O + SO_2$$

$$2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5 [O]$$

$$SO_2 + H_2O + [O] \longrightarrow H_2SO_4$$

4. Test for Nitrite ion [NO₂⁻]

(a) On treating a solid nitrite with dil. H_2SO_4 and warming, reddish brown fumes of NO_2 gas are evolved. Addition of potassium iodide solution to the salt solution followed by freshly prepared starch solution and acidification with acetic acid produces blue colour. Alternatively, a filter paper moistened with potassium iodide and starch solution and a few drops of acetic acid turns blue on exposure to the gas, due to the interaction of liberated iodine with starch.

(i)
$$2\text{NaNO}_2 + \text{H}_2\text{SO}_4 \longrightarrow \text{Na}_2\text{SO}_4 + 2\text{HNO}_2$$

 $3\text{HNO}_2 \longrightarrow \text{HNO}_3 + 2\text{NO} + \text{H}_2\text{O}$ (disproportionation)
 $2\text{NO} + \text{O}_2 \longrightarrow 2\text{NO}_2$

Brown gas

(ii)
$$NO_2^- + CH_3COOH \longrightarrow HNO_2 + CH_3COO^-$$

 $2HNO_2 + 2KI + 2CH_3COOH \longrightarrow 2CH_3COOK + 2H_2O + 2NO + I_2$
 $I_2 + Starch \longrightarrow Blue complex$

node06\B080-BA\Kdra\JEE(Advanæd)\Enfluse\Chemistry\Shee\Module-Sall Analysis, Healing Effect & s, d-Block\Eng\(i) Sall Analysis, p6.5

(b) Sulphanilic acid — 1-naphthylamine reagent test (Griess-llosvay test): On adding sulphanilic acid and 1-naphthylamine reagent to the water extract or acidified with acetic acid, sulphanilic acid is diazotised in the reaction by nitrous acid formed. Diazotised acid couples with 1-naphthylamine to form a red azo-dye.

$$NO_2^- + CH_3COOH \rightarrow HNO_2 + CH_3COO^ N = N - OOCCH_3$$
 $+ HNO_2 \rightarrow SO_3H$
(Sulphanilic acid solution)

$$N = N - OOCCH_3$$

$$+ W = N - OOCCH_3$$

$$+ NH_2 + CH_3COOH_3$$

$$+ NH_3 + NH_4$$

$$+ NH_4 + NH_4$$

$$+ NH_4$$

The test solution should be very dilute. In concentrated solutions reaction does not proceed beyond diazotisation.

5. Test for Acetate ion [CH₃COO⁻]

(a) If the salt smells like vinegar on treatment with dil. H_2SO_4 , this indicates the presence of acetate ions. Take 0.1 g of salt in a china dish and add 1 mL of ethanol. Then add about 0.2 mL of conc. H_2SO_4 and heat. Fruity odour of ethyl acetate indicates the presence of CH_2COO^- ion.

(b) Acetate gives deep red colour on reaction with neutral ferric chloride solution due to the formation of complex ion which decomposes on heating to give Iron (III) dihydroxyacetate as brown red precipitate.

$$\begin{aligned} \text{6CH}_3\text{COO}^- + 3\text{Fe}^{3+} + 2\text{H}_2\text{O} &\longrightarrow [\text{Fe}_3(\text{OH})_2(\text{CH}_3\text{COO})_6]^+ + 2\text{H}^+ \\ [\text{Fe}_3(\text{OH})_2(\text{CH}_3\text{COO})_6]^+ + 4\text{H}_2\text{O} &\longrightarrow 3[\text{Fe}(\text{OH})_2(\text{CH}_3\text{COO})] + 3\text{CH}_3\text{COOH} + \text{H}^+ \\ &\quad \text{Iron(III)dihydroxyacetate} \end{aligned}$$

$$(\text{Brown-red precipitate})$$

Step-II: Preliminary Test with Concentrated Sulphuric Acid If no positive result is obtained from dil. H_2SO_4 test, take 0.1 g of salt in a test tube and 3-4 drops of conc. H_2SO_4 . Observe the change in the reaction mixture in cold and then warm it. Identify the gas evolved on heating (see Table 3).

neet\Module-Sall Analysis, Healing Effect & s, d-Block\Eng\() Salt Ana

Ε

Table 3: Preliminary examination with concentrated sulphuric acid

	Inference		
Observations	Gas/Vapours Evolved	Possible Anion	
A colourless gas with pungent smell, which gives dense white fumes when a rod dipped in ammonium hydroxide is brought near the mouth of the test tube.	НСІ	Chloride, (Cl⁻)	
Reddish brown gas with a pungent odour is evolved. Intensity of reddish gas increases on heating the reaction mixture after addition of solid MnO ₂ to the reaction mixture. Solution also acquires red colour.	Br ₂ vapours	Bromide, (Br ⁻)	
Violet vapours, which turn starch paper blue and a layer of violet sublimate is formed on the sides of the tube. Fumes become dense on adding MnO ₂ to the reaction mixture.		Iodide, (I⁻)	
Brown fumes evolve which become dense upon heating the reaction mixture after addition of copper turnings and the solution acquires blue colour.	NO_2	Nitrate, (NO ₃ ⁻)	
Colourless, odourless gas is evolved which turns lime water milky and the gas coming out of lime water burns with a blue flame, if ignited.	CO and CO ₂	Oxalate, $(C_2O_4^{2-})$	

Table 4 : Confirmatory tests for Cl⁻, Br⁻, I⁻, NO $_3^-$ and C $_2^-$ O $_4^{2-}$

Anion	Confirmatory Test
Chloride (Cl ⁻)	 (a) Take 0.1 g of salt in a test tube, add a pinch of manganese dioxide and 3-4 drops of conc. sulphuric acid. Heat the reaction mixture. Greenish yellow chlorine gas is evolved which is detected by its pungent odour and bleaching action. (b) Take 1 mL of sodium carbonate extract in a test tube, acidify it with dil. HNO₃ or take water extract and add silver nitrate solution. A curdy white precipitate is obtained which is soluble in ammonium hydroxide solution. (c) Take 0.1 g salt and a pinch of solid potassium dichromate in a test tube, add conc. H₂SO₄, heat and pass the gas evolved through sodium hydroxide solution. It becomes yellow. Divide the solution into two parts. Acidify one part with acetic acid and add lead acetate solution. A yellow precipitate is formed. Acidify the second part with dilute sulphuric acid and add 1 mL of amyl alcohol followed by 1 mL of 10% hydrogen peroxide. After gentle shaking the organic layer turns blue.
Bromide (Br ⁻)	 (a) Take 0.1 g of salt and a pinch of MnO₂ in a test tube. Add 3-4 drops conc.sulphuric acid and heat. Intense brown fumes are evolved. (b) Neutralise 1 mL of sodium carbonate extract with hydrochloric acid (or take the water extract). Add 1 mL carbon tetrachloride (CCl₄)/ chloroform (CHCl₃)/ carbon disulphide. Now add an excess of chlorine water dropwise and shake the test tube. A brown colouration in the organic layer confirms the presence of bromide ion. (c) Acidify 1 mL of sodium carbonate extract with dil. HNO₃ (or take 1 mL water extract) and add silver nitrate solution. A pale yellow precipitate soluble with difficulty in ammonium hydroxide solution is obtained.
Iodide (I¯)	 (a) Take 1 mL of salt solution neutralised with HCl and add 1 mL chloroform/carbon tetrachloride/carbon disulphide. Now add an excess of chlorine water drop wise and shake the test tube. A violet colour appears in the organic layer. (b) Take 1 mL of sodium carbonate extract acidify it with dil. HNO₃ (or take water extract). Add, silver nitrate solution. A yellow precipitate insoluble in NH₄OH solution is obtained.

Anion	Confirmatory Test		
*Nitrate (NO ₃ ⁻)	Take 1 mL of salt solution in water in a test tube. Add 2 mL of conc. H ₂ SO and mix thoroughly. Cool the mixture under the tap. Add freshly prepared ferrous sulphate along the sides of the test tube without shaking. A dark brown ring is formed at the junction of the two solutions.		
Oxalate (C ₂ O ₄ ²⁻)	 (a) Take 1 mL of water extract or sodium carbonate extract acidified with acetic acid and add calcium chloride solution. A white precipitate insoluble in ammonium oxalate and oxalic acid solution but soluble in dilute hydrochloric acid and dilute nitric acid is formed. (b) Take the precipitate from test (a) and dissolve it in dilute H₂SO₄. Add very dilute solution of KMnO₄ and warm. Colour of KMnO₄ solution is discharged. Pass the gas coming out through lime water. The lime water turns milky. 		

Chemistry of Confirmatory Tests

1. Test for Chloride ion [Cl⁻]

(a) If on treatment with warm conc. H_2SO_4 the salt gives a colourless gas with pungent smell or if the gas which gives dense white fumes with ammonia solution, then the salt may contain Cl^- ions and the following reaction occurs.

(b) If a salt gives effervescence on heating with conc. H_2SO_4 and MnO_2 and a light greenish yellow pungent gas is evolved, this indicates the presence of Cl^-ions .

$$MnO_2 + 2NaCl + 2H_2SO_4 \longrightarrow Na_2SO_4 + MnSO_4 + 2H_2O + Cl_2$$

(c) Salt solution acidified with dilute HNO₃ on addition of silver nitrate solution gives a curdy white precipitate soluble in ammonium hydroxide solution. This indicates the presence of Cl⁻ ions in the salt.

$$NaCl + AgNO_3 \longrightarrow NaNO_3 + AgCl$$
Silver chloride
(White precipitate)

 $AgCl + 2NH_4OH \longrightarrow [Ag(NH_3)_2]Cl + 2H_2O$
Diammine silver (I)
chloride

(d) Mix a little amount of salt and an equal amount of solid potassium dichromate $(K_2Cr_2O_7)$ in a test tube and add conc. H_2SO_4 to it. Heat the test tube and pass the evolved gas through sodium hydroxide solution. If a yellow solution is obtained, divide the solution into two parts. Acidify the first part with acetic acid and then add lead acetate solution. Formation of a yellow precipitate of lead chromate confirms the presence of chloride ions in the salt. This test is called *chromyl chloride test*.

Acidify the second part with dilute sulphuric acid and add small amounts of amyl alcohol and then 1 mL of 10% hydrogen peroxide solution. On gentle shaking organic layer turns blue. ${\rm CrO_4^{2^-}}$ ion formed in the reaction of chromyl chloride with sodium hydroxide reacts with hydrogen peroxide to form chromium pentoxide (${\rm CrO_5}$) (See structure) which dissolves in amyl alcohol to give blue colour.

$$CrO_4^{2-} + 2H^+ + 2H_2O_2 \longrightarrow CrO_5 + 3H_2O$$
Chromium
pentoxide

$$CrO_4^{2-} + 2H^+ + 2H_2O_2 \longrightarrow CrO_5 + 3H_2O$$
Chromium
pentoxide

6\B080-BA\Kota\JEE(Advanœd)\Enhuse\Chemistry\Shee\\Module-Sall Analysis, Heating Effect & s, d-Block\Eng\(i) Sall Analysis pé

Ε

10

2. Test for Bromide ion (Br⁻)

If on heating the salt with conc. H₂SO₄ reddish brown fumes of bromine are evolved in excess, this indicates the presence of Br⁻ ions. The fumes get intensified on addition of MnO₂. Bromine vapours turn starch paper yellow.

$$2NaBr + 2H_2SO_4 \longrightarrow Br_2 + SO_2 + Na_2SO_4 + 2H_2O$$

$$2NaBr + MnO_2 + 2H_2SO_4 \longrightarrow Na_2SO_4 + MnSO_4 + 2H_2O + Br_2$$

(a) Add 1 mL of carbon tetrachloride (CCl₄)/chloroform (CHCl₃) and excess of freshly prepared chlorine water dropwise to the salt solution in water or sodium carbonate extract neutralised with dilute HCl. Shake the test tube vigorously. The appearance of an orange brown colouration in the organic layer due to the dissolution of bromine in it, confirms the presence of bromide ions.

$$2NaBr + Cl_2 \longrightarrow 2NaCl + Br_2$$

(b) Acidify the sodium carbonate extract of the salt with dil. HNO₃. Add silver nitrate (AgNO₃) solution and shake the test tube. A pale yellow precipitate is obtained which dissolves in ammonium hydroxide with difficulty.

$$NaBr + AgNO_3 \longrightarrow NaNO_3 + AgBr$$

Silver bromide
Pale yellow precipitate

3. Test for Iodide ion (I⁻)

(a) If on heating the salt with conc. H_2SO_4 , deep violet vapours with a pungent smell are evolved. These turns starch paper blue and a violet sublimate is formed on the sides of the test tube, it indicates the presence of I^- ions. Some HI, sulphur dioxide, hydrogen sulphide, and sulphur are also formed due to the following reactions.

$$2\text{NaI} + 2\text{H}_2\text{SO}_4 \longrightarrow \text{Na}_2\text{SO}_4 + \text{SO}_2 + 2\text{H}_2\text{O} + \text{I}_2$$

$$I_2 + \text{Starch} \longrightarrow \text{Blue colour}$$

$$\text{solution}$$

$$\text{NaI} + \text{H}_2\text{SO}_4 \longrightarrow \text{NaHSO}_4 + \text{HI}$$

$$2\text{HI} + \text{H}_2\text{SO}_4 \longrightarrow 2\text{H}_2\text{O} + \text{I}_2 + \text{SO}_2$$

$$6\text{NaI} + 4\text{H}_2\text{SO}_4 \longrightarrow 3\text{I}_2 + 4\text{H}_2\text{O} + \text{S} + 3\text{Na}_2\text{SO}_4$$

$$8\text{NaI} + 5\text{H}_2\text{SO}_4 \longrightarrow 4\text{I}_2 + \text{H}_2\text{S} + 4\text{Na}_2\text{SO}_4 + 4\text{H}_2\text{O}$$

On adding MnO₂ to the reaction mixture, the violet vapours become dense.

$$2\text{NaI} + \text{MnO}_2 + 2\text{H}_2\text{SO}_4 \longrightarrow \text{I}_2 + \text{MnSO}_4 + \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O}$$

(b) Add 1 mL of CHCl₃ or CCl₄ and chlorine water in excess to the salt solution in water or sodium carbonate extract neutralised with dil.HCl and shake the test tube vigorously. Presence of violet colouration in the organic layer confirms the presence of iodide ions.

$$2NaI + Cl_2 \longrightarrow 2NaCl + I_2$$

Iodine dissolves in the organic solvent and the solution becomes violet.

(c) Acidify sodium carbonate extract of the salt with dil.HNO₃ and add AgNO₃ solution. Appearance of a yellow precipitate insoluble in excess of NH₄OH confirms the presence of iodide ions.

$$NaI + AgNO_3 \longrightarrow AgI + NaNO_3$$

silver iodide
(Yellow precipitate)

(a) If on heating the salt with conc. H_2SO_4 light brown fumes are evolved then heat a small quantity of the given salt with few copper turnings or chips and conc. H_2SO_4 . Evolution of excess of brown fumes indicates the presence of nitrate ions. The solution turns blue due to the formation of copper sulphate.

$$NaNO_{3} + H_{2}SO_{4} \longrightarrow NaHSO_{4} + HNO_{3}$$

$$4HNO_{3} \longrightarrow 4NO_{2} + O_{2} + 2H_{2}O$$

$$2NaNO_{3} + 4H_{2}SO_{4} + 3Cu \longrightarrow 3CuSO_{4} + Na_{2}SO_{4} + 4H_{2}O + 2NO$$

$$Copper sulphate$$

$$(Blue)$$

$$2NO + O_{2} \longrightarrow 2NO_{2}$$

$$(Brown fumes)$$

(b) Take 1 mL of an aqueous solution of the salt and add 2 mL conc. H_2SO_4 slowly. Mix the solutions thoroughly and cool the test tube under the tap. Now, add freshly prepared ferrous sulphate solution along the sides of the test tube dropwise so that it forms a layer on the top of the liquid already present in the test tube. A dark brown ring is formed at the junction of the two solutions due to the formation of nitroso ferrous sulphate (Fig. 1.2). Alternatively first ferrous sulphate is added and then concentrated sulphuric acid is added.

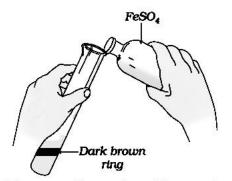


Fig. 1.2 : Formation of brown ring

$$\begin{array}{c} \text{NaNO}_3 + \text{H}_2 \text{SO}_4 {\longrightarrow} \text{NaHSO}_4 + \text{HNO}_3 \\ 6\text{FeSO}_4 + 3\text{H}_2 \text{SO}_4 + 2\text{HNO}_3 {\longrightarrow} 3\text{Fe}_2 (\text{SO}_4)_3 + 4\text{H}_2 \text{O} + 2\text{NO} \\ \text{FeSO}_4 + \text{NO} {\longrightarrow} [\text{Fe}(\text{NO})] \text{SO}_4 \\ \text{Nitroso ferrous sulphate} \\ \text{(Brown)} \end{array}$$

5. Test for Oxalate ion $[C_2O_4^{2-}]$

If carbon dioxide gas along with carbon monoxide gas is evolved in the preliminary examination with concentrated sulphuric acid, this gives indication about the presence of oxalate ion.

$$Na_2C_2O_4 + Conc.H_2SO_4 \longrightarrow Na_2SO_4 + H_2O + CO_2 \uparrow + CO \uparrow$$

Oxalate is confirmed by the following tests:

(a) Acidify sodium carbonate extract with acetic acid and add calcium chloride solution. A white precipitate of calcium oxalate, insoluble in ammonium oxalate and oxalic acid solution indicates the presence of oxalate ion.

$$CaCl_2 + Na_2C_2O_4 \longrightarrow CaC_2O_4 + 2NaCl$$
Calcium oxalate
(White precipitate)

(b) KMnO₄ test

Ε

Filter the precipitate from test (a). Add dil. H_2SO_4 to it followed by dilute $KMnO_4$ solution and warm. Pink colour of $KMnO_4$ is discharged:

$$CaC_2O_4 + H_2SO_4 \xrightarrow{} CaSO_4 + H_2C_2O_4$$
Calcium sulphate Oxalic acid

$$2KMnO_4 + 3H_2SO_4 + 5H_2C_2O_4 \longrightarrow 2MnSO_4 + K_2SO_4 + 8H_2O + 10CO_2$$

Pass the gas evolved through lime water. A white precipitate is formed which dissolves on passing the gas for some more time.

Step-III: Test for Sulphate and Phosphate

If no positive test is obtained in Steps-I and II, then tests for the presence of sulphate and phosphate ions are performed. These tests are summarised in Table 5.

Table 5: Confirmatory tests for Sulphate and Phosphate

Ion	Confirmatory Test
Sulphate (SO ₄ ²)	 (a) Take 1 mL water extract of the salt in water or sodium carbonate and after acidifying with dilute hydrochloric acid add BaCl₂ solution. White precipitate insoluble in conc. HCl or conc. HNO₃ is obtained. (b) Acidify the aqueous solution or sodium carbonate extract with acetic acid and add lead acetate solution. Appearance of white precipitate confirms the presence of SO₄²⁻ ion.
Phosphate (PO ₄ ³⁻)	(a) Acidify sodium carbonate extract or the solution of the salt in water with conc. HNO ₃ and add ammonium molybdate solution and heat to boiling. A canary yellow precipitate is formed.

1. Test of Sulphate ions $[SO_4^{2-}]$

(a) Aqueous solution or sodium carbonate extract of the salt acidified with acetic acid on addition of barium chloride gives a white precipitate of barium sulphate insoluble in conc. HCl or conc. HNO_3 .

$$Na_2SO_4 + BaCl_2 \longrightarrow BaSO_4 + 2NaCl$$
Barium sulphate
(White precipitate)

(b) Sulphate ions give white precipitate of lead sulphate when aqueous solution or sodium carbonate extract neutralised with acetic acid is treated with lead acetate solution.

$$Na_2SO_4 + (CH_3COO)_2Pb \longrightarrow PbSO_4 + 2CH_3COONa$$

Lead sulphate
(White precipitate)

2. Test for Phosphate ion $[PO_4^{3-}]$

(a) Add conc. HNO $_3$ and ammonium molybdate solution to the test solution containing phosphate ions and boil. A yellow colouration in solution or a canary yellow precipitate of ammonium-phosphomolybdate, $(NH_4)_3[P(Mo_3O_{10})_4]$ is formed. Each oxygen of phosphate has been replaced by Mo_3O_{10} group.

$$Na_2HPO_4 + 12(NH_4)_2MoO_4 + 23HNO_3 \longrightarrow (NH_4)_3[P(Mo_3O_{10})_4] + 2NaNO_3 + 21NH_4NO_3 + 12H_2O$$
Canary yellow
precipitate

HEATING DEVICES

Heating during the laboratory work can be done with the help of a gas burner, spirit lamp or a kerosene lamp. The gas burner used in the laboratory is usually Bunsen burner. Various parts of Bunsen burner are shown in Fig. The description of these parts is as follows:

(A) Parts of Bunsen Burner

1. The Base

Heavy metallic base is connected to a side tube called gas tube. Gas from the source enters the burner through the gas tube and passes through a small hole called Nipple or Nozzle and enters into the burner tube under increased pressure and can be burnt at the upper end of the burner tube.

2. The Burner Tube

It is a long metallic tube having two holes diametrically opposite to each other near the lower end which form the air vent. The tube can be screwed at the base. The gas coming from the nozzle mixes with the air coming through the air vent and burns at its upper end.

3. The Air Regulator

It is a short metallic cylindrical sleeve with two holes diametrically opposite to each other. When it is fitted to the burner tube, it surrounds the air vent of the burner tube. To control the flow of air through the air vent, size of its hole is adjusted by rotating the sleeve.

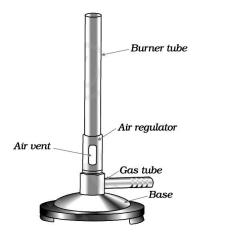


Fig. Bunsen burner

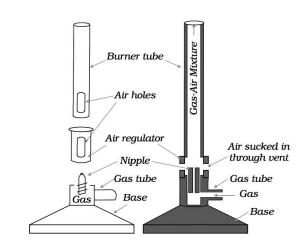


Fig. Parts of Bunsen barner

If the air vent is closed and the gas is ignited, the flame will be large and luminous (smoky and yellow in colour). The light emitted by the flame is due to the radiations given off by the hot carbon particles of partially burnt fuel. The temperature of the flame in this situation is low. If adjustment of sleeve on vent is such that gas mixed with air is fed into the flame, the flame becomes less luminous and finally turns blue. When the flow of air is correctly adjusted, the temperature of the flame becomes quite high. This is called non-luminous flame. Various zones of flame are shown below in Fig.

Ε

Three distinctly visible parts of the Bunsen flame are described below:

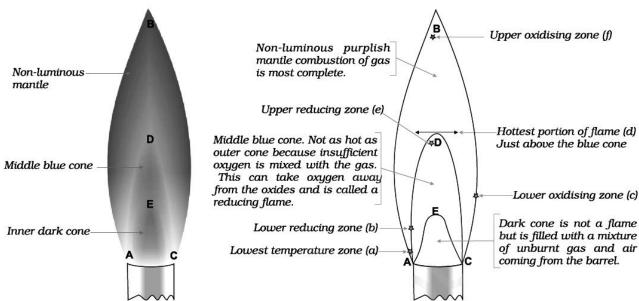


Fig. 1.13: Zones of flame of Bunsen burner

(B) PRINCIPAL PARTS OF BUNSEN FLAME

1. The Inner Dark Cone, A E C

This is innermost dark cone, which is just above the burner tube. It consists of unburnt gases. This zone is the coldest zone of the flame and no combustion takes place here.

2. The Middle Blue Cone, A D C E A

This is middle part of the flame. This becomes luminous when the air vent is slightly closed. Luminosity of this part is due to the presence of unburnt carbon particles produced by decomposition of some gas. These particles get heated up to incandescence and glow but do not burn. Since the combustion is not complete in this part, the temperature is not very high.

3. The Outer Non-luminous Mantle, A B C D A

This is purplish outer cone. It is the hottest part of the flame. It is in direct contact with the atmosphere and combustion is quite complete in this zone.

Bunsen identified six different regions in these three principal parts of the flame:

(i) The upper oxidising zone (f)

Its location is in the non-luminous tip of the flame which is in the air. In comparison to inner portions of the flame large excess of oxygen is present here. The temperature is not as high as in region (c) described below. It may be used for all oxidation processes in which highest temperature of the flame is not required.

(ii) Upper reducing zone (e)

This zone is at the tip of the inner blue cone and is rich in incandescent carbon. It is especially useful for reducing oxide incrustations to the metals.

(iii) Hottest portion of flame (d)

It is the fusion zone. It lies at about one-third of the height of the flame and is approximately equidistant from inside and outside of the mantle i.e. the outermost cone of the flame. Fusibility of the substance can be tested in this region. It can also be employed for testing relative volatility of substances or a mixture of substances.

(iv) Lower oxidising zone (c)

It is located on the outer border of the mantle near the lower part of the flame and may be used for the oxidation of substances dissolved in beads of borax or sodium carbonate etc.

(v) Lower reducing zone (b)

It is situated in the inner edge of the outer mantle near to the blue cone and here reducing gases mix with the oxygen of the air. It is a less powerful reducing zone than (e) and may be employed for the reduction of fused borax and similar beads.

(vi) Lowest temperature zone (a)

Zone (a) of the flame has lowest temperature. It is used for testing volatile substances to determine whether they impart colour to the flame.

(C) STRIKING BACK OF THE BUNSEN BURNER

Striking back is the phenomenon in which flame travels down the burner tube and begins to burn at the nozzle near the base. This happens when vents are fully open. The flow of much air and less gas makes the flame become irregular and it strikes back.

The tube becomes very hot and it may produce burns on touching. This may melt attached rubber tube also. If it happens, put off the burner and cool it under the tap and light it again by keeping the air vent partially opened.

SPIRIT LAMP

If Bunsen burner is not available in the laboratory then spirit lamp can be used for heating. It is a devise in which one end of a wick of cotton thread is dipped in a spirit container and the other end of the wick protrudes out of the nozzle at upper end of the container. Spirit rises upto the upper end of the wick due to the capillary action and can be burnt. The flame is non luminous hence can be used for all heating purposes in the laboratory. To put off the lamp, burning wick is covered with the cover. **Never try to put off the lighted burner by blowing at the flame.**

Fig. 1.14: The spirit lamp

KEROSENE HEATING LAMP

A kerosene lamp has been developed by National Council of Educational Research and Training (NCERT), which is a versatile and cheaper substitute of spirit lamp. It may be used in laboratories as a source of heat whereever spirit and gas burner are not available. Parts of kerosene lamp are shown in Fig.

3 JEE-Chemistry ALLEN

Working of the Kerosene Lamp

More than half of the container is filled with kerosene. Outer sleeve is removed for lighting the wicks. As the outer sleeve is placed back in position, the flames of four wicks combine to form a big soot-free blue flame.

The lighted heating lamp can be put off only by covering the top of the outer sleeve with a metal or asbestos sheet.

Fig. 1.15: Parts of Kerosene Heating Lamp

SYSTEMATIC ANALYSIS OF CATIONS

The tests for cations may be carried out according to the following scheme.

Step - I: Preliminary Examination of the Salt for Identification of Cation

1. Colour Test

Observe the colour of the salt carefully, which may provide useful information about the cations. Table 6 gives the characteristic colours of the salts of some cations.

Table 6 Characteristic colours of the some metal ions

Ion	Confirmatory Test
Light green	Fe ²⁺
Yellowis Brown	Fe ³⁺
Blue	Cu ²⁺
Bright green	Ni ²⁺
Blue, Red Violet, Pink	Co ²⁺
Light pink	Mn ²⁺

2. Dry Heating Test

- (i) Take about 0.1 g of the dry salt in a clean and dry test tube.
- (ii) Heat the above test tube for about one minute and observe the colour of the residue when it is hot and also when it becomes cold. Observation of changes gives indications about the presence of cations, which may not be taken as conclusive evidence (see Table 7).

Table 7: Inferences from the colour of	f the salt in cold an	d on heating
--	-----------------------	--------------

Colour when cold	Colour when hot	Inference
Blue	White	Cu ²⁺
Green	Dirty white or yellow	Fe ²⁺
White	Yellow	Zn^{2+}
Pink	Blue	Co ²⁺

3. Flame Test

The chlorides of several metals impart characteristic colour to the flame because they are volatile in non-luminous flame. This test is performed with the help of a platinum wire as follows:

- (i) Make a tiny loop at one end of a platinum wire.
- (ii) To clean the loop dip it into concentrated hydrochloric acid and hold it in a non-luminous flame (Fig. 1.3).
- (iii) Repeat step (ii) until the wire imparts no colour to the flame.
- (iv) Put 2-3 drops of concentrated hydrochloric acid on a clean watch glass and make a paste of a small quantity of the salt in it.
- (v) Dip the clean loop of the platinum wire in this paste and introduce the loop in the non-luminous (oxidising) flame (Fig. 1.3).
- (vi) Observe the colour of the flame first with the naked eye and then through a blue glass and identify the metal ion with the help of Table 8.

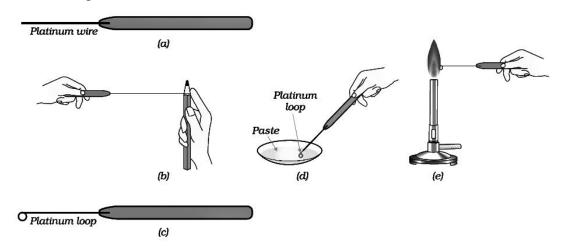


Fig. 1.3 : Performing flame test

Table 8: Inference from the flame test

Colour fo the flame observed by naked eye	Colour of the flame observed through blue glass	Inference
Green flame with blue centre	Same colour as observed without glass	Cu ²⁺
Crimson red	Purple	Sr^{2+}
Apple green	Bluish green	Ba ²⁺
Brick red	Green	Ca ²⁺

4. Borax Bead Test

This test is employed only for coloured salts because borax reacts with metal salts to form metal borates or metals, which have characteristic colours.

- (i) To perform this test make a loop at the end of the platinum wire and heat it in a flame till it is red hot.
- (ii) Dip the hot loop into borax powder and heat it again until borax forms a colourless transparent bead on the loop. Before dipping the borax bead in the test salt or mixture, confirm that the bead is transparent and colourless. If it is coloured this means that, the platinum wire is not clean. Then make a fresh bead after cleaning the wire.

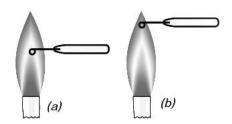


Fig. 1.4 : Borax bead test
(a) Heating in reducing
flame (b) Heating in
oxidising flame

- (iii) Dip the bead in a small quantity of the dry salt and again hold it in the flame.
- (iv) Observe the colour imparted to the bead in the non luminous flame as well as in the luminous flame while it is hot and when it is cold (Fig. 1.4).
- (v) To remove the bead from the platinum wire, heat it to redness and tap the platinum wire with your finger. (Fig.1.5).

On heating, borax loses its water of crystallisation and decomposes to give sodium metaborate and boric anhydride.

On treatment with metal salt, boric anhydride forms metaborate of the metal which gives different colours in oxidising and reducing flame. For example, in the case of copper sulphate, following reactions occur.

$$\begin{array}{c} \text{CuSO}_4 + \text{B}_2\text{O}_3 & \xrightarrow{\text{Non-lu min ous flame}} & \text{Cu(BO}_2)_2 & + \text{SO}_3 \\ & \text{Cupric metaborate} \\ & \text{Blue-green} \end{array}$$

Two reactions may take place in the reducing flame:

(i) The blue Cu(BO₂)₂ is reduced to colourless cuprous metaborate as follows:

$$2Cu(BO_2)_2 + 2NaBO_2 + C \xrightarrow{Lu \, min \, ous \, flame} 2CuBO_2 + Na_2B_4O_7 + CO$$

or (ii) Cupric metaborate may be reduced to metallic copper and the bead appears red and opaque.

$$2 Cu(BO_2)_2 + 4 NaBO_2 + 2 C \xrightarrow{\quad Lu \, min \, ous \, flame \quad} 2 Cu + 2 Na_2 B_4 O_7 + 2 CO$$

The preliminary identification of metal ion can be made from Table 9.

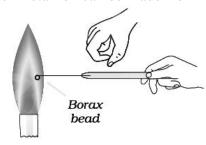


Fig. 1.5 : Removing borax bead

55
ä
ž
В
≦
Sa
Ş
Eng
Block
9
S. S.
×
E
пg
ea
I
Š
B
Ĭ
Š
쁑
ΙVW
긓
She
ž
喜
Cher
ò
ES.
툽
) Se
ĕ
avan
₹
ij
æ
×
á
-0B0B
8

Heating in oxidising Heating in reducing (non-luminous) flame (luminous) flame				
Colour of th	e salt bead	Colour of the salt bead		Inference
In cold	In hot	In cold	In hot	
Blue	Gren	Red opaque	Colourless	Cu ²⁺
Reddish brown	Violet	Grey	Grey	Ni ²⁺
Light violet	Light violet	Colourless	Colourless	Mn^{2+}
Yellow	Yellowish brown	Green	Green	Fe ³⁺

Table 9: Inference from the borax bead test

5. Charcoal Cavity Test

Metallic carbonate when heated in a charcoal cavity decomposes to give corresponding oxide. The oxide appears as a coloured residue in the cavity. Sometimes oxide may be reduced to metal by the carbon of the charcoal cavity.

The test may be performed as follows:

- (i) Make a small cavity in a charcoal block with the help of a charcoal borer [Fig.1.6 (a)].
- (ii) Fill the cavity with about 0.2 g of the salt and about 0.5 g of anhydrous sodium carbonate.

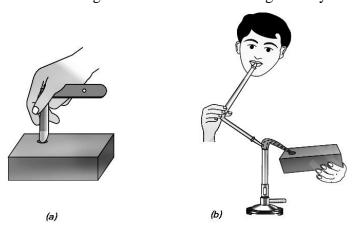


Fig. 1.6 : (a) Making charcoal cavity (b) Heating salt in the cavity

- (iii) Moisten the salt in the cavity with one or two drops of water, otherwise salt/mixture will blow away.
- (iv) Use a blowpipe to heat the salt in a luminous (reducing) flame and observe the colour of oxide/metallic bead formed in the cavity both when hot and cold [Fig. (1.6 b)]. Obtain oxidising and reducing flame as shown in Fig. 1.7 a and b.
- (v) Always bore a fresh cavity for testing the new salt.

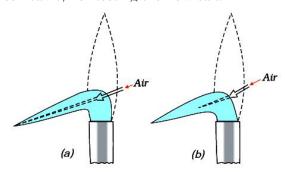


Fig. 1.7 : Obtaining oxidising and reducing flame (a) Oxidising flame; and (b) Reducing flame

When test is performed with CuSO₄, the following change occurs.

$$\begin{array}{cccc} \text{CuSO}_4 & + \text{Na}_2 \text{CO}_3 & \xrightarrow{\text{Heat}} & \text{CuCO}_3 & + \text{Na}_2 \text{SO}_4 \\ \\ \text{CuCO}_3 & \xrightarrow{\text{Heat}} & \text{CuO} & + & \text{CO}_2 \\ \\ \text{CuO} & + & \text{C} & \xrightarrow{\text{Heat}} & \text{Cu} & + & \text{CO} \\ \\ & & \text{Red colour} \end{array}$$

In case of $ZnSO_4$:

$$ZnSO_{_4} + Na_{_2}CO_{_3} \xrightarrow{\quad Heat \quad} ZnCO_{_3} + Na_{_2}SO_{_4}$$

$$ZnCO_3 \xrightarrow{Heat} ZnO + CO_2$$

Yellow when hot,

White when cold

The metal ion can be inferred from Table 10.

Table 10: Inference from the charcoal cavity test

Observations	Inference
Yellow residue when hot and grey metal when cold	Pb ²⁺
White residue with the odour of garlic	As^{3+}
Brown residue	Cd ²⁺
Yellow residue when hot and white when cold	Zn^{2+}

6. Cobalt Nitrate Test

If the residue in the charcoal cavity is white, cobalt nitrate test is performed.

- (i) Treat the residue with two or three drops of cobalt nitrate solution.
- (ii) Heat it strongly in non-luminous flame with the help of a blow pipe and observe the colour of the residue.

On heating, cobalt nitrate decomposes into cobalt (II) oxide, which gives a characteristic colour with metal oxide present in the cavity.

Thus, with ZnO, Al₂O₃ and MgO, the following reactions occur.

$$2\text{Co(NO}_{3})_{2} \xrightarrow{\text{Heat}} 2\text{CoO} + 4\text{NO}_{2} + \text{O}_{2}$$

$$\text{CoO} + \text{ZnO} \longrightarrow \text{CoO.ZnO}$$

$$\text{Green}$$

$$\text{CoO} + \text{MgO} \longrightarrow \text{CoO. MgO}$$

$$\text{Pink}$$

$$\text{CoO} + \text{Al}_{2}\text{O}_{3} \longrightarrow \text{CoO. Al}_{2}\text{O}_{3}$$

$$\text{Blue}$$

The cations indicated by the preliminary tests given above are confirmed by systematic analysis given below.

The first essential step is to prepare a clear and transparent solution of the salt. This is called original solution. It is prepared as follows:

Preparation of Original Solution (O.S.)

To prepare the original solution, following steps are followed one after the other in a systematic order. In case the salt does not dissolve in a particular solvent even on heating, try the next solvent.

The following solvents are tried:

- 1. Take a little amount of the salt in a clean boiling tube and add a few mL of distilled water and shake it. If the salt does not dissolved, heat the content of the boiling tube till the salt completely dissolves.
- 2. If the salt is insoluble in water as detailed above, take fresh salt in a clean boiling tube and add a few mL of dil.HCl to it. If the salt is insoluble in cold, heat the boiling tube till the salt is completely dissolved.
- 3. If the salt does not dissolve either in water or in dilute HCl even on heating, try to dissolve it in a few mL of conc. HCl by heating.
- 4. If salt does not dissolve in conc. HCl, then dissolve it in dilute nitric acid.
- 5. If salt does not dissolve even in nitric acid then a mixture of conc. HCl and conc. HNO₃ in the ratio 3: 1 is tried. This mixture is called aqua regia. A salt not soluble in aqua regia is considered to be an insoluble salt.

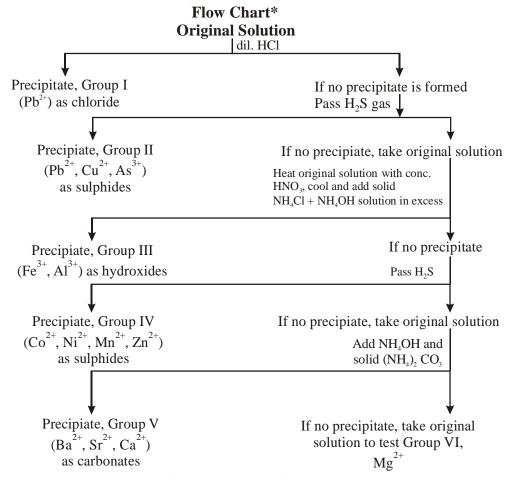
Group Analysis

(I) Analysis of Zero group cation (NH₄⁺ ion)

- (a) Take 0.1 g of salt in a test tube and add 1-2 mL of NaOH solution to it and heat. If there is a smell of ammonia, this indicates the presence of ammonium ions. Bring a glass rod dipped in hydrochloric acid near the mouth of the test tube. White fumes are observed.
- (b) Pass the gas through Nessler's reagent. Brown precipitate is obtained.

Chemistry of Confirmatory Tests for NH_4^+ ion

(a) Ammonia gas evolved by the action of sodium hydroxide on ammonium salts reacts with hydrochloric acid to give ammonium chloride, which is visible as dense white fume.


$$(NH_4)_2SO_4 + 2NaOH \longrightarrow Na_2SO_4 + 2NH_3 + 2H_2O$$

 $NH_3 + HCl \longrightarrow NH_4Cl$

On passing the gas through Nessler's reagent, a brown colouration or a precipitate of basic mercury(II) amido-iodine is formed.

$$2K_2[HgI_4] + NH_3 + 3KOH \longrightarrow HgO.Hg(NH_2)I + 7KI + 2H_2O$$
Basic mercury (II)
amido-iodine
(Brown precipitate)

e06\B080-BA\Kcia\JEE(Advanced)\Enthuse\Chemistry\Shee\\Module-Sall Analysis, Heating Effect & s, d-Block\Eng\(i) Salt Analy

For the analysis of cations belonging to groups I-VI, the cations are precipitated from the original solution by using the group reagents (see Table 1.11) according to the scheme shown in the flow chart given below: The separation of all the six groups is represented as below:

Table 11: Group reagents for precipitating ions

Group	Cations*	Group Reagent
Group zero	$\mathrm{NH_4}^+$	None
Group - I	Ph ²⁺	Dilute HCl
Group - II	Pb ²⁺ , Cu ²⁺ , As ³⁺	H ₂ S gas in presence of dil. HCl
Group - III	Al ³⁺ , Fe ³⁺	NH ₄ OH in presence of NH ₄ Cl
Group - IV	Co ²⁺ , Ni ²⁺ , Mn ²⁺ , Zn ²⁺	H ₂ S in presence of NH ₄ OH
•	$Ba^{2+}, Sr^{2+}, Ca^{2+}$	$(NH_4)_2CO_3$ in presence of NH_4OH
Group - V	, ,	72 3 2
Group - VI	Mg^{2+}	None

(II) Analysis of Group-I cations

Take a small amount of original solution (if prepared in hot conc. HCl) in a test tube and add cold water to it and cool the test tube under tap water. If a white precipitate appears, this indicates the presence of Pb²⁺ ions in group –I. On the other hand, if the original solution is prepared in water and on addition of dil. HCl, a white precipitate appears, this may also be Pb²⁺. Confirmatory tests are described below in Table 12.

Table 12 : Confirmatory tests for Group-I cation (Pb²⁺)

Experiment	Observation
Dissolve the precipiate in hot water and divide the hot solution into three parts,	
1. Add potassium idoide solution to the first part.	A yellow precipiate is obtained.
2. To the second part add potassium chromate solution.	A yellow precipitate is obtained which is soluble, in NaOH and insoluble in ammonium acetate solution.
3. To the thrid part of the hot solution add few drops of alcohol and dilute sulphuric acid.	A white precipitate is obtained which is soluble in ammonium acetate solution.

Chemistry of the Confirmatory Tests of Pb2+ ions

Lead is precipitated as lead chloride in the first group. The precipitate is soluble in hot water.

1. On adding potassium iodide (KI) solution, a yellow precipitate of lead iodide is obtained which confirms the presence of Pb²⁺ ions.

$$PbCl_2 + 2KI \longrightarrow PbI_2 + 2KCl$$
(Hot solution) Yellow precipitate

This yellow precipitate (PbI₂) is soluble in boiling water and reappears on cooling as shining crystals.

2. On addition of potassium chromate (K₂CrO₄) solution a yellow precipitate of lead chromate is obtained. This confirms the presence of Pb²⁺ ions.

The yellow precipitate (PbCrO₄) is soluble in hot NaOH solution.

hydroxoplumbate (II)

3. A white precipitate of lead sulphate (PbSO₄) is formed on addition of alcohol followed by dil. H₂SO₄.

$$PbCl_2 + H_2SO_4 \longrightarrow PbSO_4 + 2HCl$$
Lead sulphate
(White precipitate)

Lead sulphate is soluble in ammonium acetate solution due to the formation of tetraacetatoplumbate(II) ions. This reaction may be promoted by addition of few drops of acetic acid.

$$PbSO_{4} + 4CH_{3}COONH_{4} \longrightarrow (NH_{4})_{2}[Pb(CH_{3}COO)_{4}] + (NH_{4})_{2}SO_{4}$$
Ammonium
$$tetraacetatoplumbate(II)$$

(Advanced)\Enthuse\Chemistry\Shee\\Wodule-Sall Analysis, Heating Effect & s, d-Block\Eng\()) S

24 JEE-Chemistry ALLEN

(III) Analysis of Group-II cations

If group-I is absent, add excess of water to the same test tube. Warm the solution and pass H_2S gas for 1-2 minutes (Fig. 1.6). Shake the test tube. If a precipitate appears, this indicates the presence of group-II cations. Pass more H_2S gas through the solution to ensure complete precipitation and separate the precipitate. If the colour of the precipitate is black, it indicates the presence of Cu^{2+} or Pb^{2+} ions.

If it is yellow in colour, then presence of As³⁺ ions is indicated.

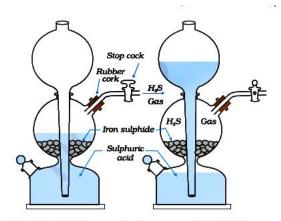


Fig. 1.8: Kipp's apparatus for preparation of H₂S gas

Take the precipitate of group-II in a test tube and add excess of yellow ammonium sulphide solution to it. Shake the test tube. If the precipitate is insoluble, group II-A (copper group) is present. If the precipitate is soluble, this indicates the presence of group-II B (arsenic group).

Confirmatory tests for the groups II A and II B are given in Table 13.

Table 13: Confirmatory tests for the groups II A and II B cations

Black precipitate of Group II A ions Pb ²⁺ , Cu ²⁺ (insoluble in yellow ammonium sulphide) is formed.		If a yellow precipitate soluble in yellow ammonium sulphide is formed then As ³⁺ ion is present.
and add a few drops of alcohol and dil. H ₂ SO ₄ .		Acidify this solution with dilute HCl. A yellow precipitate is formed. Heat the precipitate with concentrated nitric
White precipitate confirms the presence of Pb ²⁺ ions. Dissolve the precipitate in ammonium acetate solution. Acidify with acetic acid and divide the solution into two parts. (i) To the first part add potassium chromate solution, a yellow precipitate is formed. (ii) To the second part, add potassium iodide solution, a yellow precipitate is formed.	Boil the precipitate of Group II A with dilute nitric acid and add a few drops of alcohol and dil. H ₂ SO ₄ . White precipitate confirms the presence of Pb ²⁺ ions. Dissolve the precipitate in ammonium acetate solution. Acidify with acetic acid and divide the solution into two parts. (i) To the first part add potassium chromate solution, a yellow precipitate is formed. (ii) To the second part, add potassium iodide solution, a	

Group-II A (Copper Group)

Chemistry of confirmatory tests of Group-II A cations

1. Test for Lead ion (Pb^{2+})

Lead sulphide precipitate dissolves in dilute HNO₃. On adding dil. H₂SO₄ and a few drops of alcohol to this solution a white precipitate of lead sulphate appears. This indicates the presence of lead ions.

$$3PbS + 8HNO_3 \longrightarrow 3Pb(NO_3)_2 + 2NO + 4H_2O + 3S$$

$$Pb(NO_3)_2 + H_2SO_4 \longrightarrow PbSO_4 + 2HNO_3$$

The white precipitate dissolves in ammonium acetate solution on boiling. When this solution is acidified with acetic acid and potassium chromate solution is added, a yellow precipitate of PbCrO₄ is formed. On adding potassium iodide solution, a yellow precipitate of lead iodide is formed.

$$PbSO_4 + 4CH_3COONH_4 \longrightarrow (NH_4)_2[Pb(CH_3COO)_4] + (NH_4)_2SO_4$$

Ammonium

tetraacetatoplumbate(II)

$$\label{eq:pb2+} \text{Pb}^{2+} + \text{CrO}_4^{\ 2-} \longrightarrow \text{PbCrO}_4 \ ; \qquad \quad \text{Pb}^{2+} + 2\text{I}^- \longrightarrow \text{PbI}_2$$

Lead chromate Lead iodide

(Yellow precipitate) (Yellow precipitate)

2. Test for Copper ion (Cu^{2+})

(a) Copper sulphide dissolves in nitric acid due to the formation of copper nitrate.

$$3\text{CuS} + 8\text{HNO}_3 \longrightarrow 3\text{Cu(NO}_3)_2 + 2\text{NO} + 3\text{S} + 4\text{H}_2\text{O}$$

On heating the reaction mixture for long time, sulphur is oxidised to sulphate and copper sulphate is formed and the solution turns blue. A small amount of NH₄OH precipitates basic copper sulphate which is soluble in excess of ammonium hydroxide due to the formation of tetraamminecopper (II) complex.

$$S + 2HNO_3 \longrightarrow H_2SO_4 + 2NO$$

$$2Cu^{2+} + SO_4^{2-} + 2NH_3 + 2H_2O \longrightarrow Cu(OH)_2.CuSO_4 + 2NH_4^+$$

$$Cu(OH)_2.CuSO_4 + 8NH_3 \longrightarrow 2[Cu(NH_3)_4]SO_4 + 2OH^- + SO_4^{2-}$$

$$Tetraamminecopper (II)$$

$$sulphate (Deep blue)$$

(b) The blue solution on acidification with acetic acid and then adding potassium ferrocyanide $K_4[Fe(CN)_6]$ solution gives a chocolate colouration due to the formation of copper ferrocyanide

i.e.
$$Cu_2[Fe(CN)_6]$$
.

06/B0B0-BA1Kgta1_EE(Advanced)\Enthuse\Chemistry\Shee\Module-Sall Analysis, Healing Effect & s, d-Block\Eng\(() Salt

JEE-Chemistry ALLEN

Group-II B (Arsenic Group)

26

If group- II precipitate dissolves in yellow ammonium sulphide and the colour of the solution is yellow, this indicates the presence of $\mathrm{As^{3+}}$ ions. Ammonium thioarsenide formed on dissolution of $\mathrm{As_2S_3}$, decomposes with dil. HCl, and a yellow precipitate of arsenic (V) sulphide is formed which dissolves in concentrated nitric acid on heating due to the formation of arsenic acid. On adding ammonium molybdate solution to the reaction mixture and heating, a canary yellow precipitate is formed. This confirms the presence of $\mathrm{As^{3+}}$ ions.

(IV) Analysis of Group-III cations

If group-II is absent, take original solution and add 2-3 drops of conc. HNO_3 to oxidise Fe^{2+} ions to Fe^{3+} ions. Heat the solution for a few minutes. After cooling add a small amount of solid ammonium chloride (NH_4CI) and an excess of ammonium hydroxide (NH_4OH) solution till it smells of ammonia. Shake the test tube. If a brown or white precipitate is formed, this indicates the presence of group-III cations. Confirmatory tests of group-III cations are summarised in Table 14.

Observe the colour and the nature of the precipitate. A gelatinous white precipitate indicates the presence of aluminium ion $(A1^{3+})$. If the precipitate is brown in colour, this indicates the presence of ferric ions (Fe^{3+}) .

Table 14: Confirmatory test for Group-III cations

	Brown precipitate Fe ³⁺		White precipitate Al ³⁺
	Dissolve the precipitate in dilute HCl and divide the solution into two parts.		Dissolve the white precipitate in dilute HCl and divide into two parts.
(a)	To the first part add potassium ferrocyanide solution [Potasium hexacyanoferrate (II)]. A blue precipitate/colouration appears.	(a)	To the first part add sodium hydroxide solution and warm. A white gelatinous precipitate soluble in excess of sodium hydroxide solution is obtained
(b)	(b) To the second part add potassium thiocyanate solution. A blood red colouration appears.		To the second part first add blue litmus solution and then ammonium hydroxide solution drop by drop along the sides of the test tube. A blue floating mass in the colourless solution is obtained.

Chemistry of confirmatory tests of Group - III cations

When original solution is heated with concentrated nitric acid, ferrous ion are oxidised to ferric ions.

$$2\text{FeCl}_2 + 2\text{HCl} + [O] \longrightarrow 2\text{FeCl}_3 + \text{H}_2\text{O}$$

Their group cations are precipitated as their hydroxides, which dissolve in dilute hydrochloric acid due to the formation of corresponding chlorides.

1. Test for Aluminium ions (Al^{3+})

(a) When the solution containing aluminium chloride is treated with sodium hydroxide a white gelationus precipitate of aluminium hydroxide is formed which is soluble in excess of sodium hydroxide solution due to the formation of sodium meta aluminate.

$$AlCl_3 + 3NaOH \longrightarrow Al(OH)_3 + 3NaCl$$

$$Al(OH)_3 + NaOH \longrightarrow NaAlO_2 + 2H_2O$$
White gelatinous Sodium

White gelatinous

precipitate meta aluminate

(b) In the second test when blue litmus is added to the solution, a red colouration is obtained due to the acidic nature of the solution. On addition of NH,OH solution drop by drop, the solution becomes alkaline and aluminium hydroxide is precipitated. Aluminium hydroxide adsorbs blue colour from the solution and forms insoluble adsorption complex named 'lake'. Thus a blue mass floating in the colourless solution is obtained. The test is therefore called lake test.

Test for ferric ions (Fe³⁺) 2.

Reddish brown precipitate of ferric hydroxide dissolves in hydrochloric acid and ferric chloride is formed.

$$Fe(OH)_3 + 3HC1 \longrightarrow FeCl_3 + 3H_2O$$

(a) When the solution containing ferric chloride is treated with potassium ferrocyanide solution a blue precipitate/colouration is obtained. The colour of the precipitate is Prussian blue. It is ferric ferrocyanide. The reaction takes place as follows:

$$\begin{array}{ccc} 4\text{FeCl}_3 + 3\text{K}_4[\text{Fe(CN)}_6] & \longrightarrow \text{Fe}_4[\text{Fe(CN)}_6]_3 + 12\text{KCl} \\ & \text{Potassium} & \text{Prussian blue} \\ & \text{ferrocyanide} & \text{precipitate} \end{array}$$

If potassium hexacyanoferrate (II) (i.e. potassium ferrocyanide) is added in excess then a product of composition KFe[Fe(CN)₆] is formed. This tends to form a colloidal solution ('soluble Prussian blue') and cannot be filtered.

$$FeCl_3 + K_4[Fe(CN)_6] \longrightarrow KFe[Fe(CN)_6] + 3KCl$$
(Soluble prussian blue)

(b) To the second part of the solution, add potassium thiocyanate (potassium sulphocyanide) solution. The appearance of a blood red colouration confirms the presence of Fe³⁺ ions.

$$Fe^{3+} + SCN^{-} \longrightarrow [Fe(SCN)]^{3+}$$
 Blood red colour

Analysis of group-IV cations

If group-III is absent, pass H₂S gas in the solution of group-III for a few minutes. If a precipitate appears (white, black or flesh coloured), this indicates the presence of group-IV cations. Table 15 gives a summary of confirmatory tests of group-IV cations.

Table 15: Confirmatory test for Group - IV cations

White precipitate (Zn ²⁺)	Flesh coloured precipitate (Mn ²⁺)	Black precipitate (Ni ²⁺ , Co ²⁺)
Dissolve the precipitate in dilute HCl by boiling. Divide the solution into two parts. (a) To the first part add sodium hydroxide solution. A white precipitate soluble in excess of sodium hydroxide solution confirms the presence of Zn ions. (b) Neutralise the second part with a mmonium hydroxide solution and add potassium ferrocyanide solution. A bluish white precipitate appears		Dissolve the precipitate in aqua regia. Heat the solution to dryness and cool. Dissolve the residue in water and divide the solution into two parts. (a) To the first part of the solution add ammonium hydroxide solution till it becomes alkaline. Add a few drops of dimethyl glyoxime and shake the test tube. Formation of a bright red precipitate confirms the presence of Ni ions. (b) Neutralise the second part with ammonium hydroxide solution. Acidify it with dilute acetic acid and add solid potassium nitrite. A yellow precipitate confirms the presence of Co ions.

Chemistry of confirmatory tests of Group-IV cations

Fourth group cations are precipitated as their sulphides. Observe the colour of the precipitate. A white colour of the precipitate indicates the presence of zinc ions, a flesh colour indicates the presence of manganese ions and a black colour indicates the presence of Ni²⁺ or Co²⁺ ions.

1. Test for Zinc ion (Zn^{2+})

Zinc sulphide dissolves in hydrochloric acid to form zinc chloride.

$$ZnS + 2HCI \longrightarrow ZnCl_2 + H_2S$$

(a) On addition of sodium hydroxide solution it gives a white precipitate of zinc hydroxide, which is soluble in excess of NaOH solution on heating. This confirms the presence of Zn^{2+} ions.

$$ZnCl_2 + 2NaOH \longrightarrow Zn(OH)_2 + 2NaCl$$

 $Zn(OH)_2 + 2NaOH \longrightarrow Na_2ZnO_2 + 2H_2O$
Sodium zincate

(b) When potassium ferrocyanide $K_4[Fe(CN)_6]$ solution is added to the solution after neutralisation by NH_4OH solution, a white or a bluish white precipitate of zinc ferrocyanide appears.

$$2ZnCl_2 + K_4[Fe(CN)_6] \longrightarrow Zn_2[Fe(CN)_6] + 4KCl$$
Zinc

ferrocyanide

2. Test for Manganese ion (Mn^{2+})

Manganese sulphide precipitate dissolves in dil. HCl on boiling. On addition of NaOH solution in excess, a white precipitate of manganese hydroxide is formed which turns brown due to atmospheric oxidation into hydrated manganese dioxide.

MnS + 2HCl
$$\longrightarrow$$
 MnCl₂ + H₂S
MnCl₂ + 2NaOH \longrightarrow Mn(OH)₂ + 2NaCl
(White precipitate)
Mn(OH)₂ + [O] \longrightarrow MnO(OH)₂
Hydrated manganese dioxide
(Brown colour)

3. Test for Nickel ion (Ni^{2+})

The black precipitate of nickel sulphide dissolves in aqua regia and the reaction takes place as follows:

$$3NiS + 2HNO_3 + 6HCI \longrightarrow 3NiCl_2 + 2NO + 3S + 4H_2O$$

After treatment with aqua regia nickel-chloride is obtained which is soluble in water. When dimethyl glyoxime is added to the aqueous solution of nickel chloride, made alkaline, by adding NH₄OH solution, a brilliant red precipitate is obtained.

$$H_{3}C - C = N - OH$$

$$NiCl_{2} + 2NH_{4}OH + H_{3}C - C = N - OH$$

$$H_{3}C - C = N - OH$$

Complex of red colour (Stable form of complex)

4. Test for Cobalt ion (Co²⁺)

Cobalt sulphide dissolves in aqua regia in the same manner as nickel sulphide. When the aqueous solution of the residue obtained after treatment with aqua regia is treated with a strong solution of potassium nitrite after neutralisation with ammonium hydroxide and the solution is acidified with dil. acetic acid, a yellow precipitate of the complex of cobalt named potassium hexanitritocobaltate (III) is formed.

(VI) Analysis of Group-V cations

If group-IV is absent then take original solution and add a small amount of solid NH_4Cl and an excess of NH_4OH solution followed by solid ammonium carbonate $(NH_4)_2CO_3$. If a white precipitate appears, this indicates the presence of group-V cations.

Dissolve the white precipitate by boiling with dilute acetic acid and divide the solution into three parts one each for Ba²⁺, Sr²⁺ and Ca²⁺ ions. Preserve a small amount of the precipitate for flame test. Summary of confirmatory tests is given in Table 16.

16: Confirmatory test for Group - V cations

Dissolve the precipitate by boiling with dilute acetic acid and divide the solution into three parts one each for Ba ²⁺ , Sr ²⁺ and Ca ²⁺ ions				
Ba ²⁺ ions	Sr ²⁺ ions	Ca ²⁺ ions		
 (a) To the first part add potassium chromate solution. A yellow precipitate appears. (b) Perform the flame test with the preserved precipitate. A grassy green flame is obtained. 	 (a) If barium is absent, take second part of the solution and add ammonium sulphate solution. Heat and scratch the sides of the test tube with a glass rod and cool. A white precipitate is formed. (b) Perform the flame test with the preserved precipitate. A crimson-red flame confirms the presence of Sr²⁺ ions. 	 (a) If both barium and strontium are absent, take the third part of the solution. Add ammonium oxalate solution and shake well. A white precipitate of calcium oxalate is obtained. (b) Perform the flame test with the preserved precipitate. A brick red flame, which looks greenishyellow through blue glass, confirms the presence of Ca²⁺ ions. 		

Chemistry of Confirmatory Tests of Group-V cations

The Group–V cations are precipitated as their carbonates which dissolve in acetic acid due to the formation of corresponding acetates.

1. Test for Barium ion (Ba^{2+})

(a) Potassium chromate (K₂CrO₄) solution gives a yellow precipitate of barium chromate when the solution of fifth group precipitate in acetic acid is treated with it.

$$BaCO_3 + 2CH_3COOH \longrightarrow (CH_3COO)_2 Ba + H_2O + CO_2$$

 $(CH_3COO)_2Ba + K_2CrO_4 \longrightarrow BaCrO_4 + 2CH_3COOK$
Barium chromate
(yellow precipitate)

(b) **Flame test:** Take a platinum wire and dip it in conc. HCl. Heat it strongly until the wire does not impart any colour to the non-luminous flame. Now dip the wire in the paste of the (Group–V) precipitate in conc. HCl. Heat it in the flame. A grassy green colour of the flame confirms the presence of Ba²⁺ ions.

2. Test for Strontium ion (Sr^{2+})

(a) Solution of V group precipitate in acetic acid gives a white precipitate of strontium sulphate with ammonium sulphate solution on heating and scratching the sides of the test tube with a glass rod.

$$SrCO_3 + 2CH_3COOH \longrightarrow (CH_3COO)_2Sr + H_2O + CO_2$$
 $(CH_3COO)_2Sr + (NH_4)_2SO_4 \longrightarrow SrSO_4 + 2CH_3COONH_4$
Strontium
sulphate
(White precipitate)

- (b) Flame test: Perform the flame test as given in the case of Ba^{2+} . A crimson red flame confirms the presence of Sr^{2+} ions.
- 3. Test for Calcium ion (Ca^{2+})
- (a) Solution of the fifth group precipitate in acetic acid gives a white precipitate with ammonium oxalate solution.

$$\begin{array}{c} \text{CaCO}_3 + 2\text{CH}_3\text{COOH} & \longrightarrow (\text{CH}_3\text{COO})_2\text{Ca} + \text{H}_2\text{O} + \text{CO}_2 \\ (\text{CH}_3\text{COO})_2\text{Ca} + (\text{NH}_4)_2\text{C}_2\text{O}_4 & \longrightarrow (\text{COO})_2\text{Ca} + 2\text{CH}_3\text{COONH}_4 \\ & \text{Ammonium} & \text{Calcium oxalate} \\ & \text{oxalate} & \text{(White precipitate)} \end{array}$$

(b) **Flame test:** Perform the flame test as mentioned above. Calcium imparts brick red colour to the flame which looks greenish-yellow through blue glass.

(VII) Analysis of Group-VI cations

If group–V is absent then perform the test for Mg²⁺ ions as given below.

Chemistry of Confirmatory Tests of Group-VI cations

Test for Magnesium ion (Mg²⁺)

(a) If group—V is absent then the solution may contain magnesium carbonate, which is soluble in water in the presence of ammonium salts because the equilibrium is shifted towards the right hand side.

$$NH_4^+ + CO_3^{2-} \longrightarrow NH_3 + HCO_3^-$$

The concentration of carbonate ions required to produce a precipitate is not attained. When disodium hydrogenphosphate solution is added and the inner walls of the test tube are scratched with a glass rod, a white crystalline precipitate of magnesium ammonium phosphate is formed which indicates the presence of Mg^{2+} ions.

$$\begin{array}{c} Mg^{2+} + Na_2HPO_4 \longrightarrow Mg(NH_4)PO_4 + NH_4OH + 2Na^+ + H_2O \\ Magnesium \ ammonium \\ phosphate \ (White \ precipitate) \end{array}$$

.BOBO-BA\Kota\JEE (Advanœd)\Enthuse\Chemistry\Shee\Module-Salt Analysis, Heating Effect & s, d-Block\Eng\(i) Salt Analysis.

Note down the observations and the inferences of the qualitative analysis in tabular form as given in the specimen record

Precautions

Fig. 1.9: How to smell a gas

- (a) Always use an apron, an eye protector and hand gloves while working in the chemistry laboratory.
- (b) Before using any reagent or a chemical, read the label on the bottle carefully. Never use unlabelled reagent.
- (c) Do not mix chemicals and reagents unnecessarily. Never taste any chemical.
- (d) Be careful in smelling chemicals or vapours.

Always fan the vapours gently towards your nose (Fig. 1.9).

- (e) Never add sodium metal to water or throw it in the sink or dustbin.
- (f) Always pour acid into water for dilution. Never add water to acid.
- (g) Be careful while heating the test tube. The test tube should never point towards yourself or towards your neighbours while heating or adding a reagent. Fig. 1.9: How to smell a gas
- (h) Be careful while dealing with the explosive compounds, inflammable substances, poisonous gases, electric appliances, glass wares, flame and the hot substances.
- (i) Keep your working surroundings clean. Never throw papers and glass in the sink. Always use dustbin for this purpose.
- (j) Always wash your hands after the completion of the laboratory work.
- (k) Always use the reagents in minimum quantity. Use of reagents in excess, not only leads to wastage of chemicals but also causes damage to the environment.

Discussion Questions

- (i) What is the difference between a qualitative and a quantitative analysis?
- (ii) Can we use glass rod instead of platinum wire for performing the flame test? Explain your answer.
- (iii) Why is platinum metal preferred to other metals for the flame test?
- (iv) Name the anions detected with the help of dilute H₂SO₄?
- (v) Why is dilute H₂SO₄ preferred over dilute HCl while testing anions?
- (vi) Name the anions detected by conc. H₂SO₄.
- (vii) How is sodium carbonate extract prepared?
- (viii) What is lime water and what happens on passing carbon dioxide gas through it?
- (ix) Carbon dioxide gas and sulphur dioxide gas both turn lime water milky. How will you distinguish these two?
- (x) How will you test the presence of carbonate ion?
- (xi) What is the composition of dark brown ring which is formed at the junction of two layers in the ring test for nitrates?
- (xii) Name the radical confirmed by sodium nitroprusside test.
- (xiii) What is chromyl chloride test? How do you justify that CrO₂Cl₂ is acidic in nature?
- (xiv) Why do bromides and iodides not give tests similar to chromyl chloride test?
- (xv) Describe the layer test for bromide and iodide ions.
- (xvi) Why is silver nitrate solution stored in dark coloured bottles?
- (xvii) How do you test the presence of sulphide ion?
- (xviii) Why does iodine give a blue colour with starch solution?
- (xix) What is Nessler's reagent?
- (xx) Why is original solution for cations not prepared in conc. HNO₃ or H₂SO₄?
- (xxi) Why cannot conc. HCl be used as a group reagent in place of dil. HCl for the precipitation of Ist group cations?
- (xxii) How can one prevent the precipitation of Group-IV radicals, with the second group radicals?
- (xxiii) Why is it essential to boil off H₂S gas before precipitation of radicals of group-III?
- (xxiv) Why is heating with conc. nitric acid done before precipitation of group-III?
- (xxv) Can we use ammonium sulphate instead of ammonium chloride in group–III?
- (xxvi) Why is NH₄OH added before (NH₄)₂CO₃ solution while precipitating group–V cations?
- (xxvii) Why do we sometimes get a white precipitate in group–VI even if the salt does not contain Mg^{2+} radical?
- (xxviii) What is aqua regia?
- (xxix) Name a cation, which is not obtained from a metal.
- (xxx) How can you test the presence of ammonium ion?
- (xxxi) Why are the group–V radicals tested in the order Ba²⁺, Sr²⁺ and Ca²⁺?
- (xxxii) Why does conc. HNO₃ kept in a bottle turn yellow in colour?
- (xxxiii) Why should the solution be concentrated before proceeding to group–V?
- (xxxiv) Why is the reagent bottle containing sodium hydroxide solution never stoppered?
- (xxxv) What do you understand by the term common ion effect?
- (xxxvi) Why is zinc sulphide not precipitated in group–II?

SPECIMEN RECORD OF SALT ANALYSIS Aim

To analyse the given salt for one anion and one cation present in it.

Sl. No.	Experiment	Observation	Inference
1.	Noted the colour of the given salt.	White	Cu ²⁺ , Fe ²⁺ , Ni ²⁺ , Co ²⁺ , Mn ²⁺ are absent.
2.	Noted the smell of the salt.	No specific smell.	S ²⁻ , SO ₃ ²⁻ , CH ₃ COO ⁻ may be absent.
3.	Heated 0.5 g of the salt in a dry test tube and noted the colour of the gas evolved and change in the colour of the residue on heating and cooling.	(i) No gas was evolved. (ii) No particular change in colour of the residue is observed when heated and when cooled.	 (i) CO₃²⁻ may be present, NO₃⁻, NO₂⁻, Br⁻ may be absent. (ii) Zn²⁺ may be absent.
4.	Prepared a paste of the salt with conc. HCl and performed the flame test.	No distinct colour of the flame seen.	Ca ²⁺ , Sr ²⁺ , Ba ²⁺ Cu ²⁺ may be absent.
5.	Borax bead test was not performed as the salt was white in colour.	_	_
6.	Treated 0.1 g of salt with 1 mL dil.H ₂ SO ₄ and warmed.	No effervescence and evolution of vapours.	CO ₃ ²⁻ , SO ₃ ²⁻ , S ²⁻ , NO ₂ ⁻ , CH ₃ COO absent.
7.	Heated 0.1 g of salt with 1 mL conc. H ₂ SO ₄ .	No gas evolved.	Cl^- , Br^- , l^- , NO_3^- , $C_2O_4^{\ 2^-}$ are absent.
8.	Acidified 1mL of aqueous salt solution with conc. HNO ₃ . Warmed the contents and then added 4-5 drops of ammonium molybdate solution.	No yellow precipitate	PO ₄ ³⁻ absent.

Ε

		365
		vsk n
		Anal
		LS (1)
		/Fng
		d-Rlock\Fno
		Fffer
		Pating
		Nov F
		II Ana
		25-dil
		NMA
		Shoo
		F(Advanced) Enthine (Chemistry/Sheef) Module-Sall Analysis Heathra Effect & a
		ALC)
		nthis
		A (Ped
		Advance
		FR

Sl. No.	Experiment	Observation	Inference
9.	Acidified water extract of the salt with dil. HCl and then added 2mL of BaCl ₂ solution.	A white ppt. is obtained which is insoluble in conc. HNO ₃ and conc. HCl.	SO ₄ ²⁻ present.
10.	Heated 0.1 g of salt with 2 mL NaOH solution.	Ammonia gas is not evolved.	NH ₄ ⁺ absent.
11.	Attempted to prepare original solution of the salt by dissolving 1g of it in 20 mL water.	Clear solution formed	Water soluble salt is present.
12.	To a small part of the above salt solution added 2 mL of dil. HCl.	No white precipitate formed.	Group–I absent.
13.	Passed H ₂ S gas through one portion of the solution of step 12.	No precipitate formed.	Group-II absent.
14.	Since salt is white, heating with conc. HNO ₃ is not required. Added about 0.2 g of solid ammonium chloride and then added excess of ammonium hydroxide to the solution of step 12.	No precipitate formed.	Group–III absent.
15.	Passed H ₂ S gas through the above solution.	No precipitate formed.	Group–IV absent.
16.	Added excess of ammonium hydroxide solution to the original solution and then added 0.5 g of ammonium carbonate.	No precipitate formed.	Group–V absent.
17.	To the original solution of salt added ammonium hydroxide solution, followed by disodium hydrogen phosphate solution. Heated and scratched the sides of the test tube.	White precipitate	Mg ²⁺ confirmed.

Result

the given salt contains

Anion: SO₄²⁻
Cation: Mg²⁺

		EXER	CISE#I					
		ANIONS : Class	s A (Subgroup - I)					
1.	The colour developed,	The colour developed, when sodium sulphide is added to sodium nitroprusside is:						
	(A) Purple	(B) yellow	(C) red	(D) black				
					SA0001			
2.	When a neutral or slig	ghtly alkaline solution	of thiosulphate is tre	eated with the [Ni(en)	₃] (NO ₃) ₂			
	(A) Green precipitate	is obtained	(B) Brown preci	pitate is obtained				
	(C) Violet precipitate i	is obtained	(D) Yellow preci	pitate is obtained				
			· · · · · ·		SA0002			
3.	When CH ₃ COONa he X is -	ated with solid As ₂ O ₃	then compound X is f	formed. The smell of co	ompound			
	(A) Pungent smell	(B) Rotten Fish sn	nell (C) Nauseating s	smell (D) Rotten egg	smell			
	, ,	. ,	, ,	, , ,	SA0003			
4.	NO ₂ ion can be destr	oved by -						
	(A) Sulphamic acid	(B) Thiourea	(C) Urea	(D) All of these	e			
	() 1	()	(-,	()	SA0004			
5.	Solutions of sodium as	zide(NaN.) and iodine	e (as KL) do not react	but on addition of a tra				
	ion, which acts as a cat							
	1911, 1111011 400 40 40 40		_	311 01 11101 0 80 111 1 1 1 1 1 1 1	. 11100) 00			
	(A) $S_2O_3^{2-}$	(B) S^{2-}	(C) SCN	(D) All are corr				
_					SA0005			
6.	When AgNO ₃ react w		y no visible change of	ccurs due to formation	of water			
	soluble complex.Then		(C) C)	(D) GO 2				
	(A) SO_3^{2-}	(B) $S_2O_3^{2-}$	(C) S^{2-}	(D) CO_3^{2-}	G 4 0004			
-	M (1 (1 1				SA0006			
7.	Match the column	C-1	II					
	Column-I		umn-II	with average AcNO				
	(A)S ²⁻		Produces white ppt.	3	watan			
	(B)HSO ₃ ⁻	(0)	milky	HCl which turns lime	water			
	$(C)SO_3^{2-}$	(R)	Evolves gas with dil	.H ₂ SO ₄ which does no	t turn			
	_		Baryta water milky					
	$(D)S_2O_3^{2-}$		Produces ppt. with P	_				
		(T)	Produces white ppt v	with BaCl ₂ solution.				

SA0007

8. Find the number of acidic radical(s) which can form coloured gas when treated with **dil.** H_2SO_4 . $CO_3^{\ 2-}$, $NO_2^{\ -}$, Br^- , I^- , $SO_3^{\ 2-}$

SA0008

Class A (Subgroup - II)

9. Chromyl chloride test is given by -

(A) CH₃Cl

(B) AgCl

(C) Hg_2Cl_2

(D) NH₄Cl

SA0009

Ε

10.
$$BO_3^{3-} + H_2SO_4 \xrightarrow{\Delta} (P)_{\text{White fumes}}$$

$$BO_3^{3-} + H_2SO_4 + C_2H_5OH \xrightarrow{\Delta} (Q)_{Vapours}$$

P & Q are respectively -

(A) H_3BO_3 , H_3BO_3

(B) $(C_2H_5)_3BO_3$, H_3BO_3

(C) $(C_2H_5)_3BO_3$, $(C_2H_5)_3BO_3$

(D) H_3BO_3 , $(C_2H_5)_3BO_3$

SA0010

- 11. In layer test of I⁻ and Br⁻. If reddish -brown layer comes first then -
 - (A) Br present
- (B) I⁻ absent
- (C) Both (A) and (B) (D) None of these

SA0011

All Anions Of Class A

- 12. Statement-1: When H₂S gas is passed through Na-nitroprusside soluton it gives purple colouration Statement-2: H₂S is an weak acid
 - (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
 - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
 - (C) Statement-1 is true, statement-2 is false.
 - (D) Statement-1 is false, statement-2 is true.

SA0012

- 13. When the soda extract containing thiosulphate ion treated with excess of AgNO₃ solution followed by boiling, then.
 - (A) White precipitate is formed
- (B) Black precipitate is formed
- (C) brown precipitate is formed
- (D) No ppt precipitate is formed

SA0013

- **14.** "Cacodyl oxide" is formed in the specific test of -
 - (A) Formate
- (B) Oxalate
- (C) Acetate
- (D) Nitrate

SA0014

- 15. An aqueous solution of gas (X) gives the white turbidity on passing H_2S in the solution. Identify (X)
 - (A) NH₂
- (B) SO₂
- (C) CO₂
- (D) None of these

SA0015

- 16. NO_2^- and NO_3^- can be distinguished by which of the following reagent.
 - (A) dil. H₂SO₄

- (B) conc. H₂SO₄
- (C) Devarda's alloy + conc.NaOH
- (D) None of these

SA0016

- 17. $[Fe(H_2O)_5NO]^{2+}$ is unstable because -
 - (A) It liberates NO gas on warming
 - (B) It liberates NO gas on shaking
 - (C) The charge of central atom is +1 (relatively low enough)
 - (D) None of these

Class B

SA0017

18.
$$\operatorname{Cr_2O_7^{2-}} + 4\operatorname{H_2O_2} + 2\operatorname{H^+} \xrightarrow{\operatorname{Organic}} 2\operatorname{Organic} + 5\operatorname{H_2O}$$

In above reaction amyl alcohol is recommended.

Dimethyl ether is not recommended for general use owing to its -

- (A) Highly non-flammable character
- (B) Highly inflammable character
- (C) Highly poisonious character
- (D) None of these

SA0018

- **19.** If barium sulphate is precipitated in a solution containing potassium permanganate it is coloured pink (violet) by -
 - (A) Absorption of some of the permanganate
- (B) Adsorption of some of the permanganate

(C) Both (A) and (B)

(D) None of these

SA0019

All Anions Of Class A & Class B

List-II (Product)

(P) $KI + NO_2^- \longrightarrow$

(1) NH_3

(Q) $NH_4NO_3 \xrightarrow{\Delta}$

(2) NO

 $(R) NO_2^- \xrightarrow{Zn+NaOH}$

(3) N_2

(S) $(NH_4)_2Cr_2O_7 \xrightarrow{\Delta}$

(4) N_2O

Code:

P Q R S

P Q R S

(A) 3 4 1 2

(B) 4 2 1 3

(C) 4 2 3 1

(D) 2 4 1 3

SA0020

node06\B0B0-BA\Kota\JEE(Advanæd\\Enthuse\Chemistry\Shee\\Wodule-Sall Analysis, HealingEffect & s, d-Block\Eng\(i) Sall Analysis, p6 5

21. List-I (Reaction)

(P)
$$CO_3^{2-} \xrightarrow{\text{dil.H}_2SO_4} \rightarrow$$

(Q)
$$S^{2-} \xrightarrow{\text{dil.H}_2SO_4} \rightarrow$$

(R)
$$SO_3^{2-} \xrightarrow{\text{dil.H}_2SO_4} \rightarrow$$

(S)
$$S_2O_3^{2-} \xrightarrow{\text{dil.H}_2SO_4} \rightarrow$$

(1) H S

List-II (Product)

$$(1)$$
 H_2S

$$(4) S + SO_2$$

Code:

- (A) 3 4 1 2
- (C) 3 1 2 4

- P Q R S
- (B) 2 1 4 3
- (D) 2 4 1 3

SA0021

22. List-I (Molecule)

- (P) CO₂
- (Q) SO₂
- $(R) H_2S$
- (S) CH₃COOH

List-II (Characteristic Odour)

- (1) Rotten egg smell
- (2) Suffocating smell of burning sulphur
- (3) Vineger like smell
- (4) Odour less

Code:

- (A) 4 2 1 3
- (C) 3 1 2 4

- P Q R S
- (B) 2 4 1 3
- (D) 2 4 1 3

SA0022

23. List-I (Acidic radicals)

- (P) NO₂
- (Q) BO_3^{3}
- $(R) Br^{-}$
- (S) CH₃COO⁻

List-II (Test)

- (1) Green flame test
- (2) Cacodyl oxide reaction
- (3) Griess Ilosvay test
- (4) Layer test

Code:

P Q R S

- (A) 4 2 1 3
- (C) 3 4 2 1

P Q R S

- (B) 3 1 4 2
- (D) 4 3 2 1

SA0023

CATIONS: DRY TEST

- **24.** Find the number of water of crystallization in microcosmic salt -
 - (A) 5

- (B) 4
- (C) 6
- (D) 10

SA0024

- 25. What is the colour of K⁺ through cobalt/double blue glass -
 - (A) Lilac,
- (B) Violet
- (C) Brick red
- (D) Crimson red

40.	what is the color	11 01 C00.A1 ₂ O ₃ 18 -						
	(A) pink	(B) Thenard blue	(C) Bluish white	(D) None of t	hese			
					SA0026			
27.	The correct form	ula of Canary yellow ppt ar	nd it is the test of	acid radical-				
	(A) (NH ₄) ₂ [PMo	₁₂ O ₄₀] and phosphate						
	· =	$Mo_3O_{10})_4$] and sulphate						
		O_3O_{10} and phosphate						
		$(0,0)_4$ and phosphate						
	, 3 = \ 3	10,42			SA0027			
28.	Sodium carbonate	e bead test generally used for	orcompounds.		2			
	(A) Mn	(B) Cr	(C) Zn	(D) Cu				
	(12) 11211	(2) 61	(8) 211	(2) 04	SA0028			
		WET TEST :	GROUP ZERO		5110020			
29.	Statement-1 : Te	est of NH_4^+ can not be done						
		·		s added at the diffe	erent steps.			
		Statement-2 : During group analysis several times NH ₄ ⁺ - compound is added at the different steps. (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1						
	(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1							
	(C) Statement-1 is false, statement-2 is true.							
		s true, statement-2 is false.						
	` ,				SA0029			
		GRO	UP - I					
30.	Which of the follo	owing is not group-I cation the	hough the chlorides of all	cations are sparin	gly soluble			
	in water.							
	$(A) Ag^+$	(B) Hg_2^{2+}	(C) Cu ⁺	(D) Pb ²⁺				
					SA0030			
21	C-2+ + IZCNI (:-		P - II A					
31.	complex (X) -	$excess) \rightarrow soluble comple$		ments are correct	regarding			
	(i) the central atom has the co-ordination number of 6							
	` '	(ii) the central atom has the co-ordination number of 4						
	(iii) the complex is sq.planar (iv) the complex is diamagnetic							
	(v) the complex is	-						
	(v) the complex is	s paramagnetic			SA0031			
32.	BiCl. — KI → bla	$\operatorname{ck} \operatorname{ppt} (M) \xrightarrow{\operatorname{excess} \operatorname{KI}} \operatorname{sol}_{\mathfrak{l}}$	uble complex (N)		2120021			
	5	of moles of I ⁻ ions involved		er mole of (N)				
	i ma une number	of moles of 1 Tolls lilvolved	a for the formation of pe	1 moie of (1 1) .	SA0032			
					212000			

		GROU	P - II B				
33.	Sn ²⁺ and Sn ⁴⁺ can be	distinguished by how	many of the following n	nethods -			
	(i) by passing H ₂ S in their solution (in acidic medium)						
	(ii) by addition of NaOH in their solution						
	(iii) by addition of excess NaOH in their solution						
	(iv) by addition of dil. HCl in their solution						
	(v) by addition of HgCl ₂ solution in their solution						
		2			SA0033		
		GROU	J P - III				
34.	What is the group-III	reagent is generally us	ed for group analysis.				
	$(A) NH_4OH + NH_4N$	10^3	(B) $NH_4Cl + (NH_4)$	$_{2}CO_{3}$			
	$(C) NH_4OH + (NH_4)$	$_2$ SO $_4$	(D) $NH_4OH + NH_2$	₄ Cl			
					SA0034		
35.	CrCl ₃ solution + Na ₂ S	S solution $\longrightarrow ppt(A)$)				
	The correct formula a	and colour of A are					
	(A) Cr_2S_3 , Black		(B) Cr(OH) ₃ , Green	n			
	(C) Na[Cr(OH) ₄], Gr	een	(D) None of these				
	•				SA0035		
		GROU	JP - IV				
36.	The auxiliary reagent	in group-IV reagent is					
	$(A) H_2S$	(B) dil.HCl	(C) NaOH	(D) NH ₄ OH			
					SA0036		
			p Cations				
37.			wo groups during group	-			
	(A) Hg^{2+}	(B) Hg_2^{2+}	$(C) Pb^{2+}$	(D) Cu ²⁺	C 4 0025		
20	Which of the follows:	ma action muchyosa cal	overed ant with No SO a	alution	SA0037		
38.	(A) Pb ²⁺ solution	(B) Ba ²⁺ solution	oured ppt with Na ₂ SO ₄ s (C) Hg ²⁺ solution	(D) Ca ²⁺ solution			
	(A) 10 Solution	(b) ba solution	(C) Tig solution	(D) Ca solution	SA0038		
39.	NH.+ and K+ ions car	n be distinguished by the	ne use of following reag	ent	5110050		
	(A) $Na_3[Co(NO_2)_6]$		(B) Na ₂ [PtCl ₆]				
	(C) HClO ₄ or NaClC),	(D) Boiling with NaO	Н			
	4	4	· ,		SA0039		
40.	Which of the following	ng sulphides is yellow	in colour?				
	(A) CuS	(B) CdS	(C) ZnS	(D) CoS			
					SA0040		

MISCELLANEOUS

41. List-I (Compound)

- (P) HgO
- (Q) BaCO₃
- (R) Na₄[Fe(CN)₅NOS]
- (S) KI₃

Code: P Q R S

- (A) 3 4 1 2
- (C) 2 4 3 1

42. List-I (Basic Radical)

- (P) Al^{+3}
- (Q) Zn^{+2}
- (R) Ba⁺²
- (S) Pb^{+2}

Code: P Q R S

- (A) 4 2 1 3
- (C) 3 1 2 4

43. List–I (Cations)

- (P) Co⁺²
- (Q) Fe⁺³
- (R) Cu^{+2}
- (S) Ca⁺²

Code: P Q R S

- (A) 4 2 1 3
- (C) 1 2 3 4

List-II (Colour)

- (1) Purple solution
- (2) Yellow ppt
- (3) Dark brown
- (4) White ppt

P Q R S

- (B) 2 4 1 3
- (D) 2 4 3 1

SA0041

List-II (Group)

- (1) II group
- (2) V group
- (3) IV group
- (4) III group

- (B) 2 4 1 3
- (D) 4 3 2 1

SA0042

List-II (Group reagent)

- (1) (NH₄)₂CO₃ in presence of NH₄Cl
- (2) H₂S gas in acidic medium
- (3) H₂S in presence of NH₄OH
- (4) NH₄OH in presence of NH₄Cl

P Q R S

- (B) 3 1 4 2
- (D) 3 4 2 1

EXERCISE # II

ANIONS: Class A (Subgroup - I)

1. **Statement-1:** On passing CO₂ gas through lime water, the solution turns milky.

because

Statement-2: Acid-Base (neutralisation) reaction takes place.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

SA0044

- A substance on treatment with dil. H₂SO₄ liberates a colourless gas which produces (i) turbidity 2. with baryta water and (ii) turns acidified dichromate solution green. The reaction indicates the presence of
 - (A) CO_3^{2-}
- (B) S^{2-}
- (C) SO_3^{2-} (D) NO_2^-

SA0045

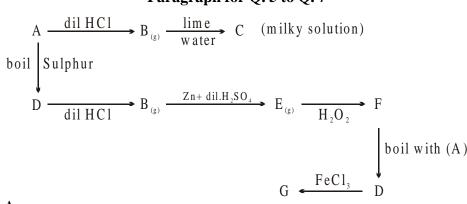
- When $S_2O_3^{\ 2-}$ react with solution of 'X' reagent then reaction is redox followed by precipitation then **3.** 'X' is:
 - (A) FeCl₃ solution

(B) AgNO₃ solution

(C) CuSO₄ solution

(D) None of these

SA0046


In the test for iodine, when I₂ is treated with sodium thiosulphate, Na₂S₂O₃ 4.

$$Na_2S_2O_3 + I_2 \longrightarrow NaI +$$

- (A) Na₂S₄O₆ (B) Na₂SO₄ (C) Na₂S (D) Na₃ISO₄

SA0047

Paragraph for Q. 5 to Q. 7

- 5. Identify A
 - (A) CO₂²⁻

- (B) SO_3^{2-} (C) $S_2O_3^{2-}$ (D) none of these

6.		ct with $Pb(NO_3)_2$ then compound X is formed. Compound X is oxidized by atmospheric boiling, then Y is formed what is the colour of Y			
	(A) yellow	(B) White	(C) Black	(D) Green	
7.	When one E monet w	ith andisses situatessaida	in basis madium t	han aamnaynd 7 is famaad 1	SA0048
7.	of compound Z is:	=	iii basic iiiediuiii u	hen compound Z is formed.	The colour
	(A) Green	(B) purple	(C) Reddish br	own (D) Black	
		Clare A (SA0048
8.	When a mixture of	·	Subgroup - II)	cone USO orongo rad v	opoure oro
0.	obtained. These are		₇ is heated with	conc. H ₂ SO ₄ , orange red v	apours are
	(A) chromous chlo	ride	(B) chromyl chl	loride	
	(C) chromic chloric	de	(D) chromic sul	phate	
					SA0049
9.	Which of the follow	wing will not give positiv	ve chromyl chlori	de test?	
	(A) Copper chloric	le, CuCl ₂	(B) Mercuric ch	nloride, HgCl ₂	
	(C) Zinc chloride,	Zinc chloride, ZnCl ₂ (D) Aniline chloride, C		oride, C ₆ H ₅ NH ₃ Cl	
					SA0050
10.		reaction with conc. H_2S_0 ne. The compound A is	O ₄ and C ₂ H ₅ OH g	gives a compound A which	burns with
	$(A) H_2B_4O_7$	(B) $(C_2H_5)_2B_4O_7$	(C) H_3BO_3	(D) $(C_2H_5)_3BO_3$	
					SA0051
11.	Nitrate is confirme	ed by ring test. The brow	n colour of the rin	g is due to formation of	
	(A) ferrous nitrite		(B) nitroso ferro	ous sulphate	
	(C) ferrous nitrate		(D) FeSO ₄ NO ₂		
					SA0052
12.	A salt gives violet	vapours when treated wa	ith conc. H ₂ SO ₄ , i	t contains	
	(A) Cl ⁻	(B) I [—]	(C) Br ⁻	(D) NO_3^-	
					SA0053
13.	Unknown salt + Al- The salt may be -	-powder + NaOH (conc.)) → gas comes out	t which turns Nesslar's reago	ent brown.
	(A) NaNO ₂	(B) NaNO ₃	(C) NH ₄ Cl	(D) NH ₄ HCO ₃	
	-	, and the second	·	. 5	SA0054

Paragraph for Q. 14 to Q. 17

- 14. Identify mixture of ions (A) -
- (A) NO_2^- and Br^- (B) NO_2^- and I^- (C) NO_2^- and NO_3^- (D) None of these

SA0055

- **15.** What is oxidation state of central atom of (D)
 - (A) +3
- (B) +2
- (C) +1
- (D) Zero

SA0055

- **16.** Identify gas B-
 - (A) Br_2
- (B) $Br_2 + NO_2$ (C) NO_2
- (D) None of these

SA0055

- **17.** What is the hybridisation of central atom of D-
 - (A) d^2sp^3
- (B) sp^3d^2
- (C) sp^3d
- (D) sp^3

SA0055

Paragraph for Q. 18 to Q. 20

- 18. The salt (M) is/are-
 - (A) AgCl
- (B) $NH_4Cl + NaBr$
- (C) NaBr
- (D) Ca(ClO₄)₂

SA0056

- How many non axial d-orbitals are involved in hybridisation of central atom of compound (X)-19.
 - (A) 2

(B) 3

- (C) 4
- (D) None of these

- 20. What is the formula of yellow ppt (Z)-
 - (A) BaCrO₄
- (B) Na₂CrO₄
- $(C) Ag_2CrO_4$
- (D) PbCrO₄

CATIONS: DRY TEST

21.	In the borax bead to	est of Co ²⁺ , the blue colo	our of bead is due to t	the formation of:	
	(A) B2O3	(B) Co_3B_2	(C) Co(BO ₂) ₂	(D) CoO	
22	Which of the fall or		n haatina?		SA0057
22.	(A) $Pb(NO_3)_2$	ving leaves no residue o (B) NH ₄ NO ₃		(D) NaNO ₃	
	$(A) \operatorname{To}(NO_3)_2$	(b) 111_4110_3	(C) $Cu(NO_3)_2$	$\frac{1}{2}$ (D) NaivO ₃	SA0058
23.	Which of the follow	ving cations is detected	by the flame test?		5110020
	(A) NH_4^+	(B) K ⁺	(C) Mg^{2+}	(D) Al^{3+}	
	7				SA0059
24.	Which metal salt gi	ves a violet coloured be	ad in the borax bead	test (oxidising flame, c	
	(A) Fe^{2+}	(B) Ni ²⁺	(C) Co^{2+}	$(D) Mn^{2+}$	
					SA0060
25.		ned in the borax bead to			
	(A) Cu	(B) CuBO ₂	(C) $Cu(BO_2)_2$	(D) None of	
26	T	the od toot Co ² + mus du co	hlua baad dua ta tha	formation of	SA0061
26.	(A) $Cu(BO_2)_2$	t bead test Co ²⁺ produce (B) NaCoPO ₄		(BO_2) (D) NaPO ₃	
	$(A) \operatorname{Cu}(BO_2)_2$	(b) Nacor O_4	$(C) CO_2(I O_4)$	(\mathbf{DO}_2) (\mathbf{D}) Nar \mathbf{O}_3	SA0062
		Paragraph f	or Q. 27 to Q. 30		212002
		Q	I trongly		
		(A) (Hydrated salt)	Strongly heated B + C transparen glassy bea		
		H ₃ BO ₃ S	$\frac{Strongly}{heated} \longrightarrow C + D$		
27.	Identify C-				
	$(A)(BN)_X$	(B) NaPO ₃	(C) B_2O_3	(D) $Mg(NH_4)$)PO ₄
					SA0063
28.		water of crystallization	` ′	(D) 24	
	(A) 4	(B) 5	(C) 10	(D) 24	C A 00/2
29.	How many X_O_X	Clinkages are present in	n structure of Δ (X –	- central atom)-	SA0063
<i>27</i> •	(A) 4	(B) 3	(C) 5	(D) 2	
	(* 2)	(2) 0	(3) 5	(2) 2	SA0063
30.	Find the number of	tetrahedral and trigona	al planar units in stru	cture of A -	
	(A) 2,1	(B) 2,2	(C) 2,4	(D) 5,2	
					SA0063
			T:GROUP-I		
31.	Mercurous ion is re	presented as:			
	(A) Hg_2^{2+}	(B) Hg^{2+}	$(C) Hg + Hg^{2+}$	(D) Hg_2^+	
					SA0064

32.	A white sodium salt dissolves readily in water to give a solution which is neutral to litmus. Wh silver nitrate solution is added to the solution, a white precipitate is obtained which does not dissol in dil. HNO ₃ . The anion could be:			
	(A) CO_3^{2-}	(B) Cl ⁻	(C) SO_4^{2-}	(D) S ²⁻
				SA0065
33.	-	_		t with dil. HCl, which dissolves on blution, a black ppt. is obtained. The
	(A) Hg^{2+} salt	(B) Cu^{2+} salt	(C) Ag $^+$ salt	(D) Pb^{2+} salt
				SA0066
34.	A white ppt obtained	in a analysis of a mi	xture becomes black on	treatment with NH ₄ OH. It may be
	(A) PbCl ₂	(B) AgCl	(C) HgCl ₂	(D) Hg_2Cl_2
				SA0067
		G	ROUP - II	
35.	When bismuth chlori	de is poured into a la	arge volume of water th	e white precipitate produced is
	$(A) Bi(OH)_3$	(B) Bi_2O_3	(C) BiOCl	(D) Bi ₂ OCl ₃
				SA0068
36.	$CuSO_4$ decolourises (A) $[Cu(CN)_4]^{2-}$.	on addition of exces	ss KCN, the product is	
	(B) Cu ²⁺ get reduced	to form $[Cu(CN)_4]^{3-}$	-	
	$(C) Cu(CN)_2$			
	(D) CuCN			
				SA0069
37.	When H ₂ S gas is pass CoCl ₂ , it does not pred		containing aqueous so	lution of CuCl ₂ , HgCl ₂ , BiCl ₃ and
	(A) CuS	(B) HgS	(C) Bi_2S_3	(D) CoS
				SA0070
38.	Which of the following	ng is soluble in yello	ow ammonium sulphide	?
	(A) CuS	(B) CdS	(C) SnS	(D) PbS
				SA0071
39.	When excess of SnC grey colour is due to t	-	tion of HgCl ₂ , a white	ppt turning grey is obtained. The
	(A) Hg_2Cl_2	(B) SnCl ₄	(C) Sn	(D) Hg
				SA0072
40.	On passing H ₂ S gas is	n II group sometime	es the solution turns mil	ky. It indicates the presence of
	(A) oxidising agent	(B) acidic salt	(C) s-block cation	(D) reducing agent.

41.	Which to the foll	lowing yellow coloured s	ulphide is insoub	le in yellow ammoniun	i sulphide.
	(A) SnS_2	(B) As_2S_5	(C) CdS	(D) Bi_2S_3	
					SA0074
42.	Type of sulphide	ppt may be obtained in t	he group-II ppt d	uring group analysis.	
	$(A) M_2S_3$	(B) M_2S	(C) MS	(D) MS_2	
					SA0075
43.	The metal ion wh	nich is precipitated when l	H ₂ S is passed with	h HCl:	
	$(A) Zn^{2+}$	(B) Ni ²⁺	$(C) Cd^{2+}$	(D) Mn ²⁺	
					SA0076
			OUP - III		
44.	In the precipitation adding ammonium	on of the iron group in qu m hydroxide to	ialitative analysis	, ammonium chloride is	s added before
	(A) decrease cond	centration of OH [—] ions.	(B) prevent into	erference by phosphate	ions.
	(C) increase conc	entration of Cl ⁻ ions.	(D) increase co	ncentration of NH ₄ ion	ıs.
					SA0077
45.	If reddish brown Fe in the original	ppt (only) is obtained in sample may be	group-III during	group analysis, then oxi	dation state of
	(A) +2	(B) +3	(C) +2 an	d +3 both (D) Neithe	er +2 nor +3 SA0078
46.	If NH ₄ Cl is not a (A) Cr(OH) ₂	dded to the group-III rea (B) Fe(OH) ₃	gent which of the (C) Mn(O		
	2	3		_	SA0079
47.	In which of the f	ollowing cases blue ppt i	s obtained		
	(A) $Fe^{2+} + [Fe(C)]$	$(N)_6]^{3-} \longrightarrow$	(B) Fe^{2+} +	$-[\mathrm{Fe(CN)}_{6}]^{4-} \longrightarrow$	
	(C) $Fe^{3+} + [Fe(C)]$	$N)_6]^4 \longrightarrow$	(D) Fe^{3+}	$-[\mathrm{Fe(CN)}_{6}]^{3-} \xrightarrow{\mathrm{SnCl}_{2}}$	
					SA0080
48.	What are the follo	owing steps are to be done	before adding gro	up-III reagent into the gr	roup-II filtrate.
	•	rate is to be evapourated	•		
	· · · •	rate is to be boiled of first			
		2-3 drops of dil. H_2SO_4 is			
	(D) After boiling	2-3 drops of HNO ₃ is ac	dded and boiled a	gaın.	C A 0001
40	A ala a a a a a	talling matal salt of M diss	alma faaalmia ma	tan On atan din a it aiwa a	SA0081
49.		talline metal salt of M diss ous NaOH. The metal salt	· ·		
		ous solution of the metal sal			-
		netal salt solution is	t accordanizos uno p	and colour of the politicity	5
	(A) copper	(B) aluminium	(C) lead	(D) iron	

50.	0. Which of the following compound on reaction with NaOH and Na ₂ O ₂ gives yellow colour?				
	(A) $Cr(OH)_3$	$(B) Zn(OH)_2$	$(C) Al(OH)_3$	(D) None of th	ese
					SA0083
- 4		GROUP	? - IV		
51.	Colour of nickel chlorid		(C) colourless	(D) graan	
	(A) pink	(B) black	(C) colouriess	(D) green	SA0084
52.	Dimethyl glyoxime in	a suitable solvent was r	efluxed for 10 minutes	with pure pieces	
	sheet, it will result in				
	(A) Red ppt	(B) Blue ppt.	(C) Yellow ppt.	(D) No ppt.	
					SA0085
53.			netallic sulphide with H ₂		
	$(A) \operatorname{ZnCl}_2(\operatorname{Neutral sol}^n)$	(B) $CdCl_{2(aq)}$	(C) $CoCl_{2(aq)}$	(D) CuCl _{2(aq)}	SA0086
54.	Which is not dissolved	hy dil HCl?			SAUUOU
54.	(A) ZnS	(B) MnS	(C) BaSO ₃	(D) BaSO ₄	
	. ,	. ,	, , , ,	. / 4	SA0087
		GROUI	P - V		
55.			ntation of hydroxide ion	by NH ₄ OH. We	do not add
	$(NH_4)_2SO_4$ along with N	•			
	(A) $(NH_4)_2SO_4$ is insolution.		(B) It precipitate other insoluble sulphates		es
	(C) It is weak electrolyt	е	(D) None of these		SA0088
		GROUP	· · VI		5110000
56.	A metal is burnt in air a	nd the ash on moistening	g smells of ammonia. Th	ne metal is	
	(A) Na	(B) Fe	(C) Mg	(D) Al	
	. ,	, ,		, ,	SA0089
<i>5</i> 7.	A metal 'X' on heating i	in nitrogen gas gives 'Y'	. 'Y' on treatment with	H ₂ O gives a colo	urless gas
		ough CuSO ₄ solution gi		2 -	
	$(A) Mg(NO_3)_2$	(B) Mg_3N_2	(C) NH ₃	(D) MgO	
					SA0090
		MISCELLA	ANEOUS		
58.	Na ₂ HPO ₄ + Reagent 'M	$I' \rightarrow$ white ppt. The reas	gent 'M' is -		
	(A) BaCl ₂ solution		(C) MnSO ₄ solution	(D) FeCl ₂ solu	tion
	2	` ' 3	4	3	SA0091
59.	A white solid is first hea	ated with dil H ₂ SO, and	then with conc. H ₂ SO ₄ .	No action was o	
	either case. The solid sa	- ·	4.		===
	(A) sulphide	(B) sulphite	(C) thiosulphate	(D) sulphate	
	-	~	-	-	SA0092

♦ 60.	A mixture of chlori	A mixture of chlorides of copper, cadmium, chromium, iron and aluminium was dissolved in water						
υυ.	acidified with HCl and hydrogen sulphide gas was passed for sufficient time. It was filtered, boiled							
	and a few drops of nitric acid were added while boiling. To this solution ammonium chloride and							
	sodium hydroxide	were added in excess and	filtered. The filtrate sha	all give test for				
	(A) sodium and iro	n ion (B) sodium, chron	nium and aluminium ion	l				
	(C) aluminium and	iron ion	(D) sodium, iron,	cadmium and alumi	nium ion			
					SA0093			
61.	In Nessler's reagen	t, the ion present is:						
	(A) HgI ²⁻	(B) HgI_4^{2-}	$(C) Hg^+$	(D) Hg^{2+}				
		0 1			SA0094			
62.	The cations presen	t in slightly acidic soluti	on are Fe^{3+} . Zn^{2+} and C	Cu ²⁺ . The reagent w				
	=	this solution would ident						
	(A) 2 M HCl	(B) 6 M NH ₃	(C) 6 M NaOH	(D) H ₂ S gas				
		J		_	SA0095			
63.	In the separation of	Cu ²⁺ and Cd ²⁺ in 2 nd grow	up qualitative analysis of	cation, tetrammine	copper (II)			
	sulphate and tetran	sulphate and tetrammine cadmium (II) sulphate react with KCN to form the corresponding cyano						
	complexes. Which one of the following pairs of the complexes and their relative stability enables the							
	separation of Cu^{2+} and Cd^{2+} ?							
	(A) $K_3[Cu(CN)_4]$ more stable and $K_2[Cd(CN)_4]$ less stable.							
	(B) $K_2[Cu(CN)_4]$ less stable and $K_2[Cd(CN)_4]$ more stable.							
	- ·	nore stable and K ₂ [Cd(C	·					
	(D) $K_3[Cu(CN)_4]$ l	ess stable and $K_2[Cd(CN)]$	[] ₄] more stable.					
					SA0096			
64.		minimum solubility prod		(5)) , , , , ,				
	(A) AgCl	(B) AlCl ₃	(C) BaCl ₂	(D) NH ₄ Cl	G + 000=			
					SA0097			
65.		ving sulphate is insoluble		(5) 51 (60)				
	(A) CuSO ₄	(B) $CdSO_4$	(C) PbSO ₄	(D) $Bi_2(SO_4)_3$				
	*****		i i magnio		SA0098			
66.		wing gives blood red colo		(D) = 31				
	$(A) Cu^{2+}$	(B) Fe^{3+}	(C) Al^{3+}	$(D) Zn^{2+}$	G + 0000			
					SA0099			
67.		ollowing metal sulphide l	•					
	(A) HgS, $K_{sp} = 10^{-1}$			(B) CdS, $K_{sp} = 10^{-30}$				
	(C) FeS, $K_{sp} = 10^{-20}$ (D) ZnS, $K_{sp} = 10^{-22}$							

- **68.** Identify the correct order of solubility of Na₂S, CuS and ZnS in aqueous medium is:
 - (A) $CuS > ZnS > Na_2S$

(B) $ZnS > Na_2S > CuS$

(C) $Na_2S > CuS > ZnS$

(D) $Na_2S > ZnS > CuS$

SA0101

69. Match the column -

(C) Ag

(D) Ca

Column-I	Column-II
(Element)	(Correct characteristics)
(A) Ba	(P) cation in solution produ
(B) Pb	(Q) cation in solution prod

- tion in solution produces brick red ppt. with ${\rm CrO_4^{\ 2-}}$
- (Q) cation in solution produces yellow ppt .with CrO₄²⁻
- (R) corresponding salt produces apple green colour in the flame test
- (S) corresponding salt produces brick red colour in the flame test
- (T) cation in solution produces no ppt. with CrO₄²⁻ ion

SA0102

70. Column-I

Cation in solution

Column-I

Correct characteristics when no where excess reagent is used

- (A) Ag^+ and Pb^{2+}
- (B) Zn^{2+} and Mg^{2+}
- (C) Pb²⁺ and Hg₂²⁺ (D) Ag⁺ and Fe³⁺

- (P) can be distinguished by Na₂HPO₄ solution
- (Q) can be distinguished by dil.HCl
- (R) can be distinguished by KI solution
- (S) can not be distinguished by NH₄OH solution

SA0103

The following column 1, 2, 3 represent the various tests carried out for identification of various group basic radicals, using various reagents and nature of reaction/properties of products observed. Answer the questions that follow

Column-1 - Cations/Basic Radical

Column-2 - Excess Reagent used with cation

Column-3 - Nature of Reaction/Properties of product formed

Column - 1 Cations	Column - 2 Excess Reagent used with cation	Column - 3 Nature of Reaction/ Properties of product formed
(I) Cu ²⁺	(i) KI (< 6M)	(P) Reduction of cation occurs
(II) Fe ³⁺	(ii) $K_4[Fe(CN)_6]$	(Q) Coloured complex formation
(III) Pb ²⁺	(iii) KCN	(R) Precipitation occurs
(IV) Ni ²⁺	(iv) NH ₄ OH	(S) Diamagnetic & square planar complex formation

- 71. For a group-II basic radical, which is the only INCORRECT combination?
 - (A)(I),(i),(P)
- (B)(IV),(iii),(S)
- (C) (III), (iv), (R)
- (D) (III), (iii), (R)

- 72. For a group-IV basic radical, which is the only CORRECT combination?
 - (A)(I),(iv),(S)
- (B) (IV), (iii), (P)
- (C) (II), (iv), (Q)
- (D) (IV), (iv), (Q)

SA0104

- **73.** Which combination has a entirely different colour from others?
 - (A) (IV), (iv), (Q)
- (B)(I),(iv),(Q)
- (C)(II),(iii),(Q)
- (D) (II), (ii), (Q)

SA0104

- **74.** How many of the following gives green ppt.
 - (i) $CrCl_3 + NaOH \rightarrow$

- (ii) $CrCl_3 + excess NaOH \rightarrow$
- (iii) NiCl₂ + excess NaOH →
- (iv) $NiCl_2 + excess NH_4OH \rightarrow$

(v) $Hg_2^{2+} + KI \rightarrow$

SA0104

75. Find the no. of cation which gives white ppt with $K_4[Fe(CN)_6]$

$$Sr^{2+}$$
 Ca^{2+} , Zn^{2+} , Fe^{3+} , Cu^{2+}

EXERCISE # JEE MAINS

1.	Which products are expected from the disproportionation of hypochlorous acid :[AIEEE-2002]							
	(1) HClO ₃ and Cl ₂ O	(2) HClO ₂ and HClO	(3) HCl and Cl ₂ O	(4) HCl and HClO ₃				
				SA0105				
2.	A metal M readily for	ms its sulphate MSO ₄ whi	ch is water soluble. It for	ms oxide MO which becomes				
	inert on heating. It fo	orms insoluble hydroxide	which is soluble in Na	OH. The metal M is:-				
				[AIEEE-2002]				
	(1) Mg	(2) Ba	(3) Ca	(4) Be				
_				SA0106				
3.	Which statement is co			[AIEEE-2003]				
		(1) Fe ³⁺ ions give deep green precipitate with K_4 [Fe(CN) ₆]						
	(2) On heating K^+ , Ca^{2+} and HCO_3^- ions, we get a precipitate of $K_2[Ca(CO_3)_2]$							
		give a violet borax bead to	_	1 4 61				
	(4) From a mixed pred	cipitate of AgCl and AgI	ammonia solution dissol	_				
1	What would hannen	when a solution of note	asium ahmamata is tmas	SA0107				
4.	nitric acid -	when a solution of pota	issium emomate is treat	ted with an excess of dilute [AIEEE-2003]				
	(1) Cr^{3+} and $\text{Cr}_2 \text{O}_7^{2-}$ and	re formed	(2) $\operatorname{Cr}_2 \operatorname{O}_7^{2-}$ and $\operatorname{H}_2\operatorname{O}$ are	e formed				
	(3) $\operatorname{Cr}_2 \operatorname{O}_7^{2-}$ is reduced	to +3 state of Cr	(4) $\operatorname{Cr}_2 \operatorname{O}_7^{2-}$ is oxidised t	o +7 state of Cr				
				SA0108				
5.	Ammonia forms the cosolution. What is the	5 1	with copper ions in alkal	ine solutions but not in acidic [AIEEE-2003]				
	(1) In acidic solutions	s hydration protects copp	per ions					
	(2) In acidic solution molecules are not		th ammonia molecules	forming NH ₄ ions and NH ₃				
	(3) In alkaline solutions insoluble Cu(OH), is precipitated which is soluble in excess of any alkali							
	(4) Copper hydroxide	e is an amphoteric substa	nce					
				SA0109				
6.	Excess of KI reacts	with CuSO ₄ solution and	then Na ₂ S ₂ O ₃ solution	is added to it. Which of the				
	statements is incorrec	et for this reaction:		[AIEEE-2004]				
	(1) Evolved I_2 is redu	uced	(2) CuI ₂ is formed					
	(3) $Na_2S_2O_3$ is oxidis	sed	(4) Cu_2I_2 is formed	S. S				
				SA0110				
-				F				

53

7.	Calomel on react	ion with NH ₄ OH gives		[AIEEE-2004]
	(1) $HgNH_2Cl$	(2) NH ₂ -Hg-Hg-Cl	(3) Hg ₂ O	(4) HgO
				SA0111
8.	_	nesium nitride on reaction v	_	- [AIEEE-2004]
	(1) Two mole of	J.	(2) Two mole of NH_3	
	(3) 1 mole of NH	[3]	(4) 1 mole of HNO_3	
				SA0112
9.	The products obta	ained on heating LiNO ₃ wil	l be :-	[AIEEE-2011]
	$(1) LiNO_2 + O_2$		$(2) \operatorname{Li}_2 O + \operatorname{NO}_2 + \operatorname{O}_2$	
	$(3) Li_3N + O_2$		$(4) \operatorname{Li_2O} + \operatorname{NO} + \operatorname{O_2}$	
				SA0113
10.	What is the best of	description of the change th	at occurs when Na ₂ O(s) is o	dissolved in water?
	(1) Oxidation nur	nber of sodium decreases		[AIEEE-2011]
	(2) Oxide ion acc	epts sharing in a pair of ele	ctrons	
	(3) Oxide ion dor	nates a pair of electrons		
	(4) Oxidation nur	nber of oxygen increases		
				SA0114
11.	Which of the foll	owing on thermal-decompo	sition yields a basic as well	as an acidic oxide?
				[AIEEE-2012]
	$(1) NH_4NO_3$	$(2) NaNO_3$	$(3) \text{ KClO}_3$	(4) CaCO ₃
				SA0115
12.	The correct states	nent for the molecule, CsI ₃ ,	is:	[JEE(Main)-2014]
	(1) it contains Cs	3+ and I- ions	(2) it contains Cs ⁺ , I ⁻ and	d lattice I ₂ molecule
	(3) it is a covalen	t molecule	(4) it contains Cs ⁺ and I	ions ions
				SA0116
13.		ting in nitrogen gas gives Y. igh CuSO ₄ solution gives a b		
	(1) NH ₃	(2) MgO	(3) Mg3N2	$(4) \text{ Mg}(\text{NO}_3)_2$
	3	· · ·	25 2	SA0117
14.	Potassium dichro	mate when heated with cond	centrated sulphuric acid and	a soluble chloride, gives
	brown - red vapor	ars of:	[JEE(I	Main)-2013 online_P-1]
	$(1) CrO_3$	$(2) \operatorname{Cr}_2 \operatorname{O}_3$	(3) CrCl ₃	$(4) \operatorname{CrO_2Cl_2}$
				SA0118
15.		e cannot be used in place of V) during mixture analysis		ication of Ca ²⁺ , Ba ²⁺ and E(Main)-2013 online_P-
	(1) Sodium ions v	will react with acid radicals		
	(2) Concentration	of CO ₃ ²⁻ ions is very low		
		l also be precipitated		
	• • •	interfere with the detection	of Ca ²⁺ , Ba ²⁺ , Sr ²⁺ ions	
				SA0119

- **16.** Which of the following statements is incorrect?
- [JEE(Main)-2013 online_P-2]
- (1) Fe²⁺ ion also gives blood red colour with SCN⁻ ion
- (2) Cupric ion reacts with excess of ammonia solution to give deep blue colour of $[Cu(NH_3)_4]^{2+}$ ion.
- (3) Fe³⁺ ion gives blood red colour with SCN⁻ ion.
- (4) On passing H₂S into Na₂ ZnO₂ solution, a white ppt of ZnS is formed.

17. Identify incorrect statement

- [JEE(Main)-2013 online_P-3]
- (1) Copper (I) compounds are colourless except where colour results from charge transfer
- (2) Copper (I) compounds are diamagnetic
- (3) Cu₂S is black
- (4) Cu₂O is colourless

SA0121

- 18. Which one of the following cannot function as an oxidising agent ?[JEE(Main)-2013 online_P-4]
 - (1) NO_{3}^{-} (aq)
- $(2) I^{-}$

- $(3) \operatorname{Cr}_{2} O_{7}^{2-}$
- $(4) S_{(S)}$

SA0122

- 19. Which of the following statements about Na₂O₂ is **not** correct ? [**JEE**(**Main**)-2014 **online_P-2**]
 - (1) Na₂O₂ oxidises Cr³⁺ to CrO₄²⁻ in acid medium
 - (2) It is diamagnetic in nature
 - (3) It is the super oxide of sodium
 - (4) It is a derivative of H_2O_2

SA0123

20. Consider the following equilibrium

[JEE(Main)-2014 online_P-2]

$$AgCl\downarrow +2NH_3 \Longrightarrow [Ag(NH_3)_2]^+ + Cl^-$$

White precipitate of AgCl appears on adding which of the following?

- (1) NH₃
- (2) Aqueous NaCl
- (3) Aqueous NH₄Cl
- (4) Aqueous HNO₃

SA0124

21. Consider the reaction

[JEE(Main)-2014 online_P-4]

$$H_2SO_{3(aq)} + Sn_{(aq)}^{4+} + H_2O_{(l)} \rightarrow Sn_{(aq)}^{2+} + HSO_{4(aq)}^{-} + 3H_{(aq)}^{+}$$

Which of the following statements is correct?

- (1) H₂SO₃ is the reducing agent because it undergoes oxidation
- (2) H₂SO₃ is the reducing agent because it undergoes reduction
- (3) Sn⁴⁺ is the reducing agent because it undergoes oxidation
- (4) Sn⁴⁺ is the oxidizing agent because it undergoes oxidation

SA0125

Ε

22.

			[.	JEE(Main)-2014 online_P-4]					
	(1) [MnO ₄] ⁻	(2) $[Cr(CN)_6]^{3-}$	$(3) \operatorname{Cr}_2 \operatorname{O}_3$	(4) CrO_2Cl_2					
				SA0126					
23.	The hottest region of Bunsen flame shown in the figure below is : [JEE(Main)-2016]								
	(1) region 4		Region 4 Region 3						
	(2) region 1		Region 2 Region 1						
	(3) region 2		Kegion 1						
	(4) region 3								
				SA0127					
24. Sodium extract is heated with concentrated HNO ₃ before testing for halogens became									
	(1) S ²⁻ and CN ⁻ , if present are decomposed by conc. HNO ₃ and hence do not interfere in the test.								
	(2) Ag reacts faster with halides in acidic medium [JEE(Main)-2016 online]								
	(3) Ag ₂ S and AgCN are soluble in acidic medium.								
	(4) Silver halides are totally insoluble in nitric acid.								
				SA0128					
25.	In the following reactions, ZnO is respectively acting as a/an:								
	(a) $ZnO + Na_2O \rightarrow$	[JEE(Main)-2017 off line]							
	(1) base and acid	(2) base and base	(3) acid and acid	(4) acid and base					
•				SA0129					
26.	The products obtained when chlorine gas reacts with cold and dilute aqueous NaOH are :-								
	(1) ClO^- and ClO_3^-		(2) ClO_2^- and ClO_3^-	[JEE(Main)-2017 off line]					
	(3) Cl ⁻ and ClO ⁻		(4) Cl^- and ClO_2^-						
				SA0130					
27.	Sodium salt of an organic acid 'X' produces effervescence with conc. H ₂ SO ₄ . 'X' reacts with the acidified aqueous CaCl ₂ solution to give a white precipitate which decolourises acidic solution of KMnO ₄ . 'X' is :- [JEE(Main)-2017 off line]								
	(1) C_6H_5 COONa	(2) HCOONa	(3) CH ₃ COONa	$(4) Na_2^C_2O_4$					
				SA0131					

Amongst the following, identify the species with an atom in +6 oxidation state:

28. A solution containing a group-IV cation gives a precipitate on passing H_2S . A solution of this precipitate in dil. HCl produces a white precipitate with NaOH solution and bluish-white precipitate with basic potassium ferrocyanide. The cation is: [JEE(Main)-2017 on line]

 $(1) \text{ Mn}^{2+}$

 $(2) Zn^{2+}$

 $(3) Ni^{2+}$

 $(4) \text{ Co}^{2+}$

SA0132

Ε

(1) Ti (2) Cr (3) V(4) Mn

EXERCISE # J-ADVANCED

- 1. Which of the following statement(s) is (are) correct with reference to the ferrous and ferric ions:
 - (A) Fe³⁺ gives brown colour with potassium ferricyanide

[JEE 1998]

- (B) Fe²⁺ gives blue precipitate with potassium ferricyanide
- (C) Fe³⁺ give red colour with potassium thiocyanate
- (D) Fe²⁺ gives brown colour with ammonium thiocyanate

SA0138

- 2. Which of the following statement(s) is /are correct. When a mixture of NaCl and K₂Cr₂O₇ is gently warmed with conc. H₂SO₄? [JEE 1998]
 - (A) A deep red vapours is evolved.
 - (B) The vapours when passed into NaOH solution gives a yellow solution of Na₂CrO₄
 - (C) Chlorine gas is evolved
 - (D) Chromyl chloride is formed.

SA0139

- **3.** An aqueous solution of a substance gives a white precipitate on treatment with dilute hydrochloric acid, which dissolves on heating. When hydrogen sulphide is passed through the hot acidic solution, [JEE 2000] a black precipitate is obtained. The substance is a:
 - (A) Hg₂⁺ salt
- (B) Cr²⁺ salt
- (C) Ag⁺ salt
- (D) Pb^{2+} salt

SA0140

- 4. A gas 'X' is passed through water to form a saturated solution. The aqueous solution on treatment with silver nitrate gives a white precipitate. The saturated aqueous solution also dissolves magnesium ribbon with evolution of a colourless gas 'Y'. Identify 'X' and 'Y': [**JEE 2002(Mains)**]
 - (A) $X = CO_2$, $Y = Cl_2$

(B)
$$X = Cl_2$$
, $Y = CO_2$

(C)
$$X = Cl_2, Y = H_2$$

(D)
$$X = H_2, Y = Cl_2$$

SA0141

5. $[X] + H_2SO_4 \rightarrow [Y]$ a colourless gas with irritating smell [JEE 2003]

 $[Y] + K_2Cr_2O_7 + H_2SO_4 \longrightarrow$ green solution

[X] and [Y] are:

- (A) SO_3^{2-} , SO_2

- (B) Cl^- , HCl (C) S^{2-} , H_2S (D) CO_3^{2-} , CO_2

(C) CO_3^{2-} , HCO_3^{-}

(D) CO_2 , H_2CO_3

13. Sodium fusion extract, obtained from aniline, on treatment with iron (II) sulphate and H_2SO_4 in presence of air gives a Prussian blue precipitate. The blue colour is due to the formation of :

[JEE 2007]

(A) $\operatorname{Fe_4[Fe(CN)_6]_3}$

(B) $\operatorname{Fe}_{3}[\operatorname{Fe}(\operatorname{CN})_{6}]_{2}$

 $(C) \operatorname{Fe}_{4}[\operatorname{Fe}(CN)_{6}]_{2}$

(D) $Fe_3[Fe(CN)_6]_3$

SA0150

14. Column I

Column II

[JEE 2007]

(A) $O_2^- \to O_2 + O_2^{2-}$

(P) Redox reaction

(B) $\text{CrO}_4^{2-} + \text{H}^+ \rightarrow$

(Q) One of the products has trigonal planar structure

(C) $MnO_4^- + NO_2^- + H^+ \rightarrow$

- (R) Dimeric bridged tetrahedral metal ion
- (D) $NO_3^- + H_2SO_4 + Fe^{2+} \rightarrow$
- (S) Disproportionation

SA0151

15. A solution of a metal ion when treated with KI gives a red precipitate which dissolves in excess KI to give a colourless solution. Moreover, the solution of metal ion on treatment with a solution of cobalt (II) thiocyanate gives rise to a deep blue crystalline precipitate. The metal ion is

[JEE 2007]

- (A) Pb^{2+}
- (B) Hg^{2+}
- (C) Cu^{2+}
- (D) Co^{2+}

SA0152

16. A solution of colourless salt H on boiling with excess NaOH produces a non-flammable gas. The gas evolution ceases after sometime. Upon addition of Zn dust to the same solution, the gas evolution restarts. The colourless salt(s) H is (are)

[JEE 2008]

- (A) NH_4NO_3
- (B) NH_4NO_2
- (C) NH₄Cl
- (D) $(NH_4)_2SO_4$

SA0153

Paragraph for Question Nos. 17 to 19

p-Amino-N, N-dimethylaniline is added to a strongly acidic solution of **X**. The resulting solution is treated with a few drops of aqueous solution of **Y** to yield blue coloration due to the formation of methylene blue. Treatment of the aqueous solution of **Y** with the reagent potassium hexacyanoferrate(II) leads to the formation of an intense blue precipitate. The precipitate dissolves on excess addition of the reagent. Similarly, treatment of the solution of **Y** with the solution of potassium hexacyanoferrate(III) leads to a brown coloration due to the formation of **Z**. [**JEE 2009**]

- 17. The compound X is
 - (A) NaNO₃
- (B) NaCl
- (C) Na₂SO₄
- (D) Na₂S

SA0154

nodsO6\B080-BA\Kota\JEE (Advanced)\Enthuse\Chemistry\Sheet\Module:Sall Analysis, Healing Effect & s, cf-Block\Eng\(i)\Salt Analysis, p65

- 18. The compound \mathbf{Y} is
 - (A) MgCl₂
- (B) FeCl₂
- (C) FeCl₃
- (D) ZnCl₂

- **19.** The compound Z is
 - (A) Mg₂[Fe(CN)₆]

- (B) $Fe[Fe(CN)_{6}]$ (C) $Fe_{4}[Fe(CN)_{6}]_{3}$ (D) $K_{2}Zn_{3}[Fe(CN)_{6}]_{2}$

SA0154

Match each of the reactions given in Column I with the corresponding product(s) given in 20. Column II.

Column I

Column II

[JEE 2009]

- (A) $Cu + dil. HNO_3$
- (B) $Cu + conc. HNO_3$
- (C) $Zn + dil. HNO_3$
- (D) $Zn + conc. HNO_3$

- (P) NO
- (Q) NO₂
- (R) N₂O(S) Cu(NO₃)₂
- $(T) Zn(NO_3)_2$

SA0155

- Passing H₂S gas into a mixture of Mn²⁺, Ni²⁺, Cu²⁺ and Hg²⁺ ions in an acidified aqueous solution 21. precipitates [JEE 2011]
 - (A) CuS and HgS
- (B) MnS and CuS (C) MnS and NiS (D) NiS and HgS

SA0156

[JEE 2011]

- 22. Reduction of the metal centre in aqueous permanganate ion involves -
 - (A) 3 electrons in neutral medium
- (B) 5 electrons in neutral medium
- (C) 3 electrons in weak alkaline medium
- (D) 5 electrons in acidic medium

SA0157

The equilibrium 23.

[JEE 2011]

$$2Cu^{I} \rightleftharpoons Cu^{o} + Cu^{II}$$

in aqueous medium at 25°C shifts towards the left in the presence of

- $(A) NO_2^-$
- (B) Cl⁻
- (C) SCN
- (D) CN-

SA0158

Paragraph for Questions Nos. 24 to 26

When a metal rod M is dipped into an aqueous colourless concentrated solution of compound N, the solution turns light blue. Addition of aqueous NaCl to the blue solution gives a white precipitate O. Addition of aqueous NH₃ dissolves O and gives are intense blue solution. [JEE 2011]

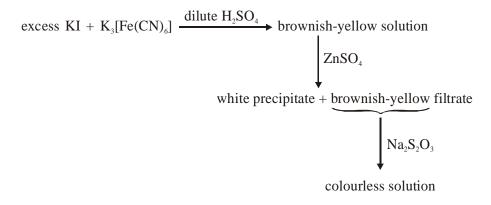
- 24. The metal rod M is -
 - (A) Fe

- (B) Cu
- (C) Ni
- (D) Co

SA0159

- 25. The compound N is -
 - (A) AgNO₃
- (B) $Zn(NO_3)_2$
- (C) Al(NO₃)₃
- (D) $Pb(NO_3)_2$

- **26.** The final solution contains -
 - (A) $[Pb(NH_3)_4]^{2+}$ and $[CoCl_4]^{2-}$
- (B) $[Al(NH_3)_4]^{3+}$ and $[Cu(NH_3)_4]^{2+}$ (D) $[Ag(NH_3)_2]^{+}$ and $[Ni(NH_3)_6]^{2+}$
- (C) $[Ag(NH_3)_2]^+$ and $[Cu(NH_3)_4]^{2+}$


- Which of the following hydrogen halides react(s) with AgNO₃(aq) to give a precipitate that dissolves 27. [JEE 2012] in $Na_2S_2O_3(aq)$:
 - (A) HCl
- (B) HF
- (C) HBr
- (D) HI

SA0160

- 28. The reaction of white phosphorus with aqueous NaOH gives phosphine along with another phosphorus containing compound. The reaction type; the oxidation states of phosphorus in phosphine [JEE 2012] and the other product are respectively
 - (A) redox reaction; -3 and -5
- (B) redox reaction; +3 and +5
- (C) disproportionation reaction; -3 and +1 (D) disproportionation reaction; -3 and +3

SA0161

29. For the given aqueous reactions, which of the statement(s) is (are) true? [JEE 2012]

- (A) The first reaction is a redox reaction.
- (B) White precipitate is $Zn_3[Fe(CN)_6]_2$.
- (C) Addition of filtrate to starch solution gives blue colour.
- (D) White precipitate is soluble in NaOH solution.

SA0162

- **30.** Upon treatment with ammonical H₂S, the metal ion that precipitates as a sulfide is -
 - (A) Fe(III)
- (B) Al(III)
- (C) Mg(II)
- (D) Zn (II)

[JEE 2013]

62

Paragraph for Question 31 and 32

An aqueous solution of a mixture of two inorganic salts, when treated with dilute HCl, gave a precipitate (**P**) and a filtrate (**Q**). The precipitate (**P**) was found to dissolve in hot water. The filtrate (Q) remained unchanged, when treated with H2S in a dilute mineral acid medium. However, it gave a precipitate (R) with H₂S in an ammoniacal medium. The precipitate R gave a coloured solution (S), when treated with H_2O_2 in an aqueous NaOH medium. [JEE 2013]

- 31. The coloured solution (S) contains
 - (A) $\operatorname{Fe}_{2}(\operatorname{SO}_{4})_{3}$
- (B) CuSO₄
- (C) $ZnSO_4$

SA0164

- 32. The precipitate (**P**) contains
 - (A) Pb²⁺
- (B) Hg_2^{2+} (C) Ag^+ (D) Hg^{2+}

SA0164

33. Consider the following list of reagents: [JEE Adv. 2014]

Acidified K₂Cr₂O₇, alkaline KMnO₄ CuSO₄, H₂O₂, Cl₂, O₃, FeCl₃, HNO₃ and Na₂S₂O₃. The total number of reagents that can oxidise aqueous iodide to iodine is

SA0165

34. Among PbS, CuS, HgS, MnS, Ag₂S, NiS, CoS, Bi₂S₃, and SnS₂ the total number of **BLACK** coloured sulphides is [JEE Adv. 2014]

SA0166

Paragraph for Q.No. 35 and 36

An aqueous solution of metal ion \mathbf{M}_1 reacts separately with reagents \mathbf{Q} and \mathbf{R} in excess to give tetrahedral and square planar complexes, respectively. An aqueous solution of another metal ion \mathbf{M}_2 always forms tetrahedral complexes with these reagents. Aqueous solution of \mathbf{M} , on reaction with reagent \mathbf{S} gives white precipitate which dissolves in excess of S. The reactions are summarized in the scheme given below.

[JEE Adv. 2014]

SCHEME:

Tetrahedral
$$\leftarrow \frac{Q}{\text{excess}} \mathbf{M_1} \xrightarrow{\text{excess}} \text{Square planar}$$

- M₁, Q and R, respectively are **35.**
 - (A) Zn²⁺, KCN and HCl

(B) Ni²⁺, HCl and KCN

(C) Cd2+ , KCN and HCl

(D) Co²⁺, HCl and KCN

Ε

- **36.** Reagent S is
 - (A) $K_{4}[Fe(CN)_{6}]$
- (B) Na₂HPO₄
- $(C) K_2 CrO_4$
- (D) KOH

Fe³⁺ is reduced to Fe²⁺ by using -

[JEE Adv. 2015]

- (A) H₂O₂ in presence of NaOH
- (B) Na₂O₂ in water
- (C) H₂O₂ in presence of H₂SO₄
- (D) Na₂O₂ in presence of H₂SO₄

SA0168

- The pair(s) of ions where BOTH the ions are precipitated upon passing H₂S gas in presence of **38.** dilute HCl, is(are) [JEE Adv. 2015]
 - (A) Ba²⁺, Zn²⁺
- (B) Bi³⁺, Fe³⁺
- (C) Cu^{2+} , Pb^{2+} (D) Hg^{2+} , Bi^{3+}

SA0169

- The reagent(s) that can selectively precipiate S^{2-} from a mixture of S^{2-} and $SO_4^{\ 2-}$ in aqueous soltuion **39.** [JEE(Adv.)-2016] is(are):
 - (A) CuCl₂
- (B) BaCl₂
- (C) Pb(OOCCH₃)₂
- (D) Na₂[Fe(CN)₅NO]

SA0170

In the following reaction sequence in aqueous soluiton, the species X, Y and Z respectively, **40.** [JEE(Adv.)-2016] are -

$$S_2O_3^{2-} \xrightarrow{Ag^+} X \xrightarrow{Ag^+} Y \xrightarrow{With time} Z$$
clear white black
solution precipitate precipitate

- (A) $[Ag(S_2O_3)_2]^{3-}$, $Ag_2S_2O_3$, Ag_2S (B) $[Ag(S_2O_3)_3]^{5-}$, Ag_2SO_3 , Ag_2S (C) $[Ag(SO_3)_3]^{3-}$, Ag_2SO_3 , A
- (C) $[Ag(SO_3)_2]^{3-}$, $Ag_2S_2O_3$, Ag_3
- (D) $[Ag(SO_3)_3]^{3-}$, Ag_2SO_4 , Ag

SA0171

- Which of the following combination will produce H₂ gas ? 41.
- [JEE(Adv.)-2017]

(A) Zn metal and NaOH(aq)

- (B) Au metal and NaCN(aq) in the presence of air
- (C) Cu metal and conc. HNO₃
- (D) Fe metal and conc. HNO₃

SA0172

42. Addition of excess aqueous ammonia to a pink coloured aqueous solution of MCl₂. 6H₂O (X) and NH₄Cl gives an octahedral complex Y in the presence of air. In aqueous solution, complex Y behaves as 1:3 electrolyte. The reaction of X with excess HCl at room temperature results in the formation of a blue coloured complex Z. The calculated spin only magnetic moment of X and Z is 3.87 B.M., whereas it is zero for complex Y. **JEE(Adv.)-2017**]

Among the following options, which statements is(are) correct?

- (A) The hybridization of the central metal ion in Y is d²sp³
- (B) Z is tetrahedral complex
- (C) Addition of silver nitrate to Y gives only two equivalents of silver chloride
- (D) When X and Z are in equilibrium at 0°C, the colour of the solution is pink

- 43. The correct option(s) to distinguish nitrate salts of Mn²⁺ and Cu²⁺ taken separately is (are):-
 - (A) Mn²⁺ shows the characteristic green colour in the flame test **JEE(Adv.)-20**2
 - (B) Only Cu²⁺ shows the formation of precipitate by passing H₂S in acidic medium
 - (C) Only Mn^{2+} shows the formation of precipitate by passing $\mathrm{H}_2\mathrm{S}$ in faintly basic medium
 - (D) Cu²⁺/Cu has higher reduction potential than Mn²⁺/Mn (measured under similar conditions)

- 44. The green colour produced in the borax bead test of a chromium(III) salt is due to
 [JEE(Adv.)-2019]
 - (1) $\operatorname{Cr}(BO_2)_3$
- (2) CrB
- $(3) \operatorname{Cr}_{2}(B_{4}O_{7})_{3}$
- $(4) \operatorname{Cr_2O_3}$

ANSWER KEY

			NSWER K			
1 (4)	2 (6)		EXERCISE		((A D)	
1. (A)	2. (C)	3. (C)	4. (D)	5. (D)	6. (A,B)	
	$S; (B) \rightarrow Q; (C)$	$(C) \rightarrow P,Q,S,T;$	$(D) \rightarrow P,Q,S,$	T	8. (1)	
9. (D)	10. (D)	11. (C)	12. (D)	13. (B)	14. (C)	15. (B)
16. (A)	17. (C)	18. (B)	19. (B)	20. (D)	21. (C)	22. (A)
23. (B)	24. (B)	25. (D)	26. (B)	27. (C)	28. (A,B)	29. (A)
30. (C)	31. (2)	32. (4)	33. (2)	34. (D)	35. (B)	36. (D)
37. (C)	38. (C)	39. (C,D)	40. (B)	41. (B)	42. (D)	43. (D)
		E	XERCISE #	# II		
1. (B)	2. (C)	3. (C)	4. (A)	5. (B)	6. (B)	7. (B)
8. (B)	9. (B)	10. (D)	11. (B)	12. (B)	13. (A,B,C,D) 14. (C)
15. (C)	16. (C)	17. (B)	18. (B)	19. (B)	20. (D)	21. (C)
22. (B)	23. (B)	24. (D)	25. (C)	26. (B)	27. (C)	28. (C)
29. (C)	30. (B)	31. (A)	32. (B)	33. (D)	34. (D)	35. (C)
36. (B)	37. (D)	38. (C)	39. (D)	40. (A)	41. (C)	42. (A,C,D)
43. (C)	44. (A)	45. (A,B,C)	46. (B,C,D)	47. (A,C,D)	48. (B , D)	49. (D)
50. (A)	51. (D)	52. (D)	53. (A,C)	54. (D)	55. (B)	56. (C)
57. (B)	58. (A , B)	59. (D)	60. (B)	61. (B)	62. (B)	63. (A)
64. (A)	65. (C)	66. (B)	67. (C)	68. (D)		
69. (A) \rightarrow Q, R; (B) \rightarrow Q; (C) \rightarrow P; (D) \rightarrow S, T 70. (A) \rightarrow P; (B) \rightarrow S; (C)						$R;(D) \rightarrow Q, F$
71. (B)	72. (D)	73. (C)	74. (3)	75. (2)		
		EXER (CISE # JEE	MAINS		
1. (4)	2. (4)	3. (4)	4. (2)	5. (2)	6. (2)	7. (1)
8. (2)	9. (2)	10. (3)	11. (4)	12. (4)	13. (3)	14. (4)
15. (3)	16. (1)	17. (4)	18. (2)	19. (3)	20. (4)	21. (1)
22. (4)	23. (3)	24. (1)	25. (4)	26. (3)	27. (4)	28. (2)
29. (3)	30. (2)	31. (4)	32. (2)	33. (4)		
		EXERC	ISE#J-AD	VANCED		
1. (A, B, C)	2. (A, B, D)	3. (D)	4. (C)	5. (A)	6. (B)	7. (A)
8. (B)	9. (A)	10. (B)	11. (D)	12. (A)	13. (A)	
14. $(A) \rightarrow P$, S; (B) \rightarrow R;	$(C) \rightarrow P, Q;$	$(\mathbf{D}) \to \mathbf{P}$	15. (B)	16. (A),(B)	17. (D)
18. (C)	19. (B)	$20. (A) \rightarrow P,$	$S; (B) \rightarrow Q,S;$	$(C) \rightarrow R,T; (D)$	$Q) \rightarrow Q, T$	21. (A)
	23. (B,C,D)				27. (A,C,D)	28. (C)
29. (A,C,D)			32. (A)			35. (B)
36. (D)	37. (A, B)		39. (A OR A,	, C)	40. (A)	41. (A)
42. (A,B,D)	43. (B , D)	44. (1)				

HEATING EFFECT

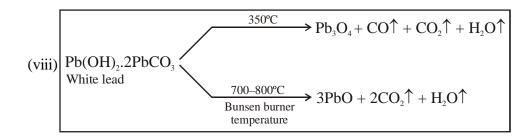
1. HEATING EFFECT OF CARBONATE & BICARBONATE SALTS:

(a) Heating effect of carbonate salts:

Metal carbonate $\xrightarrow{\Delta}$ metal oxide + CO_2 \uparrow

(i)
$$MCO_3 \xrightarrow{\Delta} MO + CO_2 [M = Be, Mg, Ca, Sr, Ba]$$

(ii)
$$MgCO_3 \xrightarrow{\Delta} MgO + CO_2$$


(iii)
$$\underbrace{\frac{\text{Cu(OH)}_2.\text{CuCO}_3}{\text{Basic Cu(II) carbonate}}}_{\text{Basic Cu(II) carbonate}} \xrightarrow{\Delta} \underbrace{\frac{2\text{CuO} + \text{CO}_2 + \text{H}_2\text{O}}{\text{(black)}}}_{\text{(black)}} + \underbrace{\frac{\text{high}}{\text{temperature}}}_{\text{(red)}}$$

(iv)
$$ZnCO_3 \xrightarrow{\Delta} ZnO_{Yellow(hot)} + CO_2$$

white white(cold)

(v)
$$PbCO_3 \xrightarrow{\Delta} PbO_{Yellow} + CO_2$$

(vi)
$$\text{Li}_2\text{CO}_3 \xrightarrow{\Delta} \text{Li}_2\text{O} + \text{CO}_2$$

(vii)
$$(NH_4)_2CO_3 \xrightarrow{\Delta} 2NH_3 + H_2O + CO_2$$
 Very Important

- (ix) All carbonates **except** (Na, K, Rb, Cs) decompose on heating giving CO₂
- (x) Carbonates salts of (Na, K, Rb, Cs) do not decompose on heating, they are melt on high temperature.
- (xi) Oxides of heavier metals are less stable so further decompose into metal & oxygen

(xii)
$$Ag_2CO_3 \xrightarrow{\Delta} 2Ag + CO_2 + \frac{1}{2}O_2$$

(vellowish white)

(xi)
$$HgCO_3 \xrightarrow{\Delta} Hg + \frac{1}{2}O_2 \uparrow + CO_2$$

Ε

(b) Heating effect of bicarbonate:

(i) Metal bicarbonate
$$\stackrel{\Delta}{\longrightarrow}$$
 metal carbonate $+ CO_2 \uparrow$

$$\stackrel{\text{except (Na, K, Rb, Cs)}}{\downarrow}$$
metal oxide $+ CO_2$

- (ii) [General reaction $2HCO_3^- \xrightarrow{\Delta} CO_3^{2-} + H_2O + CO_2$]
- (iii) All bicarbonates decompose to give carbonates and CO₂. eg.

(iv)
$$2NaHCO_3 \xrightarrow{\Delta} Na_2CO_3 + CO_2 + H_2O_3$$

(v)
$$Mg(HCO_3)_2 \xrightarrow{\Delta} MgO + 2CO_2 + H_2O$$

2. HEATING EFFECT OF HYDRATED SULPHATE SALTS:

(i) Metal Sulphate
$$\xrightarrow{\Delta}$$
 Metal Oxide + SO₃
 $(M=Be,Zn,Mg,Ca,Cu,Pb)$ $\xrightarrow{T>800^{\circ}C}$ $\xrightarrow{T>800^{\circ}C}$ $\xrightarrow{SO_2 + \frac{1}{2}O_2}$

(iii)
$$\overbrace{\text{FeSO}_{4}^{2}.7\text{H}_{2}\text{O} \xrightarrow{300^{\circ}\text{C}} \text{FeSO}_{4} \xrightarrow{\Delta} \text{Fe}_{2}\text{O}_{3} + \text{SO}_{2} + \text{SO}_{3} \text{ (very important)}}^{\Delta}$$

(iv)
$$\operatorname{Fe_2(SO_4)_3} \xrightarrow{\Delta} \operatorname{Fe_2O_3} + 3\operatorname{SO_3}$$

(v)
$$CaSO_4.2H_2O \xrightarrow{120^{\circ}C-150^{\circ}C} (CaSO_4.\frac{1}{2} H_2O) + 1\frac{1}{2}H_2O$$

gypsum (Plaster of paris) or calcium sulphate hemihydrate

CaSO₄.2H₂O
another crystallographic form of gypsum hard & porous

$$CaSO_4 + \frac{1}{2}H_2O$$
Dead burnt
$$CaO + SO_3$$

(vii)
$$MgSO_4.7H_2O \xrightarrow{\Delta} MgSO_4 \downarrow [Same as ZnSO_4]$$

(viii)
$$2\text{NaHSO}_3 \xrightarrow{\Delta} \text{Na}_2\text{SO}_5 + \text{H}_2\text{O} \xrightarrow{} \text{Na}_2\text{SO}_4 + \text{SO}_2$$

(ix)
$$2\text{NaHSO}_4 \xrightarrow{\Delta} \text{Na}_2\text{SO}_4 + \text{H}_2\text{O} + \text{SO}_3$$

(x)
$$Na_2S_2O_3.5H_2O \xrightarrow{220^{\circ}C} Na_2S_2O_3 + 5H_2O$$

rode06/8080-BA Victa/LEEAdvanced/) Enthuse/ Chemistry/Sheet/Module-Salt Analysis, Heating Effect & s., of Block/Ena/(iii) Heating Effect

$$\frac{\triangle}{\text{(From 4 moles)}} 3\text{Na}_2\text{SO}_4 + \text{Na}_2\text{S}_5.$$

HEATING EFFECT OF NITRATE SALTS 3.

- Metal nitrate $\stackrel{\triangle}{\longrightarrow}$ metal oxide + NO₂ + O₂ (i)
- $2M(NO_3)_2 \xrightarrow{\Delta} 2MO + 4NO_2 + O_2$ (ii) $[M = all \text{ bivalent metals eg. } Zn^{+2}, Mg^{+2}, Sr^{+2}, Ca^{+2}, Ba^{+2}, Cu^{+2}, Pb^{+2}]$
- $2\text{LiNO}_3 \xrightarrow{\Delta} \text{Li}_2\text{O} + 2\text{NO}_2 + \frac{1}{2}\text{O}_2$ (iii)
- $MNO_3 \xrightarrow{\Delta} MNO_2 + \frac{1}{2}O_2$ (iv) [M=Na,K,Rb,Cs]

$$M_2O + N_2 + \frac{3}{2} O_2$$

(vi)
$$NaNO_2 \xrightarrow{800^{\circ}C} Na_2O + N_2 + \frac{3}{2} O_2$$

(vii)
$$BeCl_2 \xrightarrow{N_2O_4} Be(NO_3)_2 \cdot 2N_2O_4 \xrightarrow{\text{Warm to } 50^{\circ}C \text{ under vaccum}} Be(NO_3)_2 \xrightarrow{125^{\circ}C} Be_4O(NO_3)_6]$$
basic beryllium nitrate

Exception: If formed oxide is of heavier metal then it being less stable and further decomposed in to metal and oxygen.

- (viii) $Hg(NO_3)_2 \xrightarrow{\Delta} Hg + 2NO_2 + O_2$
- $2AgNO_3 \xrightarrow{\Delta} 2Ag + 2NO_2 + O_2$ (ix)

HEATING EFFECT OF AMMONIUM SALTS: 4.

If anionic part is oxdising in nature, then N_2 will be the product (some times N_2O).

- $(NH_4)_2Cr_2O_7 \xrightarrow{\Delta} N_2 + Cr_2O_3 + 4H_2O$ {This reaction is used for making artificial volcano} (i) (orange solid)
- (ii) $NH_4NO_2 \xrightarrow{\Delta} N_2 + 2H_2O$
- $NH_4NO_3 \xrightarrow{\Delta} N_2O + 2H_2O$ (iii)
- $2NH_4 ClO_4 \xrightarrow{\Delta} N_2 + Cl_2 + 2O_2 + 4H_2O$ (iv)
- $2NH_4 IO_3 \xrightarrow{\Delta} N_2 + I_2 + O_2 + 4H_2O$ (v)

If anionic part weakly oxidising or non oxidising in nature then NH₃ will be the product.

69

- $(NH_4)_2HPO_4 \xrightarrow{\Delta} HPO_3 + H_2O + 2NH_3$ (i)
- $(NH_4)_2SO_4 \xrightarrow{\Delta} NH_3 + H_2SO_4$ (ii)
- $2(NH_4)_3PO_4 \xrightarrow{\Delta} 2NH_3 + P_2O_5 + 3H_2O$ (iii)
- $(NH_4)_2CO_3 \xrightarrow{\Delta} 2NH_3 + H_2O + CO_2$ (iv)
- $NH_4Cl \xrightarrow{\Delta} NH_3\uparrow + HCl\uparrow$ (v)
- $(NH_4)_2S \xrightarrow{\Delta} NH_3\uparrow + H_2S\uparrow$ (vi)
- $NH_{1}F \xrightarrow{\Delta} NH_{3} + HF$ (vii)
- (viii) $(NH_4)_2MoO_4 \xrightarrow{\Delta} NH_3^+ + MoO_3 + H_2O_4$

HEATING EFFECT OF PHOSPHATE SALTS: 5.

(i) 1° Phosphate salts gives metaphosphate salt on heating.

$$NaH_2PO_4 \xrightarrow{\Delta} H_2O + NaPO_3$$

(ii) 2° Phosphate salts gives pyrophosphate

$$Na_2HPO_4 \xrightarrow{\Delta} H_2O + Na_4P_2O_7$$

(iii) 3° Phosphate salt have no heating effect

$$Na_3PO_4 \xrightarrow{\Delta} No \text{ effect}$$

- (iv) $Na(NH_4)HPO_4.4H_2O \xrightarrow{\Delta} NaNH_4HPO_4 \xrightarrow{High temp.} NaPO_3 + NH_3 + H_2O$ microcosmic salt
- (v) $2Mg(NH_4)PO_4 \xrightarrow{\Delta} Mg_2P_2O_7 + 2NH_3 + H_2O$

HEATING EFFECT OF HALIDES SALTS:

- (i) $2\text{FeCl}_3 \xrightarrow{\Delta} 2\text{FeCl}_2 + \text{Cl}_2$
- (ii) $AuCl_3 \xrightarrow{\Delta} AuCl + Cl_2$
- (iii) $Hg_2Cl_2 \xrightarrow{\Delta} HgCl_2 + Hg$
- (iv) $NH_4Cl \xrightarrow{\Delta} NH_3 + HCl$
- (v) $Pb(SCN)_4 \xrightarrow{\Delta} Pb(SCN)_2 + (SCN)_2$
- (vi) $PbCl_4 \xrightarrow{\Delta} PbCl_2 + Cl_2$
- $(vii)PbBr_4 \xrightarrow{\Delta} PbBr_2 + Br_2 [PbI_4 does not exists]$

7. HEATING EFFECT OF HYDRATED CHLORIDE SALTS

(i) MgCl₂ .
$$6H_2O \xrightarrow{\Delta} MgO + 2HCl + 5H_2O$$

(ii)
$$2\text{FeCl}_3 \cdot 6\text{H}_2\text{O} \xrightarrow{\Delta} \text{Fe}_2\text{O}_3 + 6\text{HCl} + 9\text{H}_2\text{O}$$

(iii)
$$2AlCl_3 \cdot 6H_2O \xrightarrow{\Delta} Al_2O_3 + 6HCl + 9H_2O$$

(iv)
$$CoCl_2.6H_2O \xrightarrow{50^{\circ}C} CoCl_2.4H_2O \xrightarrow{58^{\circ}C} CoCl_2.2H_2O \xrightarrow{140^{\circ}C} CoCl_2$$

Hydrated Co²⁺ salt - Pink

Anhydrous Co²⁺ salt - Blue

HEATING EFFECT OF OXIDE: 8.

(i)
$$2Ag_2O \xrightarrow{\Delta} 4Ag + O_2$$

(ii)
$$ZnO \xrightarrow{Hot} ZnO$$
white $Cold$ yellow

(iii)
$$PbO_2 \xrightarrow{\Delta} PbO + \frac{1}{2}O_2$$

(iv)
$$\underset{\text{yellow}}{\text{PbO}}$$
 (Massicot) $\xrightarrow{\text{Fused}}$ $\underset{\text{Cooled & powdered}}{\text{Fused}}$ $\xrightarrow{\text{PbO}}$ Litharge (red)

(v)
$$3\text{MnO}_2 \xrightarrow{900^{\circ}\text{C}} \text{Mn}_3\text{O}_4 + \text{O}_2$$
 (vi) $Pb_3\text{O}_4 \xrightarrow{500^{\circ}\text{C}} 6Pb\text{O} + \text{O}_2$

$$\begin{array}{c}
Pb_3O_4 \\
Red lead
\end{array}
\xrightarrow{500^{\circ}C} \begin{array}{c}
6PbO \\
Litharge
\end{array}
+ O_2$$

$$(vii) 2CrO_5 \xrightarrow{\Delta} Cr_2O_3 + \frac{7}{2}O_2 \qquad (viii) \qquad \underbrace{K_2O}_{\text{(White)}} \xrightarrow{\Delta} \underbrace{K_2O}_{\text{(yellow)}}$$

(viii)
$$K_2O \xrightarrow{\Delta \text{ cold}} K_2O$$
(white) (yellow)

(ix)
$$I_2O_5 \xrightarrow{\Delta} I_2 + \frac{5}{2}O_2$$

(x)
$$\underset{\text{yellow}}{\text{HgO}} \xrightarrow{\Delta} \underset{\text{red}}{\text{HgO}} \xrightarrow{400^{\circ}\text{C}} \underset{\text{beating}}{\text{Hg}} + \frac{1}{2} O_2$$

(xi)
$$2\text{CrO}_3 \xrightarrow{420^{\circ}\text{C}} \text{Cr}_2\text{O}_3 + \frac{3}{2}\text{O}_2$$

HEATING EFFECT OF PERMANGANATE : 9.

$$\begin{array}{ccc} 2KMnO_4 & \xrightarrow{513K} & K_2MnO_4 + MnO_2 + O_2 \\ \text{dark puple} & \text{(green)} & \text{(black)} \end{array}$$

(almost black)

HEATING EFFECT OF DICHROMATE & CHROMATE SALTS: 10.

$$2K_2Cr_2O_7 \xrightarrow{\Delta} 2K_2CrO_4 + Cr_2O_3 + \frac{3}{2}O_2 \uparrow$$
 orange yellow green

HEATING EFFECT OF ACIDS:

(i)
$$2HNO_3 \xrightarrow{\Delta} H_2O + 2NO_2 + \frac{1}{2}O_2$$
 conc.

(ii)
$$H_2SO_4 \xrightarrow{444^{\circ}C} H_2O + SO_3$$

(iii)
$$H_2SO_4 \xrightarrow{->800^{\circ}C} H_2O + SO_2 + \frac{1}{2}O_2$$

(iv)
$$3H_2SO_3 \longrightarrow 2H_2SO_4 + S\downarrow + H_2O$$

(v)
$$3HNO_2 \longrightarrow HNO_3 + 2NO + H_2O$$

(vi)
$$HClO_3 \longrightarrow HClO_4 + ClO_2 + H_2O$$

$$(vii)$$
3HOCl \longrightarrow 2HCl +HClO₃

(viii)
$$4H_3PO_3 \xrightarrow{\Delta} 3H_3PO_4 + PH_3$$

(ix)
$$2H_3PO_2 \longrightarrow H_3PO_4 + PH_3$$

(x)
$$2\text{NaH}_2\text{PO}_2 \longrightarrow \text{Na}_2\text{HPO}_4 + \text{PH}_3$$

(xi)
$$H_2C_2O_4 \xrightarrow{\Delta} H_2O + CO + CO_2$$

$$(xii)H_3PO_4 \xrightarrow{220^{\circ}C} H_4P_2O_7 \xrightarrow{320^{\circ}C} 4HPO_3 \xrightarrow{>320^{\circ}C} 2P_2O_5 + 2H_2O_5$$

$$(xiii)H_3BO_3 \xrightarrow{100^{\circ}C} 4HBO_2 \xrightarrow{140^{\circ}C} H_2B_4O_7 \xrightarrow{\text{Red}} 2B_2O_3 + H_2O_3$$

12. HEATING EFFECTS OF ACETATE SALTS

Metal acetate
$$\xrightarrow{\Delta}$$
 Metal + CH₃COCH₃

Carbonate
(M = LiBe Mg)

 $\downarrow \Delta$

Metal oxide + CO₂

(i)
$$Pb(OAc)_2 \xrightarrow{\Delta} PbO + CO_2 + CH_3COCH_3$$

(ii)
$$Mg(OAc)_2 \xrightarrow{\Delta} MgO + CO_2 + CH_3COCH_3$$

(iii) Be(OAc)₂
$$\xrightarrow{\Delta}$$
 BeO + CO₂ + CH₃COCH₃

(iv)
$$Ca(OAc)_2 \xrightarrow{\Delta} CaCO_3 + CH_3COCH_3$$

(v)
$$Ba(OAc)_2 \xrightarrow{\Delta} BaCO_3 + CH_3COCH_3$$

(vi)
$$CH_3CO_2K \xrightarrow{\Delta} K_2CO_3 + CH_3COCH_3$$

13. HEATING EFFECTS OF OXALATE SALTS

2 JEE-Chemistry

Metal oxalate
$$\xrightarrow{\Delta}$$
 Metal + CO + CO₂

Carbonate
(M = LiBe Mg)
$$\downarrow \Delta$$
Metal oxide + CO₂

(i)
$$7Na_2C_2O_4 \xrightarrow{\Delta} 7Na_2CO_3 + 2CO_2 + 3CO + 2C$$

(ii)
$$SnC_2O_4 \xrightarrow{\Delta} SnO + CO_2 + CO$$

(iii)
$$\text{FeC}_2\text{O}_4 \xrightarrow{\Delta} \text{FeO} + \text{CO} + \text{CO}_2$$

(iv)
$$Ag_2C_2O_4 \xrightarrow{\Delta} 2Ag + 2CO_2$$

(v)
$$HgC_2O_4 \xrightarrow{\Delta} Hg + 2CO_2$$

14. HEATING EFFECTS OF FORMATE SALTS

(i)
$$\text{HCO}_2\text{Na} \xrightarrow{350^\circ\text{C}} \text{Na}_2\text{C}_2\text{O}_4 + \text{H}_2\uparrow$$

(ii)
$$HCO_2Na \longrightarrow Na_2C_2O_4 + H_2$$

(ii) $HCOOAg \xrightarrow{\Delta} HCOOH + 2Ag + \frac{1}{2} \underbrace{O_2 + CO}_{CO_2}$

(iii)
$$(HCOO)_2Hg \longrightarrow HCOOH + Hg + \frac{1}{2} \underbrace{O_2 + CO}_{CO_2}$$

EXERCISE

Sing	gle correct				
1.	Which of the follow	ving does not give metal	oxide on heating		
	(A) NaCO ₃	(B) K_2CO_3	(C) Rb ₂ CO ₃	(D) All of these	
					HE0001
2.	Which of the follow	ving metal bicarbonate w	ill give metal oxide a	nd CO ₂ on heating	
	(A) NaHCO ₃	(B) $Mg(HCO_3)_2$	(C) KHCO ₃	(D) Rb_2CO_3	
					HE0002
3.	Which of the follow	ring metal nitrate will give	ve metal and oxygen o	on heating:	
	(A) KNO ₃	(B) NaNO ₃	(C) AgNO ₃	(D) RbNO ₃	
					HE0003
4.	Which of the follow	ring nitrate will give N ₂ C	O on heating:		
	(A) NH_4NO_3	(B) NH_4NO_2	(C) NaNO ₃	(D) AgNO ₃	
					HE0004
5.	Which of the follow	ing ammonium salt will	not give acid on heati	ing:	
	(A) (NH4)2HPO4	(B) $(NH_4)_2MoO_4$	$(C) (NH_4)_2 SO_4$	(D) NH ₄ Cl	
					HE0005
6.	Which of the follow	ving halide will not give	halogen gas on heatin	g:	
	(A) PbCl ₄	(B) PbBr ₄	(C) Hg_2Cl_2	(D) All of these	
					HE0006
7.	Select the correct sta	atements			
	(A) Hydrated Co ⁺²	salt is pink	(B) Anhydrous Co ⁺² salt is of blue colour		
	(C) Hybridisation of CoCl ₂ .6H ₂ O is sp ³ d ²		(D) All of these		
					HE0007
8.	Which of the follow	ving metal sulphate will ş	give SO ₂ and SO ₃ bot	h gaseous product on	heating:
	(A) CuSO ₄	(B) FeSO ₄	(C) $\operatorname{Fe_2(SO_4)_3}$	(D) CaSO ₄	
					HE0008

9. Which of the following compound is called dead burnt plaster:

(A) $CaSO_4$. $\frac{1}{2}H_2O$ (B) $CaSO_4$.2 H_2O (C) $CaSO_4$ (anhy.)

(D) None of these

- When NaH_2PO_4 is heated then which of the following compound is formed : 10.
 - $(A) Na_4P_2O_7$
- (B) Na_3PO_4
- (C) HPO₃
- (D) NaPO₃

HE0010

- When $KMnO_4$ is heated then which of the following compound is formed : 11.
 - (A) $K_2MnO_4 + MnO_2$ (B) $K_2MnO_4 + MnO$ (C) $MnO_2 + MnO$
- (D) No change

HE0011

- When CrO_3 is heated then + are formed: **12.**
 - $(A) \operatorname{Cr}_2 O_3, O_2$
- (B) CrO_2 , O_2 (C) $Cr_2O_7^{-2}$, O_2
- (D) None of these

HE0012

More than one may be correct

- Which of the following metal carbonate will give of metal and oxyen on heating-
 - $(A) Ag_2CO_3$
- (B) HgCO₃
- (C) (NH₄)₂CO₃
- (D) PbCO₃

HE0013

14. A
$$\triangle$$
 B + CO₂ + H₂O

(Carbonate salt) (Black)

(Green colour) High temperature

(C) + (D)

Select the correct statements -

- (A) Compound (A) is basic copper carbonate
- (B) Compound (B) CuO
- (C) Compound (C) is Cu₂O
- (D) Compound (D) is paramagnetic in naturue

HE0014

- When Ag₂CO₃ is heated then product will be -15.
 - $(A) Ag_2O$
- (B) Ag
- (C) O₂
- (D) CO₂

HE0015

- When compound A (orange red) is heated then green colour oxide of (B) is formed and inert gas (C) **16.** is formed then select the correct statements:
 - (A) Compound (A) is $(NH_4)_2 Cr_2O_7$
 - (B) Compound (B) is used in fire works
 - (C) Gas C is N₂
 - (D) Heating effect of (A) is a type of intra molecular redox reaction

- 17. Which of the following hydrated salts will not become anhydrous on heating:
 - (A) MgCl₂.6H₂O
- (B) FeCl₃.6H₂O
- (C) AlCl₃.6H₂O
- (D) CoCl₂.6H₂O

HE0017

- Which of the following metal nitrate produce NO2 on heating **18.**
 - (A) $Hg(NO_3)_2$
- (B) RbNO₃
- (C) $Pb(NO_3)_2$
- (D) $Cu(NO_3)_2$

HE0018

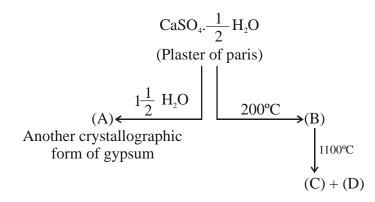
- Which of the following oxides turns yellow on heating and becomes white on cooling: **19.**
 - (A) ZnO
- (B) K₂O
- (C) PbO
- (D) Ag₂O

HE0019

Paragraph for Q. No. 20 to Q. No. 21

$$(A) \xrightarrow{\Delta} (B) + (C) + (D)$$

(Orange solid) (yellow) (green) (Paramagnetic)


- 20. Compound (A) is:
 - (A) K₂Cr₂O₇
- (B) K_2CrO_4
- (C) Cr_2O_3
- (D) O_2

HE0020

- Compound (C) is also obtained on heating of: 21.
 - $(A) (NH_4)_2 Cr_2 O_7$
- (B) NH₄ClO₄
- (C) NH₄NO₃
- (D) None of these

HE0020

Paragarph for Q. No. 22 & 23

- 22. Compound "A" is:

 - $\text{(A) } \operatorname{CaSO}_4.2\operatorname{H}_2\operatorname{O} \qquad \text{(B) } \operatorname{2CaSO}_4.\operatorname{H}_2\operatorname{O} \qquad \text{(C) } \operatorname{CaSO}_4.3\operatorname{H}_2\operatorname{O} \qquad \text{(D) } \operatorname{CaSO}_4.5\operatorname{H}_2\operatorname{O}$

(A)
$$CaO + CaSO_4$$
 (B) $CaSO_4 + SO_2$

(B)
$$CaSO_4 + SO_2$$

(C)
$$CaSO_4 + SO_3$$

(D)
$$CaO + SO_3$$

HE0021

Matrix match

24. Match the column

Column-I

(A) Be(NO₃)₂
$$\xrightarrow{\Delta}$$

(B)
$$HNO_2 \xrightarrow{\Delta}$$

(C) NaH₂PO₄
$$\xrightarrow{\Delta}$$

(D)
$$H_3PO_3 \xrightarrow{\Delta}$$

Column-II

(S) Oxygen gas is evolved

HE0022

25. Column-I (Compound)

(B)
$$Mg(OAc)_2$$

(D)
$$(NH_4)_2CO_3$$

Column-II (Products on heating)

(S) Same gas is evolved which is obtained by heating
$$(NH_4)_2SO_4$$

(T) Intra molecular redox reaction

HE0023

Integer

- When calamine is heated then a product (A) is formed then find the total number of following options **26.** are correct for compound (A) -
 - (i) Compound (A) is white in cold conditions
 - (ii) Compound (A) is yellow in hot conditions
 - (iii) Compound (A) is called phillosopher's wool
 - (iv) Compound (A) when combined with CoO, then compound (B) is formed & colour of new compound (B) is green
 - (v) Compound (B) is called Rinmann's green

27. NaNO₃
$$\xrightarrow{500^{\circ}\text{C}}$$
 (A) + (B)

$$(A) \xrightarrow{800^{\circ}C} (C) + (D) + (E)$$

Find the number of correct statements

- (1) Compound (B) is paramagnetic in nature
- (2) Compound (B) when undergoes dimerisation then dimer product is diamagnetic in nature
- (3) Bond order of compound (B) is two
- (4) D is N_2 gas
- (5) Compound B and E are same gas

HE0025

28.
$$(A) \xrightarrow{\Delta} (B) + (C) + (D)$$

(dark purple (green) (black)
almost black)

Find the number of correct statements

- (1) Compound B is K_2MnO_4
- (2) Compound C is MnO₂
- (3) Compound D is O_2
- (4) Compound B is paramagnetic in nature
- (5) Compound D has two unpaired electron in bonding molecular orbital

HE0026

29. Total number of compounds undergoes dispropornation redox reaction on heating MnO₂, HOCl, H₃PO₃, HNO₂, CrO₅, HClO₃

HE0027

30. On strong heating of H₃PO₄ and H₃BO₃, sum of oxidation number of P & B in the final product obtained is

ANSWER-KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	D	В	C	A	В	С	D	В	C	D
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	A	A	A, B	A,B,C,D	B,C,D	A,B,C,D	A, B, C	A,C,D	A, B	A
Que.	21	22	23		24					
Ans.	A	A	D	(A)→(S	$(A)\rightarrow(S);(B)\rightarrow(P,Q,R);(C)\rightarrow(P);(D)\rightarrow(Q,R)$					
Que.	25			26	27	28	29	30		
Ans.	(A)→(R,	$(A) \rightarrow (R,T);(B) \rightarrow (P);(C) \rightarrow (P,Q,T);(D) \rightarrow (P,S)$			\rightarrow (P,S)	5	4	4	4	8

s-BLOCK ELEMENT

OBJECTIVES

After studying this unit you will be able to:

- Describe the general characteristics of the alkali metals and their compounds;
- Explain the general characteristics of the alkaline earth metals and their compounds;
- Describe the manufacture, properties and uses of industrially important sodium and calcium compounds including Portland cement:
- Appreciate the biological significance of sodium, potassium, magnesium and calcium.

The *s*-block elements of the Periodic Table are those in which the last electron enters the outermost *s*-orbital. As the *s*-orbital can accommodate only two electrons, two groups (1 & 2) belong to the s-block of the Periodic Table. Group 1 of the Periodic Table consists of the elements: lithium, sodium, potassium, rubidium, caesium and francium. They are collectively known as the *alkali metals*. These are so called because they form hydroxides on reaction with water which are strongly alkaline in nature. The elements of Group 2 include beryllium, magnesium, calcium, strontium, barium and radium. These elements with the exception of beryllium are commonly known as the *alkaline earth metals*. These are so called because their oxides and hydroxides are alkaline in nature and these metal oxides are found in the earth's crust*.

Among the alkali metals sodium and potassium are abundant and lithium, rubidium and caesium have much lower abundances. Francium is highly radioactive; its longest-lived isotope 223Fr has a half-life of only 21 minutes. Of the alkaline earth metals calcium and magnesium rank fifth and sixth in abundance respectively in the earth's crust. Strontium and barium have much lower abundances. Beryllium is rare and radium is the rarest of all comprising only 10–10 per cent of igneous rocks.

The general electronic configuration of s-block elements is [noble gas] ns1 for alkali metals and [noble gas] ns^2 for alkaline earth metals.

The thin, rocky outer layer of the Earth is crust. † A type of rock formed from magma (molten rock) that has cooled and hardened.

Lithium and beryllium, the first elements of Group 1 and Group 2 respectively exhibit some properties which are different from those of the other members of the respective group. In these anomalous properties they resemble the second element of the following group. Thus, lithium shows similarities to magnesium and beryllium to aluminium in many of their properties. This type of diagonal similarity is commonly referred to as *diagonal relationship* in the periodic table. The diagonal relationship is due to the similarity in ionic sizes and /or charge/radius ratio of the elements. Monovalent sodium and potassium ions and divalent magnesium and calcium ions are found in large proportions in

10.1 GROUP 1 ELEMENTS: ALKALI METALS

The alkali metals show regular trends in their physical and chemical properties with the increasing atomic number. The atomic, physical and chemical properties of alkali metals are discussed below.

10.1.1 Electronic Configuration

All the alkali metals have one valence electron, ns^1 outside the noble gas core. The loosely held s-electron in the outermost valence shell of these elements makes them the most electropositive metals. They readily lose electron to give monovalent M^+ ions. Hence they are never found in free state in nature.

Element	Symbol	Electronic configuration
Lithium	Li	$1s^2s^1$
Sodium	Na	$1s^2 2s^2 2p^6 3s^1$
Potassium	K	$1s^22s^22p^63s^23p^64s^1$
Rubidium	Rb	$1s^22s^22p^63s^23p^63d^{10}4s^24p^65s^1$
Caesium	Cs	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^65p^66s^1$ or [Xe] $6s^1$
Francium	Fr	[Rn]7s ¹

10.1.2 Atomic and Ionic Radii

Increase down the group, because value of n (principal quantum number) increases.

10.1.3 Ionization Enthalpy

$$Li > Na > K > Rb > Cs$$
.

This is because the effect of increasing size outweighs the increasing nuclear charge, and the outermost electron is very well screened from the nuclear charge.

10.1.4 Hydration Enthalpy

The hydration enthalpies of alkali metal ions decrease with increase in ionic sizes.

$$Li^{+}>Na^{+}>K^{+}>Rb^{+}>Cs^{+}$$

Li⁺ has maximum degree of hydration and for this reason lithium salts are mostly hydrated,

10.1.5 Physical Properties

- (i) All the alkali metals are silvery white, soft and light metals.
- (ii) Because of the large size, these elements have low density which increases down the group from Li to Cs. However, potassium is lighter than sodium.

- (iii) The melting and boiling points of the alkali metals are low indicating weak metallic bonding due to the presence of only a single valence electron in them.
- (iv) The alkali metals and their salts impart characteristic colour to an oxidizing flame. This is because the heat from the flame excites the outermost orbital electron to a higher energy

level. When the excited electron comes back to the ground state, there is emission of radiation in the visible region as given below:

Metal	Li	Na	K	Rb	Cs
Colour	Crimson red	Yellow	Violet	Red violet	Blue
λ/nm	670.8	589.2	766.5	780.0	455.5

- (v) Alkali metals can therefore, be detected by the respective flame tests and can be determined by flame photometry or atomic absorption spectroscopy.
- (vi) These elements when irradiated with light, the light energy absorbed may be sufficient to make an atom lose electron.

Table: Atomic and Physical Properties of the Alkali Metals

Property	Lithium Li	Sodium Na	Potassium K	Rubidium Rb	Caesium Cs	Francium Fr
Atomic number	3	11	19	37	55	87
Atomic mass (g mol ⁻¹)	6.94	22.99	39.10	85.47	132.91	(223)
Electronic configuration	[He]2s ¹	[Ne] 3s ¹	[Ar] 4s ¹	[Kr] 5s ¹	[Xe] 6s ¹	[Rn] 7s ¹
Ionization enthalpy/kJ mol ⁻¹	520	496	419	403	376	~375
Hydration enthalpy/kJ mol ⁻¹	-506	-406	-330	-310	-276	-
Metallic radius/pm	152	186	227	248	265	-
Ionic radius M ⁺ /pm	76	102	138	152	167	(180)
m.p./K	454	371	336	312	302	-
b.p/K	1615	1156	1032	961	944	-
Density / g cm ⁻³	0.53	0.97	0.86	1.53	1.90	-
Standard Potentials E ⁻ /V for (M ⁺ /M)	-3.04	-2.714	-2.925	-2.930	-2.927	-
Occurrence in lithosphere	18*	2.27**	1.84**	78-12*	2-6*	~10 ⁻¹⁸ *

*ppm (part per million), ** percentage by weight; † Lithosphere: The Earth's outer layer: its crust and part of the upper mantle.

This property makes caesium and potassium useful as electrodes in photoelectric cells.

10.1.6 Chemical Properties

The alkali metals are highly reactive due to their large size and low ionization enthalpy. The reactivity of these metals increases down the group.

(i) Reactivity towards air: The alkali metals tarnish in dry air due to the formation of their oxides which in turn react with moisture to form hydroxides. They burn vigorously in oxygen forming oxides. Lithium forms monoxide, sodium forms peroxide, the other metals form superoxides. The superoxide O_2^- ion is stable only in the presence of large cations such as K, Rb, Cs.

$$4Li + O_2 \rightarrow 2Li_2O$$
 (oxide)

$$2Na + O_2 \rightarrow Na_2O_2$$
 (peroxide)

deos 8080-8A Visita VIEFA dvanced VEnthus Vichemistry Shed Myodule Sall Analysis. Heating Effed & s. d-Block Endy (1) s-E

$$M + O_2 \rightarrow MO_2$$
 (superoxide)
(M = K, Rb, Cs)

In all these oxides the oxidation state of the alkali metal is +1. Lithium shows exceptional behaviour in reacting directly with nitrogen of air to form the nitride, Li_3N as well. Because of their high reactivity towards air and water, alkali metals are normally kept in kerosene oil.

Problem 10.1

What is the oxidation state of K in KO_2 ?

Solution

The superoxide species is represented as O_2^- ; since the compound is neutral, therefore, the oxidation state of potassium is +1.

(ii) Reactivity towards water: The alkali metals react with water to form hydroxide and dihydrogen.

$$2M + 2H_2O \rightarrow 2M^+ + 2OH^- + H_2$$
(M = an alkali metal)

It may be noted that although lithium has most negative E^{Θ} value, its reaction with water is less vigorous than that of sodium which has the least negative E^{Θ} value among the alkali metals. This behaviour of lithium is attributed to its small size and very high hydration energy. Other metals of the group react explosively with water.

They also react with proton donors such as alcohol, gaseous ammonia and alkynes.

(iii) **Reactivity towards dihydrogen:** The alkali metals react with dihydrogen at about 673K (lithium at 1073K) to form hydrides. All the alkali metal hydrides are ionic solids with high melting points.

$$2M + H_2 \rightarrow 2M^+H^-$$

- (iv) Reactivity towards halogens: The alkali metals readily react vigorously with halogens to form ionic halides, M+X-. However, lithium halides are somewhat covalent. It is because of the high polarisation capability of lithium ion (The distortion of electron cloud of the anion by the cation is called polarisation). The Li+ ion is very small in size and has high tendency to distort electron cloud around the negative halide ion. Since anion with large size can be easily distorted, among halides, lithium iodide is the most covalent in nature.
- (v) Reducing nature: The alkali metals are strong reducing agents, lithium being the most and sodium the least powerful. The standard electrode potential (E^{Θ}) which measures the reducing power represents the overall change:

$$M(s) \rightarrow M(g)$$
 sublimationenthalpy

$$M(g) \rightarrow M^{+}(g) + e^{-}$$
 ionizationenthalpy

$$M^{+}(g) + H_2O \rightarrow M^{+}(aq)$$
 hydrationenthalpy

With the small size of its ion, lithium has the highest hydration enthalpy which accounts for its high negative E^{Θ} value and its high reducing power.

Problem 10.2

The E^{\odot} for Cl_2/Cl^- is +1.36, for I_2/I^- is + 0.53, for Ag^+/Ag is +0.79, Na^+/Na is -2.71 and for Li+/Li is -3.04. Arrange the following ionic species in decreasing order of reducing strength:

Solution

The order is Li > Na > I - > Ag > Cl

(vi) Solutions in liquid ammonia: The alkali metals dissolve in liquid ammonia giving deep blue solutions which are conducting in nature.

$$M+(x + y)NH_3 \rightarrow [M(NH_3)_x]^+ + [e(NH_3)y]^-$$

The blue colour of the solution is due to the ammoniated electron which absorbs energy in the visible region of light and thus imparts blue colour to the solution. The solutions are paramagnetic and on standing slowly liberate hydrogen resulting in the formation of amide.

 $M_{(am)}^+ + e^- + NH_3(1) \rightarrow MNH_{2(am)} + \frac{1}{2}H_2(g)$ (where 'am' denotes solution in ammonia.) In concentrated solution, the blue colour changes to bronze colour and becomes diamagnetic.

(vii) Reaction with H₂

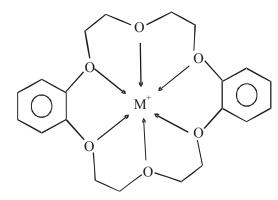
They react with H_2 forming metal hydride with formula MH which are of ionic nature. Stability of hydride decreases down the group.

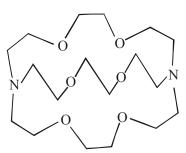
(viii) Reaction with N_2

Only Lithium reacts with N₂ to form ionic lithium nitride Li₃N.

$$3Li + \frac{3}{2}N_2 \rightarrow Li_3N$$

(ix) Sulphides


All metals react with S forming sulphides such as Na_2S and Na_2S_n (n = 2, 3, 4, 5 or 6). The polysulphide ions are made from zig-zag chains of sulphur atoms.


(x) Crown Ethers and Cryptands:

Dibenzo-18-Crown-6

[Na (Cryptand 222)]+ Na-

[Cs⁺(Cryptand - 222)]

Cryptand - 222

[Contains Na⁻ (sodide ion)]

[(Cyrptand-222)e⁻] [electride]

10.1.7 Uses:

Lithium metal is used to make useful alloys, for example with lead to make 'white metal' bearings for motor engines, with aluminium to make aircraft parts, and with magnesium to make armour plates. It is used in thermonuclear reactions.

Lithium is also used to make electrochemical cells. Sodium is used to make a Na/Pb alloy needed to make PbEt₄ and PbMe₄. These organolead compounds were earlier used as anti-knock additives to petrol, but nowadays vehicles use lead-free petrol. Liquid sodium metal is used as a coolant in fast breeder nuclear reactors. Potassium has a vital role in biological systems. Potassium chloride is used as a fertilizer. Potassium hydroxide is used in the manufacture of soft soap. It is also used as an excellent absorbent of carbon dioxide. Caesium is used in devising photoelectric cells.

10.2 GENERAL CHARACTERISTICS OF THE COMPOUNDS OF THE ALKALI METALS

All the common compounds of the alkali metals are generally ionic in nature. General characteristics of some of their compounds are discussed here.

10.2.1 Oxides and Hydroxides

On combustion in excess of air, lithium forms mainly the oxide, Li_2O (plus some peroxide Li_2O_2), sodium forms the peroxide, Na_2O_2 (and some oxide Na_2O) whilst potassium, rubidium and caesium form the superoxides, MO_2 . Under appropriate conditions pure compounds M_2O , M_2O_2 and MO_2 may be prepared. The increasing stability of the peroxide or superoxide, as the size of the metal ion increases, is due to the stabilisation of large anions by larger cations through lattice energy effects. These oxides are easily hydrolysed by water to form the hydroxides according to the following reactions:

$$\begin{split} &M_2 O + H_2 O \rightarrow 2 M^+ + 2 O H^- \\ &M_2 O_2 + 2 H_2 O \rightarrow 2 M^+ + 2 O H^- + H_2 O_2 \\ &2 M O_2 + 2 H_2 O \rightarrow 2 M^+ + 2 O H^- + H_2 O_2 + O_2 \end{split}$$

The oxides and the peroxides are colourless when pure, but the superoxides are yellow or orange in colour. The superoxides are also paramagnetic. Sodium peroxide is widely used as an oxidising agent in inorganic chemistry.

Problem 10.3

Why is KO₂ paramagnetic?

Solution

The superoxide O_2^- is paramagnetic because of one upaired electron in π^*2p molecular orbital. The hydroxides which are obtained by the reaction of the oxides with water are all white crystalline solids. The alkali metal hydroxides are the strongest of all bases and dissolve freely in water with evolution of much heat on account of intense hydration.

Sodium Oxide (Na,O):

Preparation:

(i) It is obtained by burning sodium at 180°C in a limited supply of air or oxygen and distilling off the excess of sodium in vacuum.

$$2Na + \frac{1}{2}O_2 \xrightarrow{180^{\circ}} Na_2O$$

$$Na_2O_2 + 2Na \xrightarrow{\Delta} 2Na_2O$$
 $2NaNO_3 + 10Na \xrightarrow{\Delta} 6Na_2O + N_2$
 $2NaNO_2 + 6Na \xrightarrow{\Delta} 4Na_2O + N_2$

Properties:

- (i) It is white amorphous mass.
- (ii) It decomposes at 400°C into sodium peroxide and sodium

$$2Na_2O \xrightarrow{400^{\circ}C} Na_2O_2 + 2Na$$

(iii) It dissolve violently in water, yielding caustic soda.

$$Na_2O + H_2O \longrightarrow 2NaOH$$

Sodium Peroxides (Na_2O_2) :

Preparation: It is formed by heating the metal in excess of air or oxygen at 300° , which is free from moisture and CO_2 .

$$2Na + O_2 \longrightarrow Na_2O_2$$

Properties:

- (i) It is a pale yellow solid, becoming white in air from the formation of a film of NaOH and Na₂CO₃.
- (ii) In cold water (\sim 0°C) produces H₂O₂ but at room temperature produces O₂. In ice-cold mineral acids also produces H₂O₂.

$$Na_2O_2 + 2H_2O \xrightarrow{\sim 0^{\circ}C} 2NaOH + H_2O_2$$

$$2\text{Na}_2\text{O}_2 + 2\text{H}_2\text{O} \xrightarrow{25^{\circ}\text{C}} 4\text{NaOH} + \text{O}_2$$

$$Na_2O_2 + H_2SO_4 \xrightarrow{\sim 0^{\circ}C} Na_2SO_4 + H_2O_2$$

(iii) It reacts with CO₂, giving sodium carbonate and oxygen and hence its use for purifying air in a confined space e.g. submarine, ill-ventilated room,

$$2Na_2O_2 + 2CO_2 \longrightarrow 2Na_2CO_3 + O_2$$

(iv) It is an oxidising agent and oxidises charcoal, CO, NH₃, SO₂.

$$3Na_2O_2 + 2C \longrightarrow 2Na_2CO_3 + 2Na$$
 [deposition of metallic Na]

$$CO + Na_2O_2 \longrightarrow Na_2CO_3$$

$$SO_2 + Na_2O_2 \longrightarrow Na_2SO_4$$

$$2NH_3 + 3Na_2O_2 \longrightarrow 6NaOH + N_2$$

(v) It contains peroxide ion $[-O-O-]^{-2}$

Uses:

- (i) For preparing H_2O_2 , O_2
- (ii) Oxygenating the air in submarines
- (iii) Oxidising agent in the laboratory.

Oxides of Potassium:

$$K_2O$$
, K_2O_2 , K_2O_3 , KO_2 and KO_3

Colours: White White Red Bright Yellow Orange Solid

Preparation:

(i)
$$2KNO_3 + 10K \xrightarrow{heating} 6K_2O + N_2$$

**
$$K_2O \xrightarrow{heating} K_2O$$

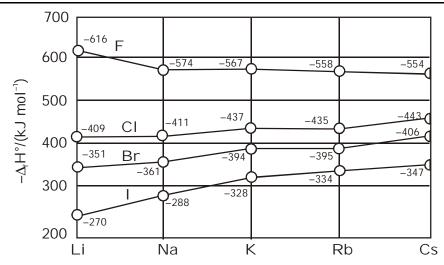
**
$$K_2O + H_2O \longrightarrow 2KOH$$

(ii)
$$2K + O_2 \xrightarrow{\text{Controlled}} K_2O_2 \text{ [Props: Similar with Na}_2O_2]$$

(iii) Passage of O_2 through a blue solution of K in liquid NH_3 yields oxides K_2O_2 (white), K_2O_3 (red) and KO_2 (deep yellow) i.e

K in liq.
$$NH_3 \xrightarrow{O_2} K_2O_2 \longrightarrow K_2O_3 \longrightarrow KO_2$$

white red yellow


** KO₂ reacts with H₂O and produces H₂O₂ and O₂ both

$$2KO_2 + 2H_2O \xrightarrow{\sim 0^{\circ}C} 2KOH + H_2O_2 + O_2$$

$$KO_3: KOH + O_3 \text{ (ozonised oxygen)} \xrightarrow{-10^{\circ}to-15^{\circ}C} KO_3$$
(Dry powdered) (orange solid)

10.2.2 Halides

The alkali metal halides, MX, (X=F,Cl,Br,I) are all high melting, colourless crystalline solids. They can be prepared by the reaction of the appropriate oxide, hydroxide or carbonate with aqueous hydrohalic acid (HX). All of these halides have high negative enthalpies of formation; the $\Delta_f H^{\circ}$ values for fluorides become less negative as we go down the group, whilst the reverse is true for $\Delta_f H^{\circ}$ for chlorides, bromides and iodides. For a given metal $\Delta_f H^{\circ}$ always becomes less negative from fluoride to iodide.

The standard enthalpies of formation of the halides of Group 1 elements at 298 K

10.2.3 Salts of Oxo-Acids

Oxo-acids are those in which the acidic proton is on a hydroxyl group with an oxo group attached to the same atom e.g., carbonic acid, H_2CO_3 (OC(OH)₂; sulphuric acid, H_2SO_4 (O₂S(OH)₂). The alkali metals form salts with all the oxo-acids. They are generally soluble in water and thermally stable.

Their carbonates (M_2CO_3) and in most cases the hydrogenearbonates $(MHCO_3)$ also are highly stable to heat. As the electropositive character increases down the group, the stability of the carbonates and hydrogenearbonates increases. Lithium carbonate is not so stable to heat; lithium being very small in size polarises a large CO_3^{2-} ion leading to the formation of more stable Li_2O and CO_3 . Its hydrogenearbonate does not exist as a solid.

10.3 ANOMALOUS PROPERTIES OF LITHIUM

The anomalous behaviour of lithium is due to the : (i) exceptionally small size of its atom and ion, and (ii) high polarising power (i.e., charge/ radius ratio). As a result, there is increased covalent character of lithium compounds which is responsible for their solubility in organic solvents. Further, lithium shows diagonal relationship to magnesium which has been discussed subsequently.

10.3.1 Points of Difference between Lithium and other Alkali Metals

- (i) Lithium is much harder. Its m.p. and b.p. are higher than the other alkali metals.
- (ii) Lithium is least reactive but the strongest reducing agent among all the alkali metals. On combustion in air it forms mainly monoxide, Li₂O and the nitride, Li₃N unlike other alkali metals.
- (iii) LiCl is deliquescent and crystallises as a hydrate, LiCl.2H₂O whereas other alkali metal chlorides do not form hydrates.
- (iv) Lithium hydrogencarbonate is not obtained in the solid form while all other elements form solid hydrogencarbonates.
- (v) Lithium unlike other alkali metals forms no ethynide on reaction with ethyne.
- (vi) Lithium nitrate when heated gives lithium oxide, Li_2O , whereas other alkali metal nitrates decompose to give the corresponding nitrite. $4\text{LiNO}_3 \rightarrow 2\text{Li}_2\text{O} + 4\text{NO}_2 + \text{O}_2$
 - $2\text{NaNO}_3 \rightarrow 2\text{NaNO}_2 + \text{O}_2^2$
- (vii) LiF and Li₂O are comparatively much less soluble in water than the corresponding

compounds of other alkali metals.

10.3.2 Points of Similarities between Lithium and Magnesium

The similarity between lithium and magnesium is particularly striking and arises because of their similar sizes: atomic radii, Li = 152 pm, Mg = 160 pm; ionic radii: $Li^+ = 76$ pm, $Mg^{2+} = 72$ pm. The main points of similarity are:

- (i) Both lithium and magnesium are harder and lighter than other elements in the respective groups.
- (ii) Lithium and magnesium react slowly with water. Their oxides and hydroxides are much less soluble and their hydroxides decompose on heating. Both form a nitride, Li₃N and Mg₃N₂, by direct combination with nitrogen.
- (iii) The oxides, Li₂O and MgO do not combine with excess oxygen to give any superoxide.
- (iv) The carbonates of lithium and magnesium decompose easily on heating to form the oxides and CO₂. Solid hydrogenearbonates are not formed by lithium and magnesium.
- (v) Both LiCl and MgCl₂ are soluble in ethanol.
- (vi) Both LiCl and $MgCl_2$ are deliquescent and crystallise from aqueous solution as hydrates, LiCl·2H₂O and $MgCl_2$ ·8H₂O.

10.4 SOME IMPORTANT COMPOUNDS OF SODIUM

Industrially important compounds of sodium include sodium carbonate, sodium hydroxide, sodium chloride and sodium bicarbonate. The large scale production of these compounds and their uses are described below:

Sodium Carbonate (Washing Soda), Na₂CO₃·10H₂O

Sodium carbonate is generally prepared by **Solvay Process**. In this process, advantage is taken of the low solubility of sodium hydrogencarbonate whereby it gets precipitated in the reaction of sodium chloride with ammonium hydrogencarbonate. The latter is prepared by passing CO₂ to a concentrated solution of sodium chloride saturated with ammonia, where ammonium carbonate followed by ammonium hydrogencarbonate are formed.

The equations for the complete process may be written as:

$$2NH_3 + H_2O + CO_2 \rightarrow (NH_4)_2 CO_3$$

$$(NH_4)_2 CO_3 + H_2O + CO_2 \rightarrow 2NH_4HCO_3$$

$$NH_4HCO_3 + NaCl \rightarrow NH_4Cl + NaHCO_3$$

Sodium hydrogencarbonate crystal separates. These are heated to give sodium carbonate.

$$2NaHCO_3 \rightarrow Na_2CO_3 + CO_2 + H_2O$$

In this process NH₃ is recovered when the solution containing NH₄Cl is treated with Ca(OH)₂. Calcium chloride is obtained as a by-product.

$$2NH_4Cl + Ca(OH)_2 \rightarrow 2NH_3 + CaCl_2 + H_2O$$

It may be mentioned here that Solvay process cannot be extended to the manufacture of potassium carbonate because potassium hydrogenearbonate is too soluble to be precipitated by the addition of ammonium hydrogenearbonate to a saturated solution of potassium chloride.

Properties: Sodium carbonate is a white crystalline solid which exists as a decahydrate, Na₂CO₃·10H₂O. This is also called washing soda. It is readily soluble in water. On heating, the

decahydrate loses its water of crystallisation to form monohydrate. Above 373K, the monohydrate becomes completely anhydrous and changes to a white powder called soda ash.

$$Na_2CO_2.10H_2O \xrightarrow{375K} Na_2CO_3.H_2O + 9H_2O$$

 $Na_2CO_3.H_2O \xrightarrow{>373K} Na_2CO_3 + H_2O$

Carbonate part of sodium carbonate gets hydrolysed by water to form an alkaline solution.

$$CO_3^{2-} + H_2O \rightarrow HCO_3^- + OH^-$$

Uses: (i) It is used in water softening, laundering and cleaning.

- (ii) It is used in the manufacture of glass, soap, borax and caustic soda.
- (iii) It is used in paper, paints and textile industries.
- (iv) It is an important laboratory reagent both in qualitative and quantitative analysis.

Note: K₂CO₃ cannot be prepared by **Solvey process** because KHCO₃ is soluble in water and cannot be separated form NH₄Cl.

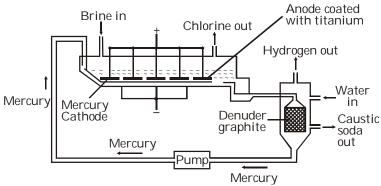
Sodium Chloride, NaCl

The most abundant source of sodium chloride is sea water which contains 2.7 to 2.9% by mass of the salt. In tropical countries like India, common salt is generally obtained by evaporation of sea water. Approximately 50 lakh tons of salt are produced annually in India by solar evaporation.

Crude sodium chloride, generally obtained by crystallisation of brine solution, contains sodium sulphate, calcium sulphate, calcium chloride and magnesium chloride as impurities. Calcium chloride, CaCl₂, and magnesium chloride, MgCl₂ are impurities because they are deliquescent (absorb moisture easily from the atmosphere).

To obtain pure sodium chloride, the crude salt is dissolved in minimum amount of water and filtered to remove insoluble impurities. The solution is then saturated with hydrogen chloride gas. Crystals of pure sodium chloride separate out. Calcium and magnesium chloride, being more soluble than sodium chloride, remain in solution.

Sodium chloride melts at 1081K. It has a solubility of 36.0 g in 100 g of water at 273 K. The solubility does not increase appreciably with increase in temperature.


Uses:

- (i) It is used as a common salt or table salt for domestic purpose.
- (ii) It is used for the preparation of Na_2O_2 , NaOH and Na_2CO_3 .
- (iii) It is used to prepare freezing mixture in laboratory [Ice-common salt mixture is called freezing mixture and temperature goes down to -23°C.]
- (iv) For melting ice and snow on road.

Sodium Hydroxide (Caustic Soda), NaOH

Sodium hydroxide is generally prepared commercially by the electrolysis of sodium chloride in Castner-Kellner cell. A brine solution is electrolysed using a mercury cathode and a carbon anode.

Sodium metal discharged at the cathode combines with mercury to form sodium amalgam. Chlorine gas is evolved at the anode. (The anodes are now made of steel coated with titanium. Titanium is very resistance to corrosion)

Cathode : $Na^+ + e^- \xrightarrow{Hg} Na - amalgam$

Anode :
$$Cl^- \rightarrow \frac{1}{2}Cl_2 + e^-$$

The amalgam is treated with water to give sodium hydroxide and hydrogen gas.

$$2Na$$
-amalgam + $2H_2O \rightarrow 2NaOH + 2Hg + H_2$

Sodium hydroxide is a white, translucent solid. It melts at 591 K. It is readily soluble in water to give a strong alkaline solution. Crystals of sodium hydroxide are deliquescent. The sodium hydroxide solution at the surface reacts with the CO_2 in the atmosphere to form Na_2CO_3 .

Uses: It is used in

- (i) The manufacture of soap, paper, artificial silk and a number of chemicals.
- (ii) In petroleum refining,
- (iii) In the purification of bauxite,
- (iv) In the textile industries for mercerising cotton fabrics, (v) for the preparation of pure fats and oils, and
- (vi) As a laboratory reagent.

Sodium Hydrogencarbonate (Baking Soda), NaHCO₃

Sodium hydrogencarbonate is known as baking soda because it decomposes on heating to generate bubbles of carbon dioxide (leaving holes in cakes or pastries and making them light and fluffy).

Sodium hydrogencarbonate is made by saturating a solution of sodium carbonate with carbon dioxide. The white crystalline powder of sodium hydrogencarbonate, being less soluble, gets separated out.

$$Na_2CO_3 + H_2O + CO_2 \rightarrow 2NaHCO_3$$

היה היא היא ליווין עיום האטמיטים באן שיהום עיות אין המקומים באלומים איז אמתה עיות הוא להמחוזה להאות האטמים אטר היה היה היא היה ליווין עיום האטמיטים באים שיהום עיות היה מים מים מים מים מים היה להמחוזה איז בתחוזה איז מים מים Sodium hydrogencarbonate is a mild antiseptic for skin infections. It is used in fire extinguishers.

Potassium carbonate, K₂CO₃

It is also called potash or pearl ash. It cannot be made by the use of solvay process as potassium bicarbonate is more soluble than sodium bicarbonate. However, it can be prepared by **Le-Blanc process**. KCl is first converted into K_2SO_4 . Potassium sulphate (K_2SO_4) is then heated with $CaCo_3$ and carbon.

$$\begin{split} & \text{KCl} + \text{H}_2\text{SO}_4 \longrightarrow \text{KHSO}_4 + \text{HCl} \\ & \text{KHSO}_4 + \text{KCl} \longrightarrow \text{K}_2\text{SO}_4 + \text{HCl} \\ & \text{K}_2\text{SO}_4 + \text{CaCO}_3 + 2\text{C} \longrightarrow \text{K}_2\text{CO}_3 + \text{CaS} + 2\text{CO}_2 \end{split}$$

It is a white powder, deliquescent in nature. It is highly soluble in water.

Uses: It is used in the manufacture of hard glass. The mixture of K_2CO_3 and Na_2CO_3 is used a **fusion mixture** in laboratory.

10.5 BIOLOGICAL IMPORTANCE OF SODIUM AND POTASSIUM

A typical 70 kg man contains about 90 g of Na and 170 g of K compared with only 5 g of iron and 0.06 g of copper. Sodium ions are found primarily on the outside of cells, being located in blood plasma and in the interstitial fluid which surrounds the cells. These ions participate in the transmission of nerve signals, in regulating the flow of water across cell membranes and in the transport of sugars and amino acids into cells. Sodium and potassium, although so similar chemically, differ quantitatively in their ability to penetrate cell membranes, in their transport mechanisms and in their efficiency to activate enzymes.

Thus, potassium ions are the most abundant cations within cell fluids, where they activate many enzymes, participate in the oxidation of glucose to produce ATP and, with sodium, are responsible for the transmission of nerve signals.

There is a very considerable variation in the concentration of sodium and potassium ions found on the opposite sides of cell membranes. As a typical example, in blood plasma, sodium is present to the extent of 143 mmolL^{-1} , whereas the potassium level is only 5 mmolL^{-1} within the red blood cells. These concentrations change to 10 mmolL^{-1} (Na⁺) and 105 mmolL^{-1} (K⁺). These ionic gradients demonstrate that a discriminatory mechanism, called the sodium-potassium pump, operates across the cell membranes which consumes more than one-third of the ATP used by a resting animal and about 15 kg per 24 h in a resting human.

10.6 GROUP 2 ELEMENTS : ALKALINE EARTH METALS

The group 2 elements comprise beryllium, magnesium, calcium, strontium, barium and radium. They follow alkali metals in the periodic table. These (except beryllium) are known as alkaline

earth metals. The first element beryllium differs from the rest of the members and shows diagonal relationship to aluminium. The atomic and physical properties of the alkaline earth metals are shown in Table.

10.6.1 Electronic Configuration

These elements have two electrons in the s-orbital of the valence shell. Their general electronic configuration may be represented as [noble gas] ns^2 . Like alkali metals, the compounds of these elements are also predominantly ionic.

Element	Symbol	Electronic configuration
Beryllium	Be	$1s^22s^2$
Magnesium	Mg	$1s^2 2s^2 2p^6 3s^2$
Calcium	Ca	$1s^22s^22p^63s^23p^64s^2$
Strontium	Sr	$1s^22s^22p^63s^23p^63d^{10}4s^24p^65s^2$
Barium	Ba	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^66s^2$ or [Xe] $6s^2$
Radium	Ra	[Rn]7s ²

10.6.2 Atomic and Ionic Radii

The atomic and ionic radii of the alkaline earth metals are smaller than those of the

Table : Atomic and Physical Properties of the Alkaline Earth Metals

Property	Beryllium	Magnesium	Calcium	Strontium	Barium	Radium
Тторетту	Be	mg	Ca	Sr	Ba	Ra
Atomic number	4	12	20	38	56	88
Atomic mass (g mol 1)	9.01	24.31	40.08	87.62	137.33	226.03
Electronic configuration	[He]2s ²	[Ne] $3s^2$	$[Ar] 4s^2$	[Kr] 5s ²	[Xe] 6s ²	$[Rn] 7s^2$
Ionization enthalpy (I)/kJ mol ⁻¹	899	737	590	549	503	509
Ionization enthyalpy(II) kJ mol ⁻¹	1757	1450	1145	1064	965	979
Hydration enthalpy/kJ mol ⁻¹	-2494	-1921	-1577	-1443	-1305	-
Metallic radius/pm	111	160	197	215	222	-
Ionic radius M ⁺ /pm	31	72	100	118	135	148
m.p./K	1560	924	1124	1062	1002	973
b.p/K	2745	1363	1767	.1655	2078	(1973)
Density / g cm ⁻³	1.84	1.74	1.55	2.63	3.59	(5.5)
Standard Potentials E ⁻ /V for (M ⁺² /M)	-1.97	-2.36	-2.84	-2.89	-2.92	-2.92
Occurrence in lithosphere	2*	2.76**	4.6**	384*	390*	10 ⁻⁶ *

^{*}ppm (part per million); ** percentage by weight:

Corresponding alkali metals in the same periods. This is due to the increased nuclear charge in these elements. Within the group, the atomic and ionic radii increase with increase in atomic number.

10.6.3 Ionization Enthalpies

Ionization Enthalpy

Down the group IE decreases due to increase in size

 \mathbf{Q} . $IE_1 \text{ of AM} < IE_1 \text{ of AEM}$

$$IE_2$$
 of AM > IE_2 of AEM

[where AM = Alkali metal, AEM = Alkaline earth metal]

 $\it Reason: IE_1$ of AEM is large due to increased nuclear charge in AEM as compared to AM but $\it IE_2$ of AM is large because second electron in AM is to be removed from cation which has already acquired noble gas configuration.

10.6.4 Hydration Enthalpies

Like alkali metal ions, the hydration enthalpies of alkaline earth metal ions decrease with increase in ionic size down the group.

$$Be^{2+} \!\! > \! Mg^{2+} \!\! > \! Ca^{2+} \!\! > \! Sr^{2+} \!\! > \! Ba^{2+}$$

The hydration enthalpies of alkaline earth metal ions are larger than those of alkali metal ions. Thus, compounds of alkaline earth metals are more extensively hydrated than those of alkali metals, e.g., MgCl₂ and CaCl₂ exist as MgCl₂.6H₂O and CaCl₂· 6H₂O while NaCl and KCl do not form such hydrates.

10.6.5 Physical Properties

- (i) The alkaline earth metals, in general, are silvery white, lustrous and relatively soft but harder than the alkali metals. Beryllium and magnesium appear to be somewhat greyish.
- (ii) The melting and boiling points of these metals are higher than the corresponding alkali metals due to smaller sizes. The trend is, however, not systematic.
- (iii) Because of the low ionisation enthalpies, they are strongly electropositive in nature. The electropositive character increases down the group from Be to Ba.
- (iv) Calcium, strontium and barium impart characteristic brick red, crimson and apple green colours respectively to the flame. In flame the electrons are excited to higher energy levels and when they drop back to the ground state, energy is emitted in the form of visible light. The electrons in beryllium and magnesium are too strongly bound to get excited by flame. Hence, these elements do not impart any colour to the flame. The flame test for Ca, Sr and Ba is helpful in their detection in qualitative analysis and estimation by flame photometry.
- (v) The alkaline earth metals like those of alkali metals have high electrical and thermal conductivities which are typical characteristics of metals.

10.6.6 Chemical Properties

The alkaline earth metals are less reactive than the alkali metals. The reactivity of these elements increases on going down the group.

(i) Reactivity towards air: Beryllium and magnesium are kinetically inert to oxygen and water because of the formation of an oxide film on their surface. However, powdered beryllium burns brilliantly on ignition in air to give BeO and Be₃N₂. Magnesium is more electropositive and burns with dazzling brilliance in air to give MgO and Mg₃N₂. Calcium, strontium and barium are readily attacked by air to form the oxide and nitride.

(ii) Reactivity towards water.

Reaction with H_2O: AEM have lesser tendency to react with water as compared to AM. They form hydroxides and liberate H_2 on reaction with H_2O

$$M + 2H_2O \xrightarrow{\Delta} M(OH)_2 + H_2$$

- * Be is inert towards water.
- * Magnesium react as

$$Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2$$

 $Mg + H_2O \rightarrow MgO + H_2O$

MgO forms protective layer, that is why it does not react readily unless layer is removed amalgamating with Hg. Other metals react quite readily (Ca, Sr, Ba).

Note: Be(OH)₂ is amphoteric but other hydroxides are basic in nature.

(iii) Reactivity towards the halogens: All the alkaline earth metals combine with halogen at elevated temperatures forming their halides.

$$M + X_2 \rightarrow MX_2 (X = F, Cl, Br, l)$$

Thermal decomposition of $(NH_4)_2BeF_4$ is the best route for the preparation of BeF_2 , and $BeCl_2$ is conveniently made from the oxide.

$$BeO + C + Cl_2 \stackrel{600-800 \text{K}}{\longleftarrow} BeCl_2 + CO$$

(iv) Reactivity towards hydrogen: All the elements except beryllium combine with hydrogen upon heating to form their hydrides, MH₂. BeH₂, however, can be prepared by the reaction of BeCl₂ with LiAlH₄.

$$2\text{BeCl}_2 + \text{LiAlH}_4 \rightarrow 2\text{BeH}_2 + \text{LiCl} + \text{AlCl}_3$$

(v) Reactivity towards acids: AEM react with acids & liberate H₂

$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$

Be is amphoteric as it also react with NaOH, other metals do not react as they are purely basic.

$$Be + 2NaOH \rightarrow Be(OH)_2 \xrightarrow{\quad excess \ NaOH \quad} [Be(OH)_4]^{2-}$$

(vi) Reducing nature: Like alkali metals, the alkaline earth metals are strong reducing agents. This is indicated by large negative values of their reduction potentials. However their reducing power is less than those of their corresponding alkali metals. Beryllium has less negative value compared to other alkaline earth metals. However, its reducing nature is due to large hydration energy associated with the small size of Be²⁺ ion and relatively large value of the atomization enthalpy of the metal.

node06\B0BQ-BA\Kola\JEE(Advanced)\Enthuse\Chemistry\Shea\Wodule-Salt Analysis, Healing Effed & s. d-Block\Eng\(ii) s-block element.p65

Solutions in liquid ammonia: Like alkali metals, the alkaline earth metals dissolve in liquid ammonia (vii) to give deep blue black solutions forming ammoniated ions.

$$M + (x + y) NH_3 \rightarrow [M(NH_3)_x]^{2+} + 2[e(NH_3)_y]^- (except : Be and Mg)$$

From these solutions, the ammoniates, $[M(NH_3)_6]^{2+}$ can be recovered.

10.6.7 Uses:

Be: Beryllium is used in the manufacture of alloys. Copper-beryllium alloys are used in the preparation of high strength springs. Metallic beryllium is used for making windows of X-ray tubes.

Mg: Magnesium forms alloys with aluminium, zinc, manganese and tin. Magnesium-aluminium alloys being light in mass are used in air-craft construction. Magnesium (powder and ribbon) is used in flash powders and bulbs, incendiary bombs and signals. A suspension of magnesium hydroxide in water (called *milk of magnesia*) is used as antacid in medicine. Magnesium carbonate is an ingredient of toothpaste.

Ca: Calcium is used in the extraction of metals from oxides which are difficult to reduce with carbon. Calcium and barium metals, owing to their reactivity with oxygen and nitrogen at elevated temperatures, have often been used to remove air from vacuum tubes.

Ra: Radium salts are used in radiotherapy, for example, in the treatment of cancer.

GENERAL CHARACTERISTICS OF COMPOUNDS OF THE ALKALINE EARTH 10.7 **METALS**

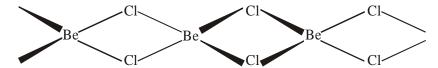
The dipositive oxidation state (M^{2+}) is the predominant valence of Group 2 elements. The alkaline earth metals form compounds which are predominantly ionic but less ionic than the corresponding compounds of alkali metals. This is due to increased nuclear charge and smaller size. The oxides and other compounds of beryllium and magnesium are more covalent than those formed by the heavier and large sized members (Ca, Sr, Ba). The general characteristics of some of the compounds of alkali earth metals are described below.

Oxides and Hydroxides: *(i)*

The alkaline earth metals burn in oxygen to form the monoxide, MO which, except for BeO, have rock-salt structure. The BeO is essentially covalent in nature. The enthalpies of formation of these oxides are quite high and consequently they are very stable to heat. BeO is amphoteric while oxides of other elements are ionic in nature. All these oxides except BeO are basic in nature and react with water to form sparingly soluble hydroxides.

$$MO + H_2O \rightarrow M(OH)_2$$

The solubility, thermal stability and the basic character of these hydroxides increase with increasing atomic number from Mg(OH)₂ to Ba(OH)₂. The alkaline earth metal hydroxides are, however, less basic and less stable than alkali metal hydroxides. Beryllium hydroxide is amphoteric in nature as it reacts with acid and alkali both.


$$Be(OH)_{2} + 2OH^{-} \rightarrow [Be(OH)_{4}]^{2-}$$

$$Beryllate ion$$

$$Be(OH)_{2} + 2HCl \rightarrow 2H_{2}O + BeCl_{2}$$

(ii) Halides:

Except for beryllium halides, all other halides of alkaline earth metals are ionic in nature. Beryllium halides are essentially covalent and soluble in organic solvents. Beryllium chloride has a chain structure in the solid state as shown below:

In the vapour phase $BeCl_2$ tends to form a chloro-bridged dimer which dissociates into the linear monomer at high temperatures of the order of 1200 K. The tendency to form halide hydrates gradually decreases (for example, $MgCl_2 \cdot 8H_2O$, $CaCl_2 \cdot 6H_2O$, $SrCl_2 \cdot 6H_2O$ and $BaCl_2 \cdot 2H_2O$) down the group. The dehydration of hydrated chlorides, bromides and iodides of Ca, Sr and Ba can be achieved on heating; however, the corresponding hydrated halides of Be and Mg on heating suffer hydrolysis. The fluorides are relatively less soluble than the chlorides owing to their high lattice energies.

(iii) Salts of Oxoacids: The alkaline earth metals also form salts of oxoacids. Some of these are:

Carbonates: Carbonates of alkaline earth metals are insoluble in water and can be precipitated by addition of a sodium or ammonium carbonate solution to a solution of a soluble salt of these metals. The solubility of carbonates in water decreases as the atomic number of the metal ion increases. All the carbonates decompose on heating to give carbon dioxide and the oxide. Beryllium carbonate is unstable and can be kept only in the atmosphere of CO₂. The thermal stability increases with increasing cationic size.

Sulphates: The sulphates of the alkaline earth metals are all white solids and stable to heat. $BeSO_4$, and $MgSO_4$ are readily soluble in water; the solubility decreases from $CaSO_4$ to $BaSO_4$. The greater hydration enthalpies of Be^{2+} and Mg^{2+} ions overcome the lattice enthalpy factor and therefore their sulphates are soluble in water.

Nitrates: The nitrates are made by dissolution of the carbonates in dilute nitric acid. Magnesium nitrate crystallises with six molecules of water, whereas barium nitrate crystallises as the anhydrous salt. This again shows a decreasing tendency to form hydrates with increasing size and decreasing hydration enthalpy. All of them decompose on heating to give the oxide like lithium nitrate.

$$2M (NO_3)_2 \rightarrow 2MO + 4NO_2 + O_2$$

(M + Be, Mg, Ca, Sr, Ba)

Problem 10.4

Ε

Why does the solubility of alkaline earth metal hydroxides in water increase down the group?

Solution

Among alkaline earth metal hydroxides, the anion being common the cationic radius will influence the lattice enthalpy. Since lattice enthalpy decreases much more than the hydration enthalpy with increasing ionic size, the solubility increases as we go down the group.

Problem 10.5

Why does the solubility of alkaline earth metal carbonates and sulphates in water decrease down the group?

Solution

The size of anions being much larger compared to cations, the lattice enthalpy will remain almost constant within a particular group. Since the hydration enthalpies decrease down the group, solubility will decrease as found for alkaline earth metal carbonates and sulphates.

10.8 ANOMALOUS BEHAVIOUR OF BERYLLIUM

Beryllium, the first member of the Group 2 metals, shows anomalous behaviour as compared to magnesium and rest of the members. Further, it shows diagonal relationship to aluminium which is discussed subsequently.

- (i) Beryllium has exceptionally small atomic and ionic sizes and thus does not compare well with other members of the group. Because of high ionisation enthalpy and small size it forms compounds which are largely covalent and get easily hydrolysed.
- (ii) Beryllium does not exhibit coordination number more than four as in its valence shell there are only four orbitals. The remaining members of the group can have a coordination number of six by making use of d-orbitals.
- (iii) The oxide and hydroxide of beryllium, unlike the hydroxides of other elements in the group, are amphoteric in nature.

10.8.1 Diagonal Relationship between Beryllium and Aluminium

The ionic radius of Be^{2+} is estimated to be 31 pm; the charge/radius ratio is nearly the same as that of the Al^{3+} ion. Hence beryllium resembles aluminium in some ways. Some of the similarities are:

- (i) Like aluminium, beryllium is not readily attacked by acids because of the presence of an oxide film on the surface of the metal.
- (ii) Beryllium hydroxide dissolves in excess of alkali to give a beryllate ion, $[Be(OH)_4]^{2-}$ just as aluminium hydroxide gives aluminate ion, $[Al(OH)_4]^{-}$.
- (iii) The chlorides of both beryllium and aluminium have Cl bridged chloride structure in vapour phase. Both the chlorides are soluble in organic solvents and are strong Lewis acids. They are used as Friedel Craft catalysts.

(iv) Beryllium and aluminium ions have strong tendency to form complexes, BeF_4^{2-} , AlF_6^{3-}

10.9 SOME IMPORTANT COMPOUNDS OF CALCIUM

Important compounds of calcium are calcium oxide, calcium hydroxide, calcium sulphate, calcium carbonate and cement. These are industrially important compounds. The large scale preparation of these compounds and their uses are described below.

Calcium Oxide or Quick Lime, CaO

It is prepared on a commercial scale by heating limestone (CaCO₃) in a rotary kiln at 1070-1270 K.

$$CaCO_3 \stackrel{heat}{\rightleftharpoons} CaO + CO_2$$

The carbon dioxide is removed as soon as it is produced to enable the reaction to proceed to completion. Calcium oxide is a white amorphous solid. It has a melting point of 2870 K. On exposure to atmosphere, it absorbs moisture and carbon dioxide.

$$CaO + H_2O \rightarrow Ca(OH)_2$$

 $CaO + CO_2 \rightarrow CaCO_3$

The addition of limited amount of water breaks the lump of lime. This process is called *slaking of lime*. Quick lime slaked with soda gives solid sodalime. Being a basic oxide, it combines with acidic oxides at high temperature.

$$\begin{aligned} \text{CaO} + \text{SiO}_2 &\rightarrow \text{CaSiO}_3 \\ \text{6CaO} + \text{P}_4\text{O}_{10} &\rightarrow 2\text{Ca}_3(\text{PO}_4)_2 \end{aligned}$$

- *Uses*: (i) It is an important primary material for manufacturing cement and is the cheapest form of alkali.
 - (ii) It is used in the manufacture of sodium carbonate from caustic soda.
 - (iii) It is employed in the purification of sugar and in the manufacture of dye stuffs.

Calcium Hydroxide (Slaked lime), Ca(OH),

Calcium hydroxide is prepared by adding water to quick lime, CaO.

It is a white amorphous powder. It is sparingly soluble in water. The aqueous solution is known as *lime water* and a suspension of slaked lime in water is known as *milk of lime*.

When carbon dioxide is passed through lime water it turns milky due to the formation of calcium carbonate.

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$$

On passing excess of carbon dioxide, the precipitate dissolves to form calcium hydrogencarbonate.

$$\text{CaCO}_3 + \text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{Ca (HCO}_3)_2$$

Milk of lime reacts with chlorine to form hypochlorite, a constituent of bleaching powder.

$$2\text{Ca(OH)}_2 + 2\text{Cl}_2 \rightarrow \text{CaCl}_2 + \text{Ca(OCl)}_2 + 2\text{H}_2\text{O}$$

- *Uses:* (i) It is used in the preparation of mortar, a building material.
 - (ii) It is used in white wash due to its disinfectant nature.

.BOBO-BA\Kola VEE(Advanced)\Enthuse\Chemistry\Shee\Module\Salt Analysis, Healing Effed &s, d-Block\Eng\(i)\s-block eleme

(iii) It is used in glass making, in tanning industry, for the preparation of bleaching powder and for purification of sugar.

Calcium Carbonate, CaCO3

Calcium carbonate occurs in nature in several forms like limestone, chalk, marble etc. It can be prepared by passing carbon dioxide through slaked lime or by the addition of sodium carbonate to calcium chloride.

$$\begin{aligned} &\operatorname{Ca(OH)}_2 + \operatorname{CO}_2 \to \operatorname{CaCO}_3 + \operatorname{H}_2\operatorname{O} \\ &\operatorname{CaCl}_2 + \operatorname{Na}_2\operatorname{CO}_3 \to \operatorname{CaCO}_3 + 2\operatorname{NaCl} \end{aligned}$$

Excess of carbon dioxide should be avoided since this leads to the formation of water soluble calcium hydrogencarbonate.

Calcium carbonate is a white fluffy powder. It is almost insoluble in water. When heated to 1200 K, it decomposes to evolve carbon dioxide.

$$CaCO_3 \xrightarrow{1200K} CaO + CO_2$$

It reacts with dilute acid to liberate carbon dioxide.

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2$$

 $CaCO_3 + H_2SO_4 \rightarrow CaSO_4 + H_2O + CO_2$

Uses: It is used as a building material in the form of marble and in the manufacture of quick lime. Calcium carbonate along with magnesium carbonate is used as a flux in the extraction of metals such as iron. Specially precipitated CaCO₃ is extensively used in the manufacture of high quality paper. It is also used as an antacid, mild abrasive in tooth paste, a constituent of chewing gum, and a filler in cosmetics.

Calcium Sulphate (Plaster of Paris), CaSO₄· ½ H₂O

It is a hemihydrate of calcium sulphate. It is obtained when gypsum, CaSO₄·2H₂O, is heated to 393 K.

$$2(\text{CaSO}_4.2\text{H}_2\text{O}) \rightarrow 2(\text{CaSO}_4).\text{H}_2\text{O} + 3\text{H}_2\text{O}$$

Above 393 K, no water of crystallisation is left and anhydrous calcium sulphate, CaSO₄ is formed. This is known as 'dead burnt plaster'.

It has a remarkable property of setting with water. On mixing with an adequate quantity of water it forms a plastic mass that gets into a hard solid in 5 to 15 minutes.

Uses: The largest use of Plaster of Paris is in the building industry as well as plasters. It is used for immoblising the affected part of organ where there is a bone fracture or sprain. It is also employed in dentistry, in ornamental work and for making casts of statues and busts.

Cement: Cement is an important building material. It was first introduced in England in 1824 by Joseph Aspdin. It is also called **'Portland cement'** because it resembles with the natural limestone quarried in the Isle of Portland, England.

Cement is a product obtained by combining a material rich in lime, CaO with other material such as clay which contains silica, SiO₂ along with the oxides of aluminium, iron and magnesium. The average composition of Portland cement is:

CaO, 50-60%; SiO₂, 20-25%; Al₂O₃, 5-10%; MgO, 2-3%; Fe₂O₃, 1-2% and SO₃, 1-2%. For a good quality cement, the ratio of silica (SiO₂) to alumina (Al₂O₃) should be between 2.5 and 4 and the ratio of lime (CaO) to the total of the oxides of silicon (SiO₂) aluminium (Al₂O₃) and iron (Fe₂O₃) should be as close as possible to 2.

The raw materials for the manufacture of cement are limestone and clay. When clay and lime are strongly heated together they fuse and react to form 'cement clinker'. This clinker is mixed with 2-3% by weight of gypsum ($CaSO_4 \cdot 2H_2O$) to form cement. Thus important ingredients present in Portland cement are dicalcium silicate (Ca_2SiO_4) 26%, tricalcium silicate (Ca_3SiO_5) 51% and tricalcium aluminate ($Ca_3Al_2O_6$) 11%.

Setting of Cement: When mixed with water, the setting of cement takes place to give a hard mass. This is due to the hydration of the molecules of the constituents and their rearrangement. The purpose of adding gypsum is only to slow down the process of setting of the cement so that it gets sufficiently hardened.

Uses: Cement has become a commodity of national necessity for any country next to iron and steel. It is used in concrete and reinforced concrete, in plastering and in the construction of bridges, dams and buildings.

10.10 BIOLOGICAL IMPORTANCE OF MAGNESIUM AND CALCIUM

An adult body contains about 25 g of Mg and 1200 g of Ca compared with only 5 g of iron and 0.06 g of copper. The daily requirement in the human body has been estimated to be 200-300 mg. All enzymes that utilise ATP in phosphate transfer require magnesium as the cofactor. The main pigment for the absorption of light in plants is chlorophyll which contains magnesium. About 99 % of body calcium is present in bones and teeth. It also plays important roles in neuromuscular function, interneuronal transmission, cell membrane integrity and blood coagulation. The calcium concentration in plasma is regulated at about 100 mgL^{-1} . It is maintained by two hormones: calcitonin and parathyroid hormone. Do you know that bone is not an inert and unchanging substance but is continuously being solubilised and redeposited to the extent of 400 mg per day in man? All this calcium passes through the plasma.

Summary: The *s*-Block of the periodic table constitutes **Group1** (alkali metals) and **Group 2** (alkaline earth metals). They are so called because their oxides and hydroxides are alkaline in nature. The alkali metals are characterised by one *s*-electron and the alkaline earth metals by two *s*-electrons in the valence shell of their atoms. These are highly reactive metals forming monopositive (\mathbf{M}^+) and dipositve (\mathbf{M}^{2+}) ions respectively.

oddol 18080-8A1 Kola V.EE (Advanced) Tenthuse Y Chemistry/Sheet Woodule Sall Analysis , Healing Effed & s., d-Block \Eng\(i) s- block element. p6 5

There is a regular trend in the physical and chemical properties of the alkali metal with increasing atomic numbers. The **atomic** and **ionic** sizes increase and the **ionization enthalpies** decrease systematically down the group.

Somewhat similar trends are observed among the properties of the alkaline earth metals. The first element in each of these groups, lithium in Group 1 and beryllium in Group 2 shows similarities in properties to the second member of the next group. Such similarities are termed as the 'diagonal relationship' in the periodic table.

As such these elements are anomalous as far as their group characteristics are concerned.

The alkali metals are silvery white, soft and low melting. They are highly reactive. The compounds of alkali metals are predominantly ionic. Their oxides and hydroxides are soluble in water forming strong alkalies. Important compounds of sodium includes sodium carbonate, sodium chloride, sodium hydroxide and sodium hydrogencarbonate. Sodium hydroxide is manufactured by **Castner-Kellner** process and sodium carbonate by **Solvay** process.

The chemistry of alkaline earth metals is very much like that of the alkali metals. However, some differences arise because of reduced atomic and ionic sizes and increased cationic charges in case of alkaline earth metals. Their oxides and hydroxides are less basic than the alkali metal oxides and hydroxides. Industrially important compounds of calcium include calcium oxide (lime), calcium hydroxide (slaked lime), calcium sulphate (**Plaster of Paris**), calcium carbonate (limestone) and cement. **Portland cement** is an important constructional material.

It is manufactured by heating a pulverised mixture of limestone and clay in a rotary kiln. The clinker thus obtained is mixed with some gypsum (2-3%) to give a fine powder of cement. All these substances find variety of uses in different areas.

Monovalent sodium and potassium ions and divalent magnesium and calcium ions are found in large proportions in **biological fluids**. These ions perform important **biological functions** such as maintenance of ion balance and nerve impulse conduction.

FEW IMPORTANT POINTS

- (i) Magnesium Peroxide (MgO_2) and Calcium Peroxide (CaO_2) are obtained by passing H_2O_2 in a suspension of $Mg(OH)_2$ and $Ca(OH)_2$.
- (ii) MgO₂ is used as an antiseptic in tooth paste and as a bleaching agent.
- (iii) Preparation of NaOH: Caustication of Na₂CO₃ (Gossage's method):

$$Na_2CO_3 + Ca(OH)_2 \rightarrow 2NaOH + CaCO_3 \downarrow$$
(suspension)

Since the K_{sp} (CaCO₃) $< K_{sp}$ (Ca(OH)₂), the reaction shifts towards right.

- (iv) As a reagent KOH is less frequently used but in absorption of CO₂, KOH is preferably used compared to NaOH. Because KHCO₃ formed is soluble whereas NaHCO₃ is sparingly soluble and may therefore choke the tubes of apparatus used.
- (v) Calcium hydroxide is used as a mortar.[Mortar is a mixture of slaked lime (1 Part) and sand (3 Parts) made into paste with water.]
- (vi) NaCl is used to prepare freezing mixture in laboratory [Ice-common salt mixture is called freezing mixture and temperature goes down to -23 °C.]
- (vii) On heating MgCl₂·6H₂O undergoes hydrolysis as follows:

EXERCISE # O-1

SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

		Alk	cati metats					
1.	Cs ⁺ ions impart v	Cs ⁺ ions impart violet colour to Bunsen flame. This is due to the fact that the emitted radiations a						
	of -							
	(A) high energy		(B) lower frequen	ncies				
	(C) longer wave-	lengths	(D) zero wave nu	ımber				
					SB0001			
2.	The reaction of a	n element A with water p	roduces combustible	gas B and an aqueous	solution of C.			
	When another sul	When another substance D reacts with this solution C also produces the same gas B. D also produ						
	the same gas even on reaction with dilute H ₂ SO ₄ at room temperature. Element A imparts g							
	yellow colour to	yellow colour to Bunsen flame. Then, A, B, C and D may be identified as						
	(A) Na, H ₂ , NaO	H and Zn	(B) K, H ₂ , KOH	and Zn				
	(C) K, H ₂ , NaOH	I and Zn	(D) Ca, H ₂ , CaC	OH ₂ and Zn				
					SB0002			
3.	Which of the foll	owing carbonate of alkal	i metals has the least	thermal stability?				
	(A) Li ₂ CO ₃	(B) K_2CO_3	(C) Cs ₂ CO ₃	(D) Na ₂ CO ₃				
	2 3			2	SB0003			
4.	The alkali metals	which form normal oxid	le, peroxide as well a	as super oxides are				
	(A) Na, Li	(B) K, Li	(C) Li, Cs	(D) K, Rb				
					SB0004			
5.	The pair of comp	ounds, which cannot exi	st together in a solut	ion is				
	(A) NaHCO ₃ and		(B) Na ₂ CO ₃ and					
	(C) NaHCO ₃ and		(D) NaHCO ₃ and					
	3	2 3	. , , ,	2	SB0005			
6.	Solution of sodiu	m metal in liquid ammor	nia is a strong reduci	ng agent due to presen	ce of			
	(A) solvated sodi	•	(B) solvated hydrogen ions					
	(C) sodium atoms	s or sodium hydroxide	(D) solvated elec	trons				
		SBO						
7.	The order of solu	bility of lithium halides i	n non-polar solvents	follows the order				
	(A) LiI > LiBr >	(A) LiI > LiBr > LiCl > LiF		(B) LiF > LiI > LiBr > LiCl				
	(C) $LiCl > LiF >$	(C) LiCl > LiF > LiI > LiBr		>LiF>LiI				
					SB0007			
8.		nds uses in qualitative inc	organic analysis is					
	T 2	O or $ZnSO_4 \cdot 5H_2O$	(B) $K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O$					
	(C) $Na(NH_4)HPO_4 \cdot 4H_2O$ (D) $FeSO_4 \cdot (NH_4)_2SO_4 \cdot 6H_2O$							

SB0008

9.	Fire extinguishers contain							
	(A) conc. H_2SO_4	solution	(B) H ₂ SO ₄ and NaHCO ₃ solutions					
	(C) NaHCO ₃ solu	tion	(D) CaCO ₃ soluti	on				
					SB0009			
10.	CsBr ₃ contains		~ \ ~ 2\					
	(A) Cs–Br covale		(B) Cs^{3+} and Br^{-1}					
	(C) Cs^+ and Br_3^- i	ions	(D) Cs^{3+} and Br_3^{3}	3- ions				
					SB0010			
11.	$Na + Al_2O_3 - Hig$	$ \begin{array}{c} \text{th temperature} \\ \text{(B) NaHCO}_{3} \end{array} $	$\xrightarrow{\text{in}}$ Y; compound Y	is				
	(A) NaAlO ₂	(B) NaHCO ₃	(C) Na ₂ CO ₂	(D) Na_2O_2				
	. ,	, , ,	. , 2 3	2 2	SB0011			
12.	aq. $NaOH + P_4$ (w	white) \longrightarrow PH ₃ + X; c	ompound X is					
	(A) NaH ₂ PO ₂	(B) NaHPO ₄	(C) Na ₂ CO ₃	(D) NaHCO ₃				
					SB0012			
13.	When K_2O is added to water, the solution becomes basic in nature because it contains a significant K_2O is added to water, the solution becomes basic in nature because it contains a significant K_2O is added to water, the solution becomes basic in nature because it contains a significant K_2O is added to water, the solution becomes basic in nature because it contains a significant K_2O is added to water, the solution becomes basic in nature because it contains a significant K_2O is added to water, the solution becomes basic in nature because it contains a significant K_2O is added to water, the solution becomes basic in nature because it contains a significant K_2O is added to water.							
	concentration of							
	$(A) K^+$	(B) O^{2-}	(C) OH ⁻	(D) O_2^{2-}				
					SB0013			
14.	The order of melti	ing point of chlorides o	f alkali metals is					
	` ′	> KCl < CsCl	* *					
	(C) $NaCl > KCl > CsCl > LiCl$		(D) LiCl > NaCl	(D) $LiCl > NaCl > CsCl > KCl$				
	200°C							
15.		$CO \xrightarrow{200^{\circ}C} X$; produ						
	(A) NaHCO ₃	(B) Na ₂ CO ₃	(C) HCOONa	(D) H_2CO_3				
					SB0015			
16.	The aqueous solutions of lithium salts are poor conductor of electricity rather than other alkali meta							
	because of							
	(A) high ionisation energy							
	(B) high electronegativity							
	(C) lower ability of Li ⁺ ions to polarize water molecules							
	(D) nigher degree	of hydration of Li ⁺ ion	1S		CD0016			
17	In I : All I motel	Alia muagantin			SB0016			
17.	In LiAlH ₄ , metal .	At is present in	(D) actionic neut					
	(A) anionic part	a and actionic next	(B) cationic part					
	(C) in both anionic and cationic part (D) neither in cationic nor in anionic par							
18.	Which one of the following fluoride of alkali metals has the highest lattice energy?							
10.	(A) LiF	(B) CsF	(C) NaF	(D) KF				
	(11) 1111	(D) Col	(C) 1 tu1	(D) III	SB0018			
					~ _ 0 _ 0			

- **19.** Crown ethers and cryptands form
 - (A) complexes with alkali metals
 - (B) salts of alkali metals
 - (C) hydroxides of alkali metals used for inorganic quantitative analysis
 - (D) organic salts of alkali metals

SB0019

- 20. The correct order of degree of hydration of M⁺ ions of alkali metals is
 - (A) $Li^+ < K^+ < Na^+ < Rb^+ < Cs^+$
- (B) $Li^+ < Na^+ < K^+ < Rb^+ < Cs^+$
- (C) $Cs^+ < Rb^+ < K^+ < Na^+ < Li^+$
- (D) $Cs^+ < Rb^+ < Na^+ < K^+ < Li^+$

SB0020

- 21. The commercial method of preparation of potassium by reduction of molten KCl with metallic sodium at 850°C is based on the fact that
 - (A) potassium is solid and sodium distils off at 850 °C
 - (B) potassium being more volatile and distils off thus shifting the reaction forward
 - (C) sodium is less reactive than potassium at 850 °C with respect to Cl₂
 - (D) sodium has less affinity to chloride ions in the presence of potassium ion

SB0021

Alkaline earth metals

- 22. The 'milk of magnesia' used as an antacid is chemically
 - (A) $Mg(OH)_{2}$
- (B) MgO
- (C) MgCl₂
- (D) $MgO + MgCl_2$

SB0022

- 23. An alkaline earth metal (M) gives a salt with chlorine, which is soluble in water at room temperature. It also forms an insoluble sulphate whose mixture with a sulphide of a transition metal is called 'lithopone' -a white pigment. Metal M is
 - (A) Ca
- (B) Mg
- (C) Ba
- (D) Sr

SB0023

- 24. The hydroxide of II^{nd} A metal, which has the lowest value of solubility product (K_{sp}) at normal temperature (25°C) is
 - (A) Ca(OH),
- $(B) Mg(OH)_{2}$
- (C) $Sr(OH)_{2}$
- (D) $Be(OH)_2$

SB0024

- 25. Which of the following metal is inert towards reaction with H₂O.
 - (A) Be
- (B) Na
- (C) Ca
- (D) K

SB0025

- **26.** $Mg_2C_3 + H_2O \longrightarrow X$ (organic compound). Compound X is
 - $(A) C_2H_2$
- (B) CH₄
- (C) propyne
- (D) ethene

SB0026

27.	The hydration energ	gy of Mg ²⁺ is						
	(A) more than that of Mg^{3+} ion		(B) more than that of Na ⁺ ion					
	(C) more than that of Al^{3+} ion		(D) more than that of	of Be ²⁺ ion				
					SB0027			
28.	The correct order of second ionisation potentials (IP) of Ca, Ba and K is							
	(A) $K > Ca > Ba$	(B) $Ba > Ca > K$	(C) $K > Ba > Ca$	(D) $K = Ba = Ca$				
					SB0028			
29.	EDTA is used in the	e estimation of						
	(A) Mg ²⁺ ions		(B) Ca ²⁺ ions					
	(C) both Ca ²⁺ and M	Mg ²⁺ ions	(D) Mg ²⁺ ions but n	not Ca ²⁺ ions				
					SB0029			
30.	The correct order of	f solubility is						
	(A) CaCO ₃ < KHCO ₃ < NaHCO ₃		(B) KHCO ₃ < CaC	$O_3 < NaHCO_3$				
	(C) NaHCO ₃ < CaCO ₃ < KHCO ₃		(D) CaCO ₃ < NaHCO ₃ < KHCO ₃					
					SB0030			
31.	The complex formation tendency of alkaline earth metals decreases down the group because							
	(A) atomic size increases							
	(B) availability of empty d and f-orbitals increases							
	(C) nuclear charge t	to volume ratio increas	es					
	(D) all the above							
					SB0031			
32.	The alkaline earth r	netals, which do not in	npart any colour to Bur	isen flame are				
	(A) Be and Mg	(B) Mg and Ca	(C) Be and Ca	(D) Be and Ba				
					SB0032			
33.	Υ , Δ,205°C CaS	O.·2H ₂ O Δ,120°C Σ	X. X and Y are respect	ivelv				
	(A) plaster of paris,		1	,				
	(B) dead burnt plast	•						
	(C) CaO and plaster	-						
	(D) plaster of paris,	•						
	(D) plaster of paris,	mixture or gases			SB0022			
34.	SB0033							
34.	A metal M readily forms water soluble sulphate, and water insoluble hydroxide M(OH) ₂ . Its oxide MO is amphoteric, hard and having high melting point. The alkaline earth metal M must be							
	(A) Mg	(B) Be	(C) Ca	(D) Sr	_, _, _			
	. , 6	` / -	· /	` '	SB0034			

Ε

- 35. The purpose of addition of gypsum in the cement is -
 - (A) To slow down the process of setting of the cement
 - (B) To fasten the process of setting of the cement
 - (C) Not to affect the process of setting of the cement by any means
 - (D) None of these

SB0035

(Milky Cloud) $C \leftarrow CO_2 - A + Na_2CO_3 \longrightarrow B + C$ **36.**

The chemical formulae of A and B are

(A) NaOH and Ca(OH)₂

(B) Ca(OH)₂ and NaOH

(C) NaOH and CaO

(D) CaO and Ca(OH),

SB0036

- **37.** The correct order of basic-strength of oxides of alkaline earth metals is
 - (A) BeO > MgO > CaO > SrO
- (B) SrO > CaO > MgO > BeO
- (C) BeO > CaO > MgO > SrO
- (D) SrO > MgO > CaO > BeO

SB0037

 $X \xrightarrow{\quad N_2, \Delta \quad} Y \xrightarrow{\quad H_2O \quad} Z(colourless\,gas) \xrightarrow{\quad CuSO_4 \quad} T(blue\,colour)$ 38.

Then, substances Y and T are

- (A) $Y = Mg_3N_2$ and $T = CuSO_4 \cdot 5H_2O$ (B) $Y = Mg_3N_2$ and $T = CuSO_4 \cdot 4NH_3$
- (C) $Y = Mg(NO_3)_2$ and T = CuO
- (D) Y = MgO and $T = CuSO_4 \cdot 4NH_3$

SB0038

- **39.** Weakest base among KOH, NaOH, Ca(OH), and Zn(OH), is
 - (A) Ca(OH),

(B) KOH

(C) NaOH

(D) $Zn(OH)_2$

SB0039

- 40. If X and Y are the second ionisation potentials of alkali and alkaline earth metals of same period, then -
 - (A) X > Y
- (B) X < Y
- (C) X = Y
- (D) $X \ll Y$

SB0040

- In castner-kellner cell if cathode is made up of graphite instead of mercury, then product that will be obtained first at cathode will be -
 - (A) Na-amalgam
- (B) Na only
- (C) H, gas
- (D) NaOH

SB0041

- Na⁺ ion can form complex with which of the following ligand. 42.
 - (A) Cryptands
- (B) Crown ether
- (C) Both (A) and (B)
- (D) None

SB0042

Ε

Compound Y is found in polymeric chain structure and is an electron deficient molecule. Y must be

- (A) BeO
- (B) BeCl₂
- (C) BeH₂
- (D) AlCl₃

SB0043

44. $BeCl_2 + LiAlH_4 \longrightarrow X + LiCl + AlCl_3$

(A) X is LiH

(B) X is BeH₂

(C) X is BeCl₂·2H₂O

(D) None

SB0044

45. The order of thermal stability of carbonates of IIA group is

- (A) $BaCO_3 > SrCO_3 > CaCO_3 > MgCO_3$
- (B) $MgCO_3 > CaCO_3 > SrCO_3 > BaCO_3$
- (C) $CaCO_3 > SrCO_3 > BaCO_3 > MgCO_3$
- (D) $MgCO_3 = CaCO_3 > SrCO_3 = BaCO_3$

SB0045

46. A pair of substances which gives all the same products on reaction with water is

- (A) Mg and MgO
- (B) Sr and SrO
- (C) Ca and CaH₂
- (D) Be and BeO

SB0046

47. A metal which is soluble in both water and liquid NH₃ separately -

- (A) Cr
- (B) Mn
- (C) Ba
- (D) Al

SB0047

 $Be_2C + H_2O \longrightarrow BeO + X$ 48.

 $CaC_2 + H_2O \longrightarrow Ca(OH)_2 + Y$; then X and Y are respectively

- $(A) CH_4, CH_4$
- (B) CH_4 , C_2H_6 (C) CH_4 , C_2H_2
- (D) C_2H_2 , CH_4

SB0048

49. Which of the following groups of elements have chemical properties that are most similar

- (A) Na, K, Ca
- (B) Mg, Sr, Ba
- (C) Be, Al, Ca
- (D) Be, Ra, Cs

SB0049

50. MgBr, and MgI, are soluble in acetone because of

(A) Their ionic nature

(B) Their coordinate nature

(C) Their metallic nature

(D) Their covalent nature

SB0050

EXERCISE # O-2

SEL	ECT THE CORRE	ECT ALTERNATIVES (Al	(ONE OR MORE TH Kali metals	EN ONE CORRECT	ANSWERS)				
1.	Nitrogen dioxide	e can be prepared by hea	ting-						
	(A) KNO ₃	(B) AgNO ₃	(C) $Pb(NO_3)_2$	(D) $Cu(NO_3)_2$					
	J	Ç	5 2	J 2	SB0051				
2.	Which of the fol	lowing compounds are n	ot paramagnetic in na	ture?					
	(A) KO_2	(B) K_2O_2	(C) Na ₂ O ₂	(D) RbO_2					
					SB0052				
3.	The golden yello	ow colour associated wit	h NaCl to Bunsen flar	ne can be explained or	n the basis of				
	(A) low ionisation	on potential of sodium							
	(B) emission spe	ectrum							
	(C) photosensitiv	rity of sodium							
	(D) sublimation of	of metallic sodium of yell	ow vapours						
					SB0053				
4.	KO ₂ finds use in KO ₂ is/are	oxygen cylinders used fo	or space and submaring	es. The fact(s) related	to such use of				
	(A) it produces (O_2	(B) it produces O	3					
	(C) it absorbs Co	O_2	(D) it absorbs bot	th CO and CO ₂					
					SB0054				
5.	The compound(s	s) which have –O–O– bo	ond(s) is/are						
	(A) BaO ₂	(B) Na_2O_2	(C) CrO ₅	(D) $\operatorname{Fe_2O_3}$					
					SB0055				
6.	Highly pure dilu	te solution of sodium in	ammonia						
	(A) shows blue of	(A) shows blue colouration due to solvated electrons							
	(B) shows electr	(B) shows electrical conductivity due to both solvated electrons as well as solvated sodium ions							
	(C) shows red co	(C) shows red colouration due to solvated electrons but a bad conductor of electricity							
	(D) produces hy	drogen gas or carbonate							
					SB0056				
7.	Sodium metal is	highly reactive and can	be stored under						
	(A) toluene	(B) kerosene oil	(C) alcohol	(D) benzene					
					SB0057				
			ne earth metals						
8.	The compound(s	s) of II nd A metals, which	n are amphoteric in na	ture is/are					
	(A) BeO	(B) MgO	(C) $Be(OH)_2$	(D) $Mg(OH)_2$					

SB0058

AL	LLEN			s-Block Ei	ement 109					
9.	The correct state	ement is/are								
	(A) BeCl ₂ is a c	ovalent compound								
	(B) BeCl ₂ is an e	electron deficient mole	ecule							
	(C) BeCl ₂ can fo	orm dimer								
	(D) the hybrid s	tate of Be in BeCl ₂ is s	sp^2							
					SB0059					
10.	Which of the fol	llowing substance(s) is	/are used in laborator	ry for drying purposes?						
	(A) anhydrous I	P_2O_5	(B) graphite							
	(C) anhydrous (CaCl ₂	(D) Na_3PO_4							
					SB0060					
11.	Na ₂ SO ₄ is water	Na ₂ SO ₄ is water soluble but BaSO ₄ is insoluble because								
	(A) the hydratio	(A) the hydration energy of Na ₂ SO ₄ is higher than that of its lattice energy								
	(B) the hydration energy of Na ₂ SO ₄ is less than that of its lattice energy									
	(C) the hydration energy of BaSO ₄ is less than that of its lattice energy									
	(D) the hydration energy of BaSO ₄ is higher than that of its lattice energy									
					SB0061					
12.	Which of the fol	llowing statements are	false?							
	(A) BeCl ₂ is a linear molecule in the vapour state but it is polymeric form in the solid state									
	(B) Calcium hydride is called hydrolith.									
	` '	•		etvlene						
	(C) Carbides of both Be and Ca react with water to form acetylene(D) Oxides of both Be and Ca are amphoteric.									
	(D) Oxides of bo		moterie.		SB0062					
13.	Which of the fol	llowing are ionic carbi	dos?		SD0002					
13.		llowing are ionic carbi		(D) D C						
	(A) CaC ₂	(B) Al_4C_3	(C) SiC	(D) Be_2C						
					SB0063					
14.	Which of the fo	ollowing orders are CO	ORRECT :							
	(A) AgCl > Agl	F : Covalent character	order							

(B) $BaO > BaF_2$: Melting point order

(C) $BeF_2 > BaF_2$: Solubility order

(D) $LiNO_3 < RbNO_3$: Thermal stability order

SB0064

Ε

- **15.** Which of the following statements are **CORRECT**:
 - (A) Mg is present in chlorophyll
 - (B) Alkaline earth metals does not form super oxide
 - (C) NaHCO3 is known as baking soda
 - (D) Permanent hardness of water is removed by boiling

SB0065

- **16.** Which of the following carbides on hydrolysis does not form methane :
 - (A) Be₂C
- (B) CaC,
- (C) SrC₂
- (D) Mg_2C_3

SB0066

- **17.** Select the incorrect order for given properties :
 - (A) Thermal stability : $BaSO_4 > SrSO_4 > CaSO_4$
 - (B) Solubility : $BaSO_4 > SrSO_4 > CaSO_4$
 - (C) Thermal stability : $\text{Li}_2\text{CO}_3 < \text{Na}_2\text{CO}_3 < \text{K}_2\text{CO}_3$
 - (D) Solubility : $Li_2CO_3 > Na_2CO_3 > K_2CO_3$

SB0067

- **18.** The correct statement(s) is/are
 - (A) Mg cannot form complexes
 - (B) Be can form complexes due to a very small atomic size
 - (C) the first ionisation potential of Be is higher than that of Mg
 - (D) Mg forms an alkaline hydroxide while Be forms amphoteric oxides

SB0068

- **19.** Which of the following is are the characteristic of barium?
 - (A) It produce water soluble sulphide, sulphite and sulphate
 - (B) It is a silvery white metal
 - (C) It forms Ba(NO₃), which is used in preparation of green fire
 - (D) It produce blue-black solution in liquid ammonia

EXERCISE # S-1

NUMERIC GRID TYPE QUESTIONS:

1. Find the number of compounds from the following in which the element in the anionic part is in the minimum oxidation state of it

SB0070

2. How many nitrate groups are present in 1 molecule of Basic beryllium nitrate?

SB0071

- **3.** Consider the following order :
 - (1) $CH_4 < CCl_4 < CF_4$: E.N. of central atom C
 - (2) $Mg^{+2} < K^+ < S^{-2} < Se^{-2}$: Ionic radius
 - (3) $Be_{(aq)}^{+2} > Mg_{(aq)}^{+2} > Ca_{(aq)}^{+2}$: Ionic mobility
 - (4) $Be^{+2} > Li^+ > Al^{+3}$: Hydrated size
 - (5) Be > Li > Cs : Reducing power
 - (6) $F_{(aq)}^{\Theta} > Cl_{(aq)}^{\Theta} > Br_{(aq)}^{\Theta}$: Electrical conductance in infinite dilute solution

Then calculate value of $|x - y|^2$, where x and y are correct and incorrect orders respectively.

SB0072

4. Consider the following elements :

Li, Cs, Mg, Pb, Al, N

- x = number of elements which can form MO type of oxides.
- y = the highest oxidation state shown by any one of them.
- z = the number of elements which can form amphoteric oxide(s).

Find the sum of x, y and z.

SB0073

Fill your answer as sum of digits till you get the single digit answer.

5. Find the number of s-block elements which can produce ammoniated cation and ammoniated electron with liquid ammonia.

Li, Na, K, Rb, Cs, Ca, Sr, Ba

SB0074

6. How many of the following metal chlorides impart characteristic colour to the oxidising flame. LiCl, NaCl, KCl, BeCl₂, MgCl₂, CaCl₂, SrCl₂, BaCl₂

EXERCISE # S-2

COMPREHENSION BASED QUESTIONS

Comprehension #1

$$A \stackrel{\Delta}{\longrightarrow} B \text{ (oxide)} + CO_{2}$$

$$B + H_2O \longrightarrow C$$

$$C + CO_2 \longrightarrow A \text{ (milky)}$$

$$C + NH_4C1 \xrightarrow{\Delta} D$$
 (gas)

$$D + H_2O + CO_2 \longrightarrow E$$

$$E + NaCl \longrightarrow F$$

$$F \xrightarrow{\Delta} Na_2CO_3 + CO_2 + H_2O$$

- 1. A is:
 - (A) $Ca(HCO_3)_2$
- (B) CaCO₂
- (C) CaO
- (D) Na₂CO₃

SB0076

- 2. B and C are:
 - (A) CaO, Ca(OH),

(B) Ca(OH), CaCO,

(C) CaCO₃, Ca(OH)₂

(D) Ca(OH), CaO

SB0076

- **3.** D, E and F are:
 - (A) NH₃, NH₄Cl, NH₄HCO₃
- (B) NH₃, NH₄HCO₃, NaHCO₃
- (C) NH₄HCO₃, Na₂CO₃, NaHCO₃
- (D) None

SB0076

Comprehension # 2

Alkali metals readily react with oxyacids forming corresponding salts like M2CO3, MHCO3, MNO3, M₂SO₄ etc. with evolution of hydrogen. They also dissolve in liquid NH₃ but without the evolution of hydrogen. The colour of its dilute solution is blue but when it is heated and concentrated then its colour becomes bronze.

- 4. Among the nitrate of alkali metals which one can be decomposed to its oxide easily?
 - (A) NaNO₃
- (B) KNO₃
- (C) LiNO₃
- (D) RbNO₃

SB0077

- 5. Among the carbonates of alkali metals which one has highest stability?
 - (A) Cs₂CO₃
- (B) Rb₂CO₃
- (C) K₂CO₃
- (D) Na₂CO₃

- **6**. Which of the following statement about the sulphate of alkali metal is correct?
 - (A) Except Li₂SO₄ all sulphate of other alkali metals are soluble in water
 - (B) All sulphates of alkali metals except lithium sulphate forms alum.
 - (C) The sulphates of alkali metals cannot be hydrolysed.
 - (D) All of these

SB0079

- 7. Which of the following statement about solution of alkali metals in liquid ammonia is correct?
 - (A) The solution have strong oxidizing properties.
 - (B) Both the dilute solution as well as concentrated solution are paramagnetic in nature
 - (C) Charge transfer is the responsible for the colour of the solution
 - (D) None of these

SB0080

- **8**. Which metal bicarbonates does not exist in solid state?
 - (i) LiHCO₃
- (ii) Ca(HCO₃)₂
- (iii) Zn (HCO₃)₂

- (iv) NaHCO₃
- (v) AgHCO₃

(B) (i), (ii), (iii)

(A)(i), (ii), (iii), (v)

- (C)(i),(ii),(v)
- (D) (ii), (iii), (iv)

SB0081

MATCH THE COLUMN:

Q	Column-I	Column-II
7.	Columni-i	Column-11

(A) Hydrolith

(P) Contain Ca

(B) Nitrolim

(Q) Used as a fertilizer

(C) Dolomite

(R) Used to prepare H,

(D) Pearl's ash

(S) Contain potassium

SB0082

10. Column-II Column-II

(A) Metal sulphate $\xrightarrow{\Delta}$ metal oxide + SO₂ + O₂

(P) Ba

(B) Metal cation + $K_2CrO_4 \longrightarrow yellow ppt$

(Q) Sr

(C) Metal + $NH_3 \xrightarrow{\text{(liquid)}} \text{blue solution}$

(R) Na

(D) $MCl_2 + conc. H_2SO_4 \longrightarrow white ppt.$

(S) Mg

114 JEE-Chemistry

ALLEN

MATCH THE CODE:

11. List-I

- (P) CaH₂
- $(Q) K_2O_2$
- (R) KO₂
- (S) NaCl

List-II

- (1) Paramagnetic anion
- (2) Homodiatomic, diamagnetic anion
- (3) Neutral aqueous solution
- (4) Gives hydrogen on hydrolysis

Codes:

	P	Q	R	S
(A)	3	2	1	4
(B)	4	2	3	1
(C)	4	3	2	1
(D)	4	2	1	3

SB0084

12. Column-I

- (P) Solvay process used for
- (Q) Evolve CO,↑ on heating
- (R) aq. soln. is neutral towards litmus
- (S) Oxone

Column-II

- (1) NaCl
- (2) Na₂O₂
- (3) NaHCO₃
- (4) Na₂CO₃

Codes:

	P	Q	R	S
(A)	3,4	3	1	2
(B)	4,1	1	3	2
(C)	2,3	4	1	3
(D)	2.4	1	3	4

SB0085

ASSERATION & REASONING:

Questions given below consist of two statements each printed as Assertion (A) and Reason (R); while answering these questions you are required to choose any one of the following four responses:

- (A) if both (A) and (R) are true and (R) is the correct explanation of (A)
- (B) if both (A) and (R) are true but (R) is not correct explanation of (A)
- (C) if (A) is true but (R) is false
- (D) if (A) is false and (R) is true
- **13. Assertion**: Beryllium does not impart any characteristic colour to the bunsen flame.

Reason: Due to its very high ionization energy, beryllium requires a large amount of energy for exciation of the electrons.

14. Assertion: In fused state, calcium chloride cannot be used to dry alcohol or NH₃.

Reason: Anhy. CaCl₂ is not a good desiccant.

SB0087

15. Assertion: Diagonal relationship is shown between Be and Al.

Reason: Ionic potential of Be is almost the same as that of Al.

SB0088

16. Assertion: Beryllium halides dissolve in organic solvents.

Reason: Beryllium halides are ionic in character.

SB0089

17. Assertion: BeCl₂ fumes in moist air.

Reason: BeCl₂ reacts with moisture to form HCl gas.

SB0090

18. Assertion: Calcium carbide on hydrolysis gives methane.

Reason: Calcium carbide contains C_2^{2-} anion.

SB0091

19. Assertion: When CO₂ is passed through lime water, it first turns milky and then the solution becomes clear when the passage of CO₂ is continued.

Reason: The milkiness is due to the formation of insoluble CaCO₃ which then changes to soluble Ca(HCO₃)₂ when excess of CO₂ is present.

SB0092

20. Assertion: MgCO₃ is soluble in water when a current of CO₂ is passed.

Reason: The solubility of $MgCO_3$ is due to the formation of $Mg(HCO_3)_2$.

SB0093

MATCHING LIST TYPE 1×3 Q. (THREE LIST TYPE Q.)

The following column 1, 2, 3 represent elements of s block and their different oxide formation abilities. Answer the questions that follow

Column-1 - Elements of s-Block

Column-2 - Product formed on reaction with excess oxygen

Column-3 - Characteristics of species form on reaction with excess oxygen

Column - 1 Elements	Column - 2 Product formed on reaction with excess oxygen	Column - 3 Characteristics of species form on reaction with excess oxygen
(I) Na	(A) Superoxide	(P) Paramagnetic
(II) Ba	(B) Peroxide	(Q) Diamagnetic
(III) K	(C) Monooxide	(R) Bond order = 1.5
(IV) Ca	(D) Dioxide	(S) Bond order = 1

- **21.** Which of the following is an **INCORRECT** match.
 - (A)(I),(B),(QS)
- (B)(II),(B),(QS)
- (C)(II),(A),(PR)
- (D)(IV),(C),(Q)

SB0094

- 22. Which of the following matches will result in species having magnetic moment equal to that of Mn⁺⁶
 - (A) I, (B), QS
- (B) IV, B, (QS)
- (C) IV, (A), (PR)
- (D) III, (A), (PR)

SB0094

- 23. On reaction with oxygen, which of the following combination is possible
 - (A) I, (A, C), (P, Q)

(B) I, (B), (Q)

(C) II, (A, B), (P, Q, S)

(D) IV, (B, C), Q

		EAF	EKCISE # JEE-	IVIAIN	
1.	A metal M	readily forms its sul	lphate MSO ₄ which is	water soluble. It forms	oxide MO which
	becomes ine	ert on heating. It for	ms insoluble hydroxide	which is soluble in Na	OH. The metal M
	is:-				[AIEEE-2002]
	(1) Mg	(2) Ba	(3) Ca	(4) Be	
					SB0095
2.	KO ₂ is used	in space and submar	rines because it		[AIEEE-2002]
	(1) Absorbs	CO ₂ and increase O	₂ concentration		
	(2) Absorbs	moisture	_		
	(3) Absorbs	CO_2			
	(4) Produces	s ozone			
					SB0096
3.	In curing cer	ment plasters, water i	is sprinkled from time to	time. This helps in :-	[AIEEE-2003]
	•	g sand and gravel m	<u>-</u>	•	
	(2) Converti	ng sand into silicate			
		_	lle like crystals of hydra	ated silicates	
	(4) Keeping	it cool			
					SB0097
4.	The solubilit	ies of carbonates decr	eases down the magnesi	um group due to decrease	e in-[AIEEE-2003]
	(1) Inter-ion		C		-
	(2) Entropy	of solution formation	1		
	(3) Lattice e	nergy of solids			
	(4) Hydratio	n energy of cations			
					SB0098
5.	The substance	ce not likely to conta	ain CaCO ₃ is :-		[AIEEE-2003]
	(1) Sea shell	S	(2) Dolomite		
	(3) A marble	e statue	(4) Calcined g	ypsum	
	,		. ,	V 1	SB0099
6.	One mole of	magnesium nitride	on reaction with excess	of water gives :-	[AIEEE-2004]
	(1) Two mo	=	(2) Two mole	=	
	(3) 1 mole o		(4) 1 mole of	5	
	,	3	, ,	J	SB0100
7.	Berylium an	d aluminium exhibi	t many properties which	h are similar. But the ty	wo elements differ
	in -		J 1 1		[AIEEE-2004]
	(1) Exhibitin	ng maximum covaler	ncy in compounds		
	* *	polymeric hydrides	•		
	· · ·	covalent halides			
	(4) Exhibitin	ng amphoteric nature	in their oxides.		
					SB0101

8.	The ionic mobili	ity of alkali metal	ioins in aqueous solution	is maximum for :-	[AIEEE-2006]					
	(1) Rb ⁺	(2) Li ⁺	(3) Na ⁺	(4) K ⁺						
					SB0102					
9.	The products ob	tained on heating	LiNO ₃ will be :-		[AIEEE-2011]					
	$(1) LiNO_2 + O_2$		$(2) \operatorname{Li_2O} + \operatorname{NO_2}$	+ O ₂						
	$(3) \operatorname{Li}_{3} N + \operatorname{O}_{2}$		$(4) \operatorname{Li_2O} + \operatorname{NO} +$	- O ₂						
					SB0103					
10.	What is the be water?	est description	of the change that occ	curs when Na ₂ O(s) is dissolved in [AIEEE-2011]					
	(1) Oxidation nu	umber of sodium of	lecreases							
	(2) Oxide ion ac	ccepts sharing in a	pair of electrons							
	(3) Oxide ion do	onates a pair of el	ectrons							
	(4) Oxidation number of oxygen increases									
		, ,			SB0104					
11.	Which of the oxide?	following on th	ermal-decomposition y	yields a basic as v	well as an acidic [AIEEE-2012]					
	(1) NH ₄ NO ₃	(2) NaNO ₃	(3) KClO ₃	(4) $CaCO_3$						
					SB0105					
12.	Fire extinguishe	ers contain H ₂ SO ₄	and which one of the fol	lowing :-[JEE MAI	N-2012, Online]					
	(1) CaCO ₃		(2) NaHCO ₃ ar							
	(3) Na ₂ CO ₃		(4) NaHCO ₃	2 3						
	(-)2 3		(1) = 1.1 = 3		SB0106					
13.		energy and other ave the highest m	considerations, which one elting point?							
	(1) RbCl	(2) LiCl	(3) KCl	(4) NaCl						
					SB0107					
14.	Which one of th	e following will r	eact most vigorously with	h water? [JEE MA	IN-2012, Online]					
	(1) Li	(2) K	(3) Rb	(4) Na						

15. A metal M on heating in nitrogen gas gives Y. Y on treatment with H_2O gives a colourless gas which when passed through CuSO_4 solution gives a blue colour, Y is :-**JEE MAIN-2012, Online]**

(1) NH₃

(2) MgO

 $(3) Mg_3N_2$

 $(4) \text{ Mg}(\text{NO}_3)_2$

[JEE(Main)-2014]

16. The correct statement for the molecule, CsI₃, is:

	(1) it contains Cs ³⁺ ar	nd I- ions		
	(2) it contains Cs+, I-	and lattice I ₂ molecu	ıle	
	(3) it is a covalent mo			
	(4) it contains Cs ⁺ and	d I ₃ ions		
				SB0110
17.	Which of the following	ng statements about ?	Na_2O_2 is not correct?	[JEE MAIN-2014, Online]
	(1) Na ₂ O ₂ oxidises C	r^{3+} to CrO_4^{2-} in acid	medium	
	(2) It is diamagnetic i	n nature		
	(3) It is the super oxid	de of sodium		
	(4) It is a derivative of	of H_2O_2		
				SB0111
18.		BeCl ₂ and MgCl ₂ the	compounds with the gre	atest and the least ionic character,
	respectively are:			[JEE MAIN-2014, Online]
	(1) RbCl and MgCl ₂		(2) LiCl and RbCl	
	(3) $MgCl_2$ and $BeCl_2$		(4) RbCl and BeCl ₂	
				SB0112
19.	The correct order of the	nermal stability of hy	droxides is:	JEE(Main)Online-2015]
	$(1) Ba(OH)_2 < Sr(OH)_2$	$I)_2 < Ca(OH)_2 < Mg($	$\left(OH\right)_{2}(2) Mg(OH)_{2} < Sr$	$(OH)_2 < Ca(OH)_2 < Ba(OH)_2$
	$(3) \mathrm{Mg(OH)}_2 < \mathrm{Ca(O}$	$H)_2 < Sr(OH)_2 < Ba($	$(OH)_2(4) Ba(OH)_2 < Ca$	$(OH)_2 < Sr(OH)_2 < Mg(OH)_2$
				SB0113
20.	Which of the alkaline	earth metal halides g	iven below is essentially	covalent in nature :-
	(1) SrCl ₂	(2) CaCl ₂	(3) $BeCl_2$	$(4) \mathrm{MgCl}_2$
				JEE(Main)Online-2015]
				SB0114
21.	Which one of the follo	owing alkaline earth	metal sulphates has its h	ydration enthalpy greater than its
	lattice enthalpy?	C	1	[JEE(Main)-2015]
	1.	(2) SrSO ₄	(3) CaSO ₄	(4) $BeSO_4$
	(1) BaSO ₄	(2) SISO ₄	(3) CasO ₄	(4) BeSO ₄ SB0115
22.	The commercial nam	a for aglaium avida i	ia •	[JEE(Main)-2016]
<i>44</i> .				- ` , , , -
	(1) Quick lime	(2) Milk of lime	(3) Limestone	(4) Slaked lime
23.	The correct order of the	ha galubility of alkali	na aarth matal aulphata	SB0116
4 3.	(1) $Mg < Sr < Ca < 1$	· ·	(2) $Mg < Ca < Sr$	s in water is : [JEE(Main)-2016]
	(1) Mg $<$ Si $<$ Ca $<$ (3) Mg $>$ Ca $>$ Sr $>$ 1		(2) Mig < Ca < Si $(4) Mig > Sr > Ca$	
	(-)	— 	(1) 11-5 / 51 / 64	SB0117
				22011

- 24. The main oxides formed on combustion of Li, Na and K in excess of air are respectively:
 - (1) Li₂O, Na₂O₂ and KO₂

(2) Li₂O, Na₂O and KO₂

[JEE(Main)-2016]

(3) LiO_2 , Na_2O_2 and K_2O

(4) Li₂O₂, Na₂O₂ and KO₂

SB0118

- **25.** Both lithium and magnesium display several similar properties due to the diagonal relationship; however, the one which is incorrect is: [JEE(Main)-2017]
 - (1) Both form basic carbonates
 - (2) Both form soluble bicarbonates
 - (3) Both form nitrides
 - (4) Nitrates of both Li and Mg yield NO2 and O2 on heating

SB0119

- **26.** Which of the following ions does **not** liberate hydrogen gas on reaction with dilute acids?
 - $(1) Ti^{2+}$

(2) Cr^{2+}

[JEE(Main)-2017 on line]

 $(3) \text{ Mn}^{2+}$

 $(4) V^{2+}$

SB0120

- 27. In KO₂, the nature of oxygen species and the oxidation state of oxygen atom are, respectively [JEE(Main)ONLINE-2018]
 - (1) Superoxide and -1/2
 - (2) Oxide and --2
 - (3) Peroxide and -1/2
 - (4) Superoxide and −1

EXERCISE # JEE-ADVANCED

1.	The species that do not	contain perox	kide linkage a	ire -	$[\mathbf{J}]$	EE 1992]
	(A) PbO ₂	7(B) I	H_2O_2	$(C) SrO_2$	(D) BaO ₂	
						SB0122
2.	Read the following state	ement and ex	planation and	l answer as per th	e options given belo	ow:
	Statement-1: The alka	li metals can	form ionic h	ydrides which co	ntain the hydride io	n H ⁻ .
	Statement-2: The alkal	i metals have	low electrone	egativity; their hy	drides conduct elect	ricity when
	fused and liberate hydro					EE 1994]
	(A) Both 1 and 2 are tru	_		anation of 1.	_	-
	(B) Both 1 and 2 are tru		-			
	(C) 1 is true but 2 is fals			I		
	(D) 1 is false but 2 is tru					
	(=) = == =============================					SB0123
3.	The following compoun	ds have been:	arranged in or	der of their increa	sing thermal stabilit	
.	the correct order.	as nave been	arranged in or	der of their increa	•	EE 1996]
	$K_2CO_3(I) MgCO_3(II) C$	'aCO (III) B	eCO (IV)		[Մ.	LL 1770]
	$R_2 c O_3(I) Mg c O_3(II) c$ (A) I < II < III < IV	aco ₃ (111) b	(B) IV < II	/ III / I		
	(C) IV < II < I < III		(D) IV < II $(D) II < IV$			
	(C) IV < II < I < III		(D) II < IV	< III < I		SB0124
4.	Duomontry of all the allrale	in a couth mat	alathat in ana	aa with thair atom	aio numbania — [T	
4.	Property of all the alkali	me earm met				EE 199 7]
	(A) ionisation energy	1	` '	ty of their hydrox	ides	
	(C) solubility of their su	ipnate	(D) electron	iegativity		CD0125
_	III:-1:11!!1	: C 1'	. ! 1!! 1		r T	SB0125
5.	Highly pure dilute solut	ion oi sociun	-		-	EE 1998]
	(A) shows blue colour	. 1	` '	electrical conduc	etivity	
	(C) produces sodium an	niae	(D) produce	es hydrogen gas		CD0127
_					F.W.	SB0126
6.	The set representing the			-	-	EE 2001S]
	$(A) K > Na > Li \qquad ($	B) Be $>$ Mg	> Ca (C)	B > C > N	(D) $Ge > Si > C$	~~~
				_		SB0127
			eration and			
7.	This questions contains			nd statement-2 (re	ason) and has 4 choi	ces (a), (b),
	(c) and (d) out of which	•				
	Statement-1: Alkali m		-	•		
	Statement-1: Alkali	metals is liqu	uid ammonia	give solvated sp		<i>U</i>
	(M = alkali metals).				[J.	EE 2007]
	(A) Both 1 and 2 are tru		-			
	(B) Both 1 and 2 are tru	e but 2 is not	the correct e	xplanation of 1.		
	(C) 1 is true but 2 is fals	se.				
	(D) 1 is false but 2 is tru	ie.				
						SB0128
8.	The compound(s) forme	ed upon comb	oustion of soc	lium metal in exc	ess air is (are) [J	EE 2009]
	(A) Na2O2 (B) Na ₂ O	(C)	NaO ₂	(D) NaOH	
	<i>2 2</i>	<u> </u>		-		SR0129

ANSWER KEY

EXERCISE # O-1

1. (A)

- **2.**(A)
- **3.**(A)
- **4.**(D)

5. (A)

- **6.** (D)
- **7.** (A)
- **8.**(C)

9. (B)

- **10.** (C)
- **11.**(C)
- **12.** (A)

13. (C)

- **14.**(C)
- **15.**(C)
- **16.**(D)

17. (A)

- **18.** (A)
- **19.** (A)
- **20.** (C)

21. (B)

- **22.** (A)
- **23.** (C)
- **24.** (D)

25. (A)

- **26.** (C)
- **27.** (B)
- **28.** (A)

29. (C)

- **30.** (D)
- **31.**(A)
- **32.** (A)

33. (A)

- **34.** (B)
- **35.** (A)
- **36.** (B)

37. (B)

- **38.** (B)
- **39.**(D)
- **40.** (A)

41. (C)

- **42.** (C)
- **43.** (B)
- **44.** (B)

45. (A)

- **46.** (C)
- **47.** (C)
- **48.** (C)

49. (B)

50. (D)

EXERCISE # O-2

- 1. (B),(C),(D)
- **2.**(B),(C)
- 3.(A),(B)
- **4.** (A),(C)

- **5.** (A),(B),(C)
- **6.** (A), (B)
- 7.(A), (B), (D)
- **8.** (A),(C)

- 9. (A),(B),(C)
- **10.** (A),(C)
- **11.** (A), (C)
- **12.** (C),(D)

- **13.** (A),(B),(D)
- **14.** (A),(B),(C),(D)
- 15. (A),(B),(C)
- **16.** (B),(C),(D)

- **17.** (B), (D)
- **18.** (B),(C),(D)
- **19.** (B),(C),(D)

EXERCISE # S-1

1. **(4)**

- 2. (6)
- 3. (4)
- 4. (10), OMR (1)

- 5. **(8)**
- 6. **(6)**

Except Be & Mg other s-block metals impart characteristic colour to oxidising flame.

EXERCISE # S-2

• Comprehension Based Questions

Comprehension #1

- **1.** (B)
- **2.** (A)
- **3.** (B)

Comprehension # 2

- **4.** (C)
- **5.** (A)
- **6.** (D)
- **7.** (D)
- **8.** (A)

• Match the column

$$\textbf{9.} \quad (A) \mathop{\rightarrow} P, R \ ; (B) \mathop{\rightarrow} P, Q \ ; (C) \mathop{\rightarrow} P \ ; (D) \mathop{\rightarrow} S$$

10. (A)
$$\rightarrow$$
 P,Q,S; (B) \rightarrow P,Q; (C) \rightarrow P,Q,R; (D) \rightarrow P,Q

• Match the code

- **11.** (D)
- **12.** (A)

Asseration & Reasoning

- 13. A
- 14. C
- 15. A
- 16. C

- 17. A
- 18. D
- 19. A
- 20. A

- 21. C
- 22. D
- 23. B

EXERCISE # JEE-MAIN

- **1.** (4)
- **2.** (1)

3. (3)

4. (4)

- **5.** (4)
- **6.** (2)
- **7.** (1)
- **8.** (1)

- **9.** (2)
- **10.** (3)
- **11.** (4)
- **12.** (4)

- **13.** (4)
- **14.** (3)
- **15.** (3)
- ` ′

- **17.** (3)
- **18.** (4)
- **19.** (3)
- **16.** (4) **20.** (3)

- **21.** (4)
- **22.** (1)
- **23.** (3)
- **24.** (1)

- **25.** (1)
- **26.** (3)
- **27.** (1)

EXERCISE # JEE-ADVANCED

- 1. A
- 2. A

3. B

4. B

- 5. A,B
- 6. B

7. B

8. A,B

d-BLOCK COMPOUND

TRANSITION ELEMENTS

<u>Definition</u>: They one often called 'transition elements' because their position in the periodic table is between s-block and p-block elements

Typically, the transition elements have incompletely filled d-level. Since Zn group has d^{10} configuration in their ground state as well as in stable oxidation state, they are not considered as transition elements but they ared-block elements.

				1s	t Series					
Z 4s 3d	Sc 21 2 1	Ti 22 2 2	V 23 2 3	Cr 24 1 5	Mn 25 2 5	Fe 26 2 6	Co 27 2 7	Ni 28 2 8	Cu 29 1 10	Zn 30 2 10

	2nd Series										
		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd
Z		39	40	41	42	43	44	45	46	47	48
5s	3	2	2	1	1	2	1	1	0	1	2
4d	d	1	2	4	5	5	7	8	10	10	10

	3rd Series										
	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	
Z	57	72	73	74	75	76	77	78	79	80	
6s	2	2	2	2	2	2	2	1	1	2	
5d	1	2	3	4	5	6	7	9	10	10	

	4th Series										
Z	Ac 89	Rf 104	Db 105	Sg 106	Bh 107	Hs 108	Mt 109	Ds 110	Rg 111	Uub 112	
7s 6d	2	2 2	2 3	2 4	2 5	2 6	2 7	2 8	1 10	2 10	

General Characteristics:

- (i) Metallic character: They are all metal and good conductor of heat & electricity
- (ii) Electronic configuration: $(n-1)d^{1-10}ns^{1-2}$

Ti V Sc Cr Mn Fe Co Ni Cu Zn others are $4s^1$ $4s^1$ $3d^{10}$ $3d^5$ as usual

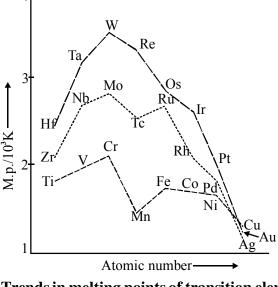


Fig.: Trends in melting points of transition elements

(iv) Variation in atomic radius :

 $Sc \longrightarrow Mn$ Fe Co Ni Cu Zn

decreases remains increases same again

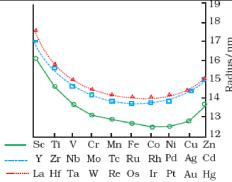


Fig. 8.3: Trends in atomic radii of transition elements

(v) Ionisation energy:

 1^{st} , 2^{nd} , 3^{rd} IE's are increasing from left to right for 1^{st} Transition series, but not regularly.

For 2^{nd} IE Cr > Fe > Mn and Cu > Zn

For 3^{rd} IE Mn > Cr > Fe and Zn has highest.

(vi) **DENSITY**

- (a) The atomic volume of the transition elements are low, compared with s-block, so their density is comparatively high (D = M/V)
- (b) Os $(22.57 \text{ gm cm}^{-3})$ and Ir $(22.61 \text{ gm cm}^{-3})$ have highest density.
- (c) In all the groups (except IIIB) there is normal increase in density from 3d to 4d series, and from 4d to 5d, it increases just double. Due to lanthanide contraction **Ex.:** Ti < Zr << Hf

ALLEN

(d) In 3d series

Sc Ti \mathbf{V} \mathbf{Cr} Mn Fe Co Ni Cu Zn **Density/g cm⁻³** 3.43 4.1 7.19 7.8 8.7 8.9 8.9 7.1 6.07 7.21

- (e) In 3d series highest density Cu lowest density Sc
- (f) Some important orders of density

Fe < Ni < Cu Fe < Cu < Au

Fe < Hg < Au

Electronic configurations and some other properties of the first series of transition elements

Element		Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn
Atomic number	wation	21	22	23	24	25	26	27	28	29	30
Electronic configu	M M	$3d^14s^2$	$3d^24s^2$	$3d^34s^2$	$3d^54s^2$	$3d^54s^2$	$3d^{6}4s^{2}$	$3d^74s^2$	$3d^{10}4s^2$	$3d^{10}4s^{1}$	$3d^{10}4s^2$
	M ⁺	$3d^14s^1$	$3d^24s^1$	$3d^34s^1$	$3d^5$	$3d^54s^1$	$3d^{6}4s^{1}$	$3d^{7}4s^{1}$	$3d^{8}4s^{1}$	$3d^{10}$	$3d^{10}4s^{1}$
	M^{2+}	$3d^1$	$3d^2$	$3d^3$	$3d^4$	$3d^{5}$	$3d^6$	$3d^7$	$3d^8$	$3d^{9}$	$3d^{10}$
	M^{3+}	[Ar]	$3d^{1}$	$3d^2$	$3d^3$	$3d^4$	$3d^5$	$3d^6$	$3d^7$	_	_
Enthalpy of atom	sation, Δ_{a} F		-1								
		326	473	515	397	281	416	425	430	339	126
Ionisation Enthal	py, Δ₁H ^Θ /k	J mol ⁻¹									
$\Delta_1 H^{\Theta}$	I	631	656	650	653	717	762	758	736	745	906
	II	1235	1309	1414	1592	1509	1561	1644	1752	1958	1734
	III	2393	2657	2833	2990	3260	2962	3243	3402	3556	3829
Metallic/Ionic	M	164	147	135	129	137	126	125	125	128	137
radii/pm	M_{2}^{2+}	_	_	79	82	82	77	74	70	73	75
a 1 1	M^{3+}	73	67	64	62	65	65	61	60	_	_
Standard	N 42+ /N 4		1.62	1 10	0.00	1 10	0.44	0.20	0.25	.0.24	0.76
electrode	M^{2+}/M M^{3+}/M^{2+}	_	-1.63	-1.18	-0.90	-1.18	-0.44	-0.28	-0.25	+0.34	-0.76
potential E ^O /V	IVI /IVI	- 2 42	-0.37	-0.26	-0.41	+1.57	+0.77	+1.97	- 9.0	- 0	- 7 1
Density/g cm ⁻³		3.43	4.1	6.07	7.19	7.21	7.8	8.7	8.9	8.9	7.1

VARIABLE OXIDATION STATES POSSIBLE:

- (1) The elements which give the greatest number of oxidation states occur in or near the middle of the series. Manganese, for example, exhibits all the oxidation states from +2 to +7.
- (2) The lesser number of oxidation states at the extreme ends stems from either too few electrons to lose or share (Sc, Ti) or too many d electrons (hence fewer orbitals available in which to share electrons with others) for higher valence (Cu, Zn).
- (3) Thus, early in the series scandium(II) is virtually unknown and titanium (IV) is more stable than Ti(III) or Ti(II).
- (4) At the other end, the only oxidation state of zinc is +2 (no d electrons are involved).
- (5) The maximum oxidation states of reasonable stability correspond in value to the sum of the s and d electrons upto manganese (Ti^{IV}O₂, V^VO₂ +, Cr^{V1}O₄ -, Mn^{VII}O₄ -) followed by a rather abrupt decrease in stability of higher oxidation states, so that the typical species to follow are Fe^{II,III}, Co^{II,III}, Ni^{II}, Cu^{I,II}, Zn^{II}.

node06\8080-BA\Kota\LEE/Advanced\\Znthuse\Chemistry\Sheel\Wodule-SahAnalysis, Heaing Effed & s,d-Block\Eng\liv)d-block compound p65

- (6) The variability of oxidation states, a characteristic of transition elements, arises out of incomplete filling of d orbitals in such a way that their oxidation states differ from each other by unity, e.g., V^{II} , V^{III} , V^{IV} , V^{V} .
- (7) This is in contrast with the variability of oxidation states of non transition elements where oxidation states normally differ by a unit of two.
- (8) An interesting feature in the variability of oxidation states of the d–block elements is noticed among the groups (groups 4 through 10).
- (9) In group 6, Mo(VI) and W(VI) are found to be more stable than Cr(VI). Thus Cr(VI) in the form of dichromate in acidic medium is a strong oxidising agent, whereas MoO₃ and WO₃ are not.
- (10) Low oxidation states are found when a complex compound has ligands capable of π -acceptor character in addition to the σ -bonding. For example, in Ni(CO)₄ and Fe(CO)₅, the oxidation state of nickel and iron is zero.
- (11) As the oxidation number of a metal increases, ionic character decreases. In the case of Mn, Mn₂O₇ is a covalent green oil. Even CrO_3 and V_2O_5 have low melting points. In these higher oxides, the acidic character is predominant. Thus, Mn₂O₇ gives HMnO₄ and CrO_3 gives H_2CrO_4 and $H_2Cr_2O_7$. V_2O_5 is, however, amphoteric though mainly acidic and it gives VO_4^{3-} as well as VO_2^+ salts. In vanadium there is gradual change from the basic V_2O_3 to less basic V_2O_4 and to amphoteric V_2O_5 . V_2O_4 dissolves in acids to give VO^{2+} salts. Similarly, V_2O_5 reacts with alkalies as well as acids to give VO_4^{3-} and VO_2^+ respectively. The well characterised CrO_3 is basic but Cr_2O_3 is amphoteric.

Oxidation states of the Ist transition series most common ones are in bold types:

Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
		:	+1					+1	
	+2	+2	+2	+2	+ 2	+ 2	+2	+ 2	+2
+3	+3	+3	+3	+3	+3	+3	+3	· · · · · · · · · · · · · · · · · · ·	
:	+4	+4	+4	+4	+4	+4	+4	:	
		+5	+5	+5					
	;	; · · · · · · · · · · ·	+6	+6	+6	:		; :	
	: :	{ :		+7	:	: : :		; :	

Trends in stability of higher oxidation state:

- (1) Table shows the stable halides of the 3*d* series of transition metals. The highest oxidation numbers are achieved in TiX₄ (tetrahalides), VF₅ and CrF₆. The +7 state for Mn is not represented in simple halides but MnO₃F is known, and beyond Mn no metal has a trihalide except FeX₃ and CoF₃.
- (2) The ability of fluorine to stabilise the highest oxidation state is due to either higher lattice energy as in the case of CoF_3 , or higher bond enthalpy terms for the higher covalent compounds, e.g., VF_5 and CrF_6 .
- (3) Although V^{V} is represented only by VF_{5} , the other halides, however, undergo hydrolysis to give oxohalides, VOX_{3} .
- (4) Another feature of fluorides is their instability in the low oxidation states e.g., VX_2 (X = CI, Br or I)

Formulas of halides of 3d-metals

Oxidation Number									
+ 6			CrF ₆						
+ 5		VF_5	CrF ₅						
+ 4	TiX_4	VX_4^I	CrX_4	MnF_4					
+ 3	TiX_3	VX_3	CrX_3	MnF_3	FeX_3^I	CoF_3			
+ 2	TiX_2^{III}	VX_2	CrX_2	MnX_2	FeX_2	CoX_2	NiX_2	CuX_2^{II}	ZnX_2
+ 1								CuX^{III}	

Key:
$$X = F \rightarrow I$$
; $X^{I} = F \rightarrow Br$; $X^{II} = F \rightarrow Cl$; $X^{III} = Cl \rightarrow I$

and the same applies to CuX. On the other hand, all Cu(II) halides are known except the iodide. In this case, Cu^{2+} oxidises I^- to I_2 :

$$2Cu^{2+} + 4I^{-} \rightarrow Cu_{2}I_{2}(s) + I_{2}$$

(5) However, many copper (I) compounds are unstable in aqueous solution and undergo disproportionation.

$$2Cu^+ \rightarrow Cu^{2+} + Cu$$

- (6) The stability of $Cu^{2+}(aq)$ rather than $Cu^{+}(aq)$ is due to the much more negative $\Delta_{Hyd}H^{\Theta}$ of $Cu^{2+}(aq)$ than Cu^{+} , which more than compensates for the second ionisation enthalpy of Cu.
- (7) The ability of oxygen to stabilise the highest oxidation state is demonstrated in the oxides.
- (8) The highest oxidation number in the oxides coincides with the group number and is attained in Sc_2O_3 to Mn_2O_7 .
- (9) Beyond Group 7, no higher oxides of Fe above Fe_2O_3 , are known, although ferrates (VI)(FeO_4)²⁻, are formed in alkaline media but they readily decompose to Fe_2O_3 and O_2 .
- (10) Besides the oxides, oxocations stabilise V^{ν} as VO_{2}^{+} , V^{IV} as VO^{2+} and Ti^{IV} as TiO^{2+}
- (11) The ability of oxygen to stabilise these high oxidation states exceeds that of fluorine. Thus the highest Mn fluoride is MnF_4 whereas the highest oxide is Mn_2O_7 . The ability of oxygen to form multiple bonds to metals explains its superiority.
- (12) In the covalent oxide Mn_2O_7 , each Mn is tetrahedrally surrounded by O's including a Mn–O–Mn bridge.
- (13) The tetrahedral $[MO_4]^n$ ions are known for V^V , Cr^{Vl} , Mn^V , Mn^{Vl} and Mn^{Vll} .

FORMATION OF COLOURED ION:

Colour: (aquated)

 $Sc^{3+} \longrightarrow colourless$

 $Ti^{4+} \longrightarrow colourless$

 $Ti^{3+} \longrightarrow purple$

 $V^{4+} \longrightarrow blue$

 $V^{3+} \longrightarrow green$

 $V^{2+} \longrightarrow violet$

 $Cr^{2+} \longrightarrow blue$

 $Cr^{3+} \longrightarrow violet$

 $Mn^{3+} \longrightarrow violet$

 $Mn^{2+} \longrightarrow light pink$

 $Fe^{2+} \longrightarrow light green$

 $Fe^{3+} \longrightarrow yellow$

 $Co^{2+} \longrightarrow pink$

 $Ni^{2+} \longrightarrow green$

 $Cu^{2+} \longrightarrow blue$

 $Zn^{2+} \longrightarrow colourless$

CATALYTIC PROPERTIES

- (1) The transition metals and their compounds are known for their catalytic activity. This activity is ascribed to their ability to adopt multiple oxidation states and to form complexes. Vanadium(V) oxide (in Contact Process), finely divided iron (in Haber's Process), and nickel (in Catalytic Hydrogenation) are some of the examples.
- (2) Catalysts at a solid surface involve the formation of bonds between reactant molecules and atoms of the surface of the catalyst (first row transition metals utilise 3d and 4s electrons for bonding).
- (3) This has the effect of increasing the concentration of the reactants at the catalyst surface and also weakening of the bonds in the reacting molecules (the activation energy is lowering).
- (4) Also because the transition metal ions can change their oxidation states, they become more effective as catalysts. For example, iron(III) catalyses the reaction between iodide and persulphate ions.

$$2I^{-} + S_{2}O_{8}^{2-} \rightarrow I_{2} + 2SO_{4}^{2-}$$

An explanation of this catalytic action can be given as:

$$2Fe^{3+} + 2I^{-} \rightarrow 2 Fe^{2+} + I_{2}$$

$$2 \text{ Fe}^{2+} + \text{S}_2\text{O}_8^{2-} \rightarrow 2\text{Fe}^{3+} + 2\text{SO}_4^{2-}$$

Cataly	rst	Used
TiCl ₃	\longrightarrow	Used as the Ziegler-Natta catalyst in the production of polythene.
V_2O_5	\longrightarrow	Convert SO ₂ to SO ₃ in the contact process for making H ₂ SO ₄
MnO_2	\longrightarrow	Used as a catalyst to decompose KClO ₃ to give O ₂
Fe	\longrightarrow	Promoted iron is used in the Haber-Bosch process for making NH ₃
FeCl ₃	\longrightarrow	Used in the production of CCl ₄ from CS ₂ and Cl ₂
PdCl ₂	\longrightarrow	Wacker process for converting $C_2H_4 + H_2O + PdCl_2$ to $CH_3CHO + 2HCl + Pd$.
Pd	\longrightarrow	Used for hydrogenation (e.g. phenol to cyclohexanone).
Pt/PtO	\longrightarrow	Adams catalyst, used for reductions.
Pt	\longrightarrow	Formerly used for $SO_2 \longrightarrow SO_3$ in in the contace process for making H_2SO_4
Pt/Rh	\longrightarrow	Formerly used in the ostwald process for making \ensuremath{HNO}_3 to oxidize \ensuremath{NH}_3 to \ensuremath{NO}
Cu	\longrightarrow	Is used in the direct process for manufacture of (CH ₃) ₂ SiCl ₂ used to make silicones.
Cu/V	\longrightarrow	Oxidation of cyclohexanol/cyclohexanone mixture to adipic acid which is used to make nylon-66
CuCl ₂	\longrightarrow	Deacon process of making Cl ₂ from HCl
Ni	\longrightarrow	Raney nickel, numerous reduction processes (e.g. manufacture of hexamethylenediamine, production of H_2 from NH_3 , reducing anthraquinone to anthraquinol in the production of H_2O_2
FeSO ₄	$+ H_2O_2 \longrightarrow$	Used as Fenton's reagent for oxidizing alcohols to aldehydes.

Formation of Interstitial Compounds

Interstitial compounds are those which are formed when small atoms like H, C or N are trapped inside the crystal lattices of metals. The principal physical and chemical characteristics of these compounds are as follows:

- (i) They have high melting points, higher than those of pure metals.
- (ii) They are very hard, some borides approach diamond in hardness.
- (iii) They retain metallic conductivity.
- (iv) They are chemically inert.

Alloy Formation

An alloy is a blend of metals prepared by mixing the components. Alloys may be homogeneous solid solutions in which the atoms of one metal are distributed randomly among the atoms of the other. Such alloys are formed by atoms with metallic radii that are within about 15 percent of each other. Because of similar radii and other characteristics of transition metals, alloys are readily formed by these metals. The alloys so formed are hard and have often high melting points.

The best known are ferrous alloys: chromium, vanadium, tungsten, molybdenum and manganese are used for the production of a variety of steels and stainless steel. Alloys of transition metals with non transition metals such as brass (copper-zinc) and bronze (copper-tin), are also of considerable industrial importance.

CHROMATE -DICHROMATE

Residue(Fe₂O₃)

Preparation: 4FeCr₂O₄ + 8Na₂CO₃ + 7O₂
$$\xrightarrow{1000^{\circ}-1300^{\circ}C}$$
 $\xrightarrow{\text{red hot in presence of air}} 8Na_2CrO_4 + 2Fe_2O_3 + 8CO_2 \uparrow$

(chromite ore)

[Lime (CaO) added with Na₂CO₃ which keeps the mass porous so that air has access to all parts and prevents fusion]

Then,
$$2\text{Na}_2\text{CrO}_4 + \text{H}_2\text{SO}_4 \longrightarrow \text{Na}_2\text{SO}_4 \downarrow + \text{Na}_2\text{Cr}_2\text{O}_7 + \text{H}_2\text{O}$$

conc. It's solubility

upto 32°C increases
and then decreases

$$\text{employed to crystallise out}$$

$$\text{Na}_2\text{SO}_4 \text{ first.}$$

Then Na₂Cr₂O₇ is crystallised out as Na₂Cr₂O₇·2H₂O on evaporation.

(red crystal)

How to get $K_2Cr_2O_7$:

$$Na_2Cr_2O_7 + 2KCl \xrightarrow{double} K_2Cr_2O_7 + 2NaCl$$

hot conc

NaCl crystallises out first and filtered off. Then K₂Cr₂O₇ crystallised out on cooling

The chromates and dichromates are interconvertible in aqueous solution depending upon pH of the solution. The oxidation state of chromium in chromate and dichromate is the same.

$$2 \text{ CrO}_{4}^{2-} + 2\text{H}^{+} \rightarrow \text{Cr}_{2}\text{O}_{7}^{2-} + \text{H}_{2}\text{O}$$

$$\text{Cr}_{2}\text{O}_{7}^{2-} + 2\text{OH}^{-} \rightarrow 2\text{CrO}_{4}^{2-} + \text{H}_{2}\text{O}$$

The structures of chromate ion, CrO_4^{2-} and the dichromate ion, $Cr_2O_7^{2-}$ are shown below. The chromate ion is tetrahedral whereas the dichromate ion consists of two tetrahedra sharing one corner with Cr-O-Cr bond angle of 126° . Sodium and potassium dichromates are strong oxidising agents; the sodium salt has a greater solubility in water and is extensively used as an oxidising agent in organic chemistry. Potassium dichromate is used as a primary standard in volumetric analysis. In acidic solution, its oxidising action can be represented as follows:

$$\text{Cr}_2\text{O}_7^{\ 2-} + 14\text{H}^+ + 6\text{e}^- \rightarrow 2\text{Cr}^{3+} + 7\text{H}_2\text{O} \ (\, \text{E}^{\odot} = 1.33\text{V})$$

Thus, acidified potassium dichromate will oxidise iodides to iodine, sulphides to sulphur, tin(II) to tin(IV) and iron(II) salts to iron(III). The half-reactions are noted below:

$$6 I^{-} \rightarrow 3I_{2} + 6e^{-}$$
;

$$3 \text{ Sn}^{2+} \rightarrow 3 \text{Sn}^{4+} + 6 \text{e}^{-}$$

$$3H_2S \rightarrow 6H^+ + 3S + 6e^-$$
;

$$6 \text{ Fe}^{2+} \rightarrow 6 \text{Fe}^{3+} + 6 \text{e}^{-}$$

The full ionic equation may be obtained by adding the half-reaction for potassium dichromate to the half-reaction for the reducing agent, for e.g.,

$$Cr_2O_7^{2-} + 14H^+ + 6Fe^{2+} \rightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$$

* Similarities between hexavalent Cr & S-compounds:

- (i) $SO_3 \& CrO_3 \longrightarrow both acidic.$
- (ii) $S \longrightarrow SO_4^{2-}, S_2O_7^{2-}, Cr \longrightarrow CrO_4^{2-}, Cr_2O_7^{2-}$
- (iii) $CrO_4^{-2} & SO_4^{2-}$ are isomorphous
- (iv) $SO_2Cl_2 \& CrO_2Cl_2 \xrightarrow{OH^-} SO_4^{2-} \& CrO_4^{2-}$ respectively.
- (v) $SO_3Cl^- \& CrO_3Cl^- \xrightarrow{OH^-} SO_4^{2-} \& CrO_4^{2-}$

Q. In laboratory K₂Cr₂O₇ is used mainly not Na₂Cr₂O₇. Why?

Sol. Na₂Cr₂O₇ is deliquescent enough and changes its concentration and can not be taken as primary standard solution whereas K_2 Cr₂O₇ has no water of crystallisation and not deliquescent.

Q. How to standardise Na₂S₂O₃ solution in iodometry?

Sol. $K_2Cr_2O_7$ is primary standard \Rightarrow strength is known by weighing the salt in <u>chemical balance</u> and dissolving in measured amount of water.

Then in acidic solution add. KI

$$Cr_2O_7^{2-} + 14H^+ + 6I^- \longrightarrow 2Cr^{3+} + 3I_2 + 7H_2O$$

This I_2 is liberated can be estimated with $S_2O_3^{2-}$.

MANGANATE & PERMANGANATE

PREPARATION OF MANGANATE (MnO_4^{2-}) :

$$\begin{array}{c} \text{MnO}_2 \xrightarrow[]{\text{cr NaOH,}} \\ \text{or NaOH,} \\ \text{A in presence of air} \\ \text{MnO}_2 + 2\text{KOH} + \text{KNO}_3 \longrightarrow \text{K}_2\text{MnO}_4 + 2\text{H}_2\text{O}] \\ \text{3MnO}_2 + 6\text{KOH} + \text{KClO}_3 \longrightarrow 3\text{K}_2\text{MnO}_4 + \text{KCl} + 3\text{H}_2\text{O} \\ \text{3MnO}_2 + 6\text{KOH} + \text{KClO}_3 \longrightarrow 3\text{K}_2\text{MnO}_4 + \text{KCl} + 3\text{H}_2\text{O} \\ \text{Water} \\ \text{Hittle} \\ \text{alkali} \\ \text{with K}_2\text{SO}_4) \\ \text{FraoH} \\ \text{used} \\ \text{isomorphrous with Na}_2\text{SO}_4.10\text{H}_2\text{O} \\ \text{Somorphrous with Na}_2\text{SO}_4.10\text{H}_2\text{O} \\ \text{Tetrahedral manganate} \\ \text{Tetrahedral permanganate} \\ \text{Tetrahedral permanganate} \end{array}$$

In presence of $KClO_3$ & KNO_3 the above reaction is more faster because these two on decomposition provides O_2 easily.

(purple) ion

Manganate is also obtained when KMnO₄ is boiled with KOH.

(green) ion

$$4\text{KMnO}_4 + 4\text{KOH} \xrightarrow{\text{boiled}} 4\text{K}_2\text{MnO}_4 + 2\text{H}_2\text{O} + \text{O}_2$$

Properties: The above green solution is quite stable in alkali, but in pure water and in presence of acids, depositing MnO_2 and giving a purple solution of permanganate.

$$3K_2MnO_4 + 2H_2O \longrightarrow 2KMnO_4 + MnO_2 \downarrow + 4KOH$$
purple drak brown

Prob.:
$$E_{MnO_4^{2-}/MnO_2}^{o} = 2.26 \text{ V}$$
 ; $E_{MnO_4^{2-}/MnO_4^{-}}^{o} = -0.56 \text{ V}$

Prove that MnO_4^{2-} will disproportionate in acidic medium.

Conversion of MnO₄²⁻ to MnO₄⁻

$$3K_2MnO_4 + 2H_2SO_4 \longrightarrow 2KMnO_4 + MnO_2 \downarrow + 2K_2SO_4 + 2H_2O$$
 or
$$3K_2MnO_4 + 2H_2O + 4CO_2 \longrightarrow 2KMnO_4 + MnO_2 + 4KHCO_3$$

But in the above method $\frac{1}{3}$ of Mn is lost as MnO₂ but when oxidised either by Cl₂or by O₃

 $2K_2MnO_4 + Cl_2 \longrightarrow 2KMnO_4 + 2KCl$ [Unwanted MnO₂ does not form]

OR

$$2K_2MnO_4 + O_3 + H_2O \longrightarrow 2KMnO_4 + 2KOH + O_2$$

$$\mathbf{OR}$$

$$\begin{array}{c} \text{MnO}_4^{2-} & \xrightarrow{\text{Electrolytic oxidation in alkaline solution}} & \text{MnO}_4^{-} \\ \text{Manganate} & & \text{permanganate ion} \end{array}$$

Oxidising Prop. of KMnO₄: (in acidic medium)

(i)
$$MnO_4^- + Fe^{+2} + H^+ \longrightarrow Fe^{+3} + Mn^{+2} + H_2O$$

(ii)
$$MnO_4^- + I^- + H^+ \longrightarrow Mn^{+2} + I_2 + H_2O$$

(iii)
$$MnO_4^- + H_2O_2 + H^+ \longrightarrow Mn^{+2} + O_2 + H_2O$$

(iv)
$$MnO_4^- + SO_2 \xrightarrow{H^{\oplus}} Mn^{+2} + H_2SO_4$$

(v)
$$MnO_4^- + NO_2^- + H^+ \longrightarrow Mn^{+2} + NO_3^- + H_2O$$

(vi)
$$MnO_4^- + H_2C_2O_4 + H^+ \longrightarrow Mn^{+2} + CO_2 + H_2O$$

(vii)
$$MnO_4^- + H_2S \longrightarrow Mn^{2+} + S \downarrow + H_2O$$

(viii)
$$MnO_4^- + S_2O_3^{2-} \longrightarrow Mn^{2+} + S \downarrow + SO_4^{2-}$$

- (1)* It is not a primary standard since it is difficult to get it in a high degree of purity and free from traces of MnO₂.
- (2)* It is slowly reduced to MnO₂ especially in presence of light or acid

$$4 \mathrm{MnO_4^-} + 4 \mathrm{H^+} {\longrightarrow} 4 \mathrm{MnO_2} + 2 \mathrm{H_2O} + 3 \mathrm{O_2}$$

Hence it should be kept in dark bottles and standardise just before use.

(ix)
$$2KMnO_4 + 16HCl \longrightarrow 2KCl + 5Cl_2 + 8H_2O + 2MnCl_2$$

Note: Permanganate titrations in presence of hydrochloric acid are unsatisfactory since hydrochloric acid is oxidised to chlorine.

Oxidising Prop. of $KMnO_4$ in neutral or faintly alkaline solution.

$$2MnO_4^- + 2OH^- \longrightarrow 2MnO_4^{2-} + H_2O + O$$
. Then $2MnO_4^{2-} + 2H_2O \longrightarrow 2MnO_2 + 4OH^- + 2OH^- + 2OH$

(i)
$$2KMnO_4 + H_2O + KI \longrightarrow 2MnO_2 + 2KOH + KIO_3$$

(ii)
$$2KMnO_4 + 3HCO_2K \longrightarrow 2MnO_2 + KHCO_3 + 2K_2CO_3 + H_2O_3$$

(iii)
$$2KMnO_4 + 3H_2O_2 \longrightarrow 2KOH + 2MnO_2 + 2H_2O + 3O_2$$

(iv) Thiosulphate is oxidised almost quantitatively to sulphate:

$$8MnO_4^- + 3S_2O_3^{2-} + H_2O \longrightarrow 8MnO_2 + 6SO_4^{2-} + 2OH^-$$

(i)
$$2KMnO_4 + 3MnSO_4 + 2H_2O \xrightarrow{\text{in presence } Zn^{+2} \text{ or } ZnO} 5MnO_2 + K_2SO_4 + 2H_2SO_4$$

or
$$MnO_4^- + Mn^{+2} + 2H_2O \longrightarrow 5MnO_2 + 4H^+$$

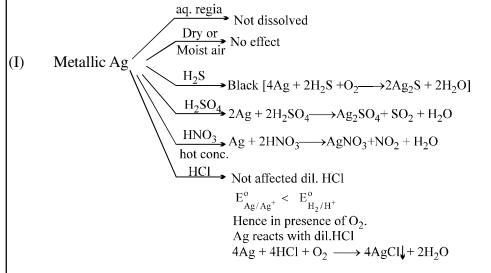
In absence of Zn^{+2} ions, some of the Mn^{+2} ion may escape, oxidation through the formation of insoluble $Mn^{II}[Mn^{IV}O_3]$ manganous permanganite.

Uses of KMnO₄:

Besides its use in analytical chemistry, potassium permanganate is used as a favourite oxidant in preparative organic chemistry. Its uses for the bleaching of wool, cotton, silk and other textile fibres and for the decolourisation of oils are also dependent on its strong oxidising power.

In laboratory conversion of Mn^{+2} to MnO_4^- is done by :

(i)
$$PbO_2$$
 (ii) $Pb_3O_4 + HNO_3$ (iii) $Pb_2O_3 + HNO_3$ (iv) $NaBiO_3 / H^+$


$$\mathrm{(v)}\;\mathrm{(NH_4)_2S_2O_8}\,/\;\mathrm{H^+} \\ \mathrm{(vi)}\;\mathrm{KIO_4}\,/\;\mathrm{H^+}$$

Heating effect: $2KMnO_4 \xrightarrow{\Delta} K_2MnO_4 + MnO_2 + O_2$

green Black

$$2K_2MnO_4 \xrightarrow{\text{at red}} 2K_2MnO_3 + O_2$$

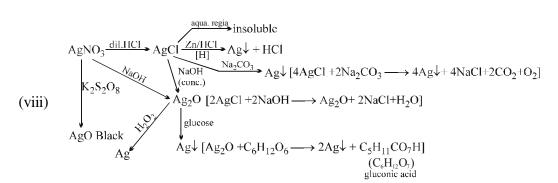
SILVER AND ITS COMPOUND

In the same way in presence of O₂, Ag complexes with NaCN / KCN.

$$4Ag + 8KCN + 2H_2O + O_2 \longrightarrow 4K[Ag(CN)_2] + 4KOH$$

 $AgNO_3$

Prepration: Reaction of Ag with dilute HNO₃ or conc. HNO₃.


Properties:

- (i) It is called as lunar caustic because in contact with skin it produces burning sensation like that of caustic soda with the formation of finely devided silver (black colour)
- (ii) Thermal decomposition: $2AgNO_3(s) \rightarrow 2Ag(s) + O_2(g) + 2NO_2(g)$
- (iii) Props. of $AgNO_3$ $6AgNO_3 + 3I_2 + 3H_2O \longrightarrow 5AgI + AgIO_3 + 6HNO_3$ (excess)
- (iv) $Ag_2SO_4 \xrightarrow{\Delta} 2Ag + SO_2 + O_2$
- (v) $A(AgNO_3) \xrightarrow{B \text{ added}}$ white ppt appears quickly $B(Na_2S_2O_3) \xrightarrow{A \text{ added}}$ It takes time to give white ppt.
- (vi) $Ag_2S_2O_3 + H_2O \xrightarrow{\Delta} Ag_2S + H_2SO_4$ $AgCl, AgBr, AgI (but not Ag_2S)$ are soluble in $Na_2S_2O_3$ forming $[Ag(S_2O_3)_2]^{-3}$ complexes
- (vii) $AgBr + AgNO_3 \xrightarrow{KBr} AgBr \downarrow + KNO_3$

Pale yellow

ppt.

Heating effect :
$$2AgNO_3 \xrightarrow{212^{\circ}C} 2AgNO_2 + O_2$$

 $2AgNO_2 \xrightarrow{500^{\circ}C} 2Ag + 2NO + O_2$

$$Ag_2O + H_2O_2 \longrightarrow 2Ag + H_2O + O_2$$

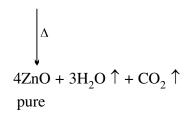
$$\mathrm{K_2S_2O_8} + 2\mathrm{AgNO_3} + 2\mathrm{H_2O} \longrightarrow 2\mathrm{AgO} + 2\mathrm{KHSO_4} + 2\mathrm{HNO_3}$$

- * AgO supposed to be paramagnetic due to d^9 configuration. But actually it is diamagnetic and exists as $Ag^I [Ag^{III}O_2]$
- * Reaction involved in developer:

$$K_2Fe^{II}(C_2O_4)_2 + AgBr \longrightarrow KFe^{III}(C_2O_4)_2 + Ag \downarrow + KBr$$

ZnO

It is called as phillospher's wool due to its wooly flock type appearance


 $2Zn + O_2 \longrightarrow 2ZnO$ **Preparation**: [1]

> Calcination of ZnCO₃ or Zn(NO₃)₂ or Zn(OH)₂ [2]

 $\textbf{Purest ZnO}: 4\text{ZnSO}_4 + 4\text{Na}_2\text{CO}_3 + 3\text{H}_2\text{O} \longrightarrow \text{ZnCO}_3 \cdot 3\text{Zn(OH)}_2 \downarrow + 4\text{Na}_2\text{SO}_4 + 3\text{CO}_2 + 3\text{CO}_3 \cdot 3\text{Zn(OH)}_2 \downarrow + 4\text{Na}_2\text{SO}_4 + 3\text{CO}_2 + 3\text{CO}_3 \cdot 3\text{Zn(OH)}_2 \downarrow + 4\text{Na}_2\text{SO}_4 + 3\text{CO}_2 + 3\text{CO}_3 \cdot 3\text{Zn(OH)}_2 \downarrow + 4\text{Na}_2\text{SO}_4 + 3\text{CO}_2 + 3\text{CO}_3 \cdot 3\text{Zn(OH)}_2 \downarrow + 4\text{Na}_2\text{SO}_4 + 3\text{CO}_2 + 3\text{CO}_3 \cdot 3\text{Zn(OH)}_2 \downarrow + 4\text{Na}_2\text{SO}_4 + 3\text{CO}_2 + 3\text{CO}_3 \cdot 3\text{Zn(OH)}_2 \downarrow + 4\text{Na}_2\text{SO}_4 + 3\text{CO}_2 + 3\text{CO}_3 \cdot 3\text{Zn(OH)}_2 \downarrow + 4\text{Na}_2\text{SO}_4 + 3\text{CO}_2 + 3\text{CO}_3 \cdot 3\text{Zn(OH)}_2 \downarrow + 4\text{Na}_2\text{SO}_4 + 3\text{CO}_2 + 3\text{CO}_3 \cdot 3\text{Zn(OH)}_2 \downarrow + 4\text{Na}_2\text{SO}_4 + 3\text{CO}_2 + 3\text{CO}_3 \cdot 3\text{Zn(OH)}_2 \downarrow + 4\text{Na}_2\text{SO}_4 + 3\text{CO}_2 + 3\text{CO}_3 \cdot 3\text{Zn(OH)}_2 \downarrow + 4\text{Na}_2\text{SO}_4 + 3\text{CO}_2 + 3\text{CO}_3 \cdot 3\text{Zn(OH)}_2 \downarrow + 4\text{Na}_2\text{SO}_4 + 3\text{CO}_2 + 3\text{CO}_3 \cdot 3\text{Zn(OH)}_2 \downarrow + 4\text{Na}_2\text{SO}_4 +$

white basic zinc

carbonate

 $ZnO(cold) \stackrel{\Delta}{\Longrightarrow} ZnO(hot)$ **Properties:** 1]

> white yellow

- 21 It is insoluble in water
- 3] It sublimes at 400°C
- 4] It is amphoteric oxide, react with acid & base both.

$$ZnO + 2HCl \longrightarrow ZnCl_2 + H_2O$$

 $ZnO + H_2SO_4 \longrightarrow ZnSO_4 + H_2O$
 $ZnO + 2NaOH \longrightarrow Na_2ZnO_2 + H_2O$

5]
$$ZnO \longrightarrow Zn \text{ by } H_2 \& C$$

$$ZnO + H_2 \xrightarrow{>400^{\circ}C} Zn + H_2O$$

 $ZnO + C \longrightarrow Zn + CO$

6] It forms Rinmann's green with Co(NO₃)₂

$$2\text{Co(NO}_3)_2 \longrightarrow 2\text{CoO} + 4\text{NO}_2 + \text{O}_2$$

 $\text{CoO} + \text{ZnO} \longrightarrow \text{CoZnO}_2 \text{ or CoO} \cdot \text{ZnO}$

Rinmann's green

As white pigment, it is superior than white lead because it does not turn into black **Uses**: (1)

- (2) Rinmann's green is used as green pigment
- It is used as zinc ointment in medicine (3)

ZnCl₂

Preparation: $ZnO + 2HCl \longrightarrow ZnCl_2 + H_2O$

$$ZnCO_3 + 2HCl \longrightarrow ZnCl_2 + H_2O + CO_2$$

 $Zn(OH)_2 + 2HCl \longrightarrow ZnCl_2 + 2H_2O$

Anh. ZnCl₂ cannot be made by heating ZnCl₂·2H₂O because

$$ZnCl_2 \cdot 2H_2O \xrightarrow{\Delta} Zn(OH)Cl + HCl + H_2O$$

$$Zn(OH)Cl \xrightarrow{\Delta} ZnO + HCl$$

 $Zn + Cl_2 \longrightarrow ZnCl_2$ To get anh. ZnCl₂:

$$Zn + 2HCl(dry) \longrightarrow ZnCl_2 + H_2$$

or
$$Zn + HgCl_2 \longrightarrow ZnCl_2 + Hg$$

Properties: (i) It is deliquescent white solid (when anhydrous)

(ii)
$$ZnCl_2 + H_2S \longrightarrow ZnS$$

" + NaOH
$$\longrightarrow$$
 Zn(OH)₂ $\xrightarrow{\text{excess}}$ Na₂[Zn(OH)₄]

" + NH₄OH
$$\longrightarrow$$
 Zn(OH)₂ $\xrightarrow{\text{excess}}$ [Zn(NH₃)₄]²⁺

- Uses: 1] Used for impregnating timber to prevent destruction by insects
 - 21 As dehydrating agent when anhydrous
 - ZnO·ZnCl₂ used in dental filling 31

ZnSO₄

Preparation:→

$$Zn + dil H_2SO_4 \longrightarrow ZnSO_4 + H_2$$

$$ZnO + dil H_2SO_4 \longrightarrow ZnSO_4 + H_2O$$

$$ZnCO_3 + dil H_2SO_4 \longrightarrow ZnSO_4 + H_2O + CO_2$$

$$ZnS+2O_2 \longrightarrow ZnSO_4$$

$$\begin{array}{c} \operatorname{ZnS} + 2\operatorname{O}_2 \longrightarrow \operatorname{ZnSO}_4 \\ \operatorname{ZnS} + \frac{3}{2}\operatorname{O}_2 \longrightarrow \operatorname{ZnO} + \operatorname{SO}_2 \end{array} \right\} \text{parallel reaction}$$

$$ZnS + 4O_3 \longrightarrow ZnSO_4 + 4O_2$$

 $ZnSO_4 \cdot 7H_2O \xrightarrow{39-70^{\circ}C} ZnSO_4 \cdot 6H_2O \xrightarrow{>70^{\circ}C} ZnSO_4 \cdot H_2O \xrightarrow{>280^{\circ}C} ZnSO_4$ Props.1]

$$\frac{1}{2}O_2 + SO_2 + ZnO$$
 >800°C

- Uses: 1] in eye lotion
 - 21 Lithophone (ZnS + BaSO₄) is used as white pigment

COPPER COMPOUNDS

CuO

 $CuCO_3.Cu(OH)_2 \xrightarrow{\Delta} 2CuO + H_2O + CO_2(Commercial process)$ **Preparation:** (i)

Malachite Green

(native Cu-carbonate)

(ii)
$$2\text{Cu} + \text{O}_2 \longrightarrow 2\text{CuO} \& \text{Cu}_2\text{O} + \frac{1}{2}\text{O}_2 \longrightarrow 2\text{CuO}$$

(iii)
$$Cu(OH)_2 \xrightarrow{\Delta} CuO + H_2O$$

(iv)
$$2\text{Cu(NO}_3)_2 \xrightarrow{250^{\circ}\text{C}} 2\text{CuO} + 4\text{NO}_2 + \text{O}_2$$

- (i) CuO is insoluble in water
- (ii) Readily dissolves in dil. acids

$$CuO + H_2SO_4 \longrightarrow CuSO_4 + H_2O$$

$$HCl \longrightarrow CuCl_2$$

$$HNO_3 \longrightarrow Cu(NO_3)_2$$

(iii) It decomposes when, heated above 1100°C

$$4CuO \longrightarrow 2Cu_2O + O_2$$

(iv) CuO is reduced to Cu by H₂ or C under hot condition

$$\begin{array}{c} \text{CuO} + \text{C} \longrightarrow \text{Cu} + \text{CO} \uparrow \\ \text{CuO} + \text{H}_2 \longrightarrow \text{Cu} + \text{H}_2 \text{O} \uparrow \\ \textbf{CuCl}_2 \end{array}$$

Preparation: \rightarrow CuO + 2HCl(conc.) \longrightarrow CuCl₂ + H₂O

$$Cu(OH)_2 \cdot CuCO_3 + 4HCl \longrightarrow 2CuCl_2 + 3H_2O + CO_2$$

- **Properties**: \rightarrow (i) It is crystallised as CuCl₂·2H₂O of Emerald green colour
 - (ii) dil. solution in water is blue in colour due to formation of $[Cu(H_2O)_4]^{2+}$ complex.
 - (iii) When conc. HCl or KCl added to dil. solution of CuCl₂ the colour changes into yellow, owing to the formation of [CuCl₄]²⁻
 - (iv) The conc. aq. solution is green in colour having the two complex ions in equilibrium $2[Cu(H_2O)_4]Cl_2 \rightleftharpoons [Cu(H_2O)_4]^{2+} + [CuCl_4]^{2-} + 4H_2O$
 - (v) $CuCl_2 \longrightarrow CuCl$ by no. of reagents
 - (a) $CuCl_2 + Cu$ -turnings $\xrightarrow{\Delta} 2CuCl$
 - (b) $2\text{CuCl}_2 + \text{H}_2\text{SO}_3 + \text{H}_2\text{O} \longrightarrow 2\text{CuCl} + 2\text{HCl} + 2\text{H}_2\text{SO}_4$
 - (c) $2CuCl_2 + Zn/HCl \longrightarrow 2CuCl + ZnCl_2$
 - (d) $CuCl_2 + SnCl_2 \longrightarrow CuCl + SnCl_4$

** $CuF_2 \cdot 2H_2O \longrightarrow light blue$ $CuCl_2 \cdot 2H_2O \longrightarrow green$ $CuBr_2 \longrightarrow almost black$ Anh. $CuCl_2$ is dark brown mass obtained by heating $CuCl_2 \cdot 2H_2O$ at 150°C in presence of HCl vap.

 CuI_2 does not exist $CuCl_2 \cdot 2H_2O \xrightarrow{150^{\circ}C} CuCl_2 + 2H_2O$

CuSO₄

$$\begin{split} \textbf{Preparation:} & \to \text{CuO} + \text{H}_2\text{SO}_4(\text{dil}) \longrightarrow \text{CuSO}_4 + \text{H}_2\text{O} \\ & \quad \text{Cu(OH)}_2 + \text{H}_2\text{SO}_4(\text{dil}) \longrightarrow \text{CuSO}_4 + 2\text{H}_2\text{O} \\ & \quad \text{Cu(OH)}_2 \cdot \text{CuCO}_3 + \text{H}_2\text{SO}_4(\text{dil}) \to \text{CuSO}_4 + 3\text{H}_2\text{O} + \text{CO}_2 \\ & \quad \text{Cu} + \text{H}_2\text{SO}_4 + \frac{1}{2}\text{O}_2 \longrightarrow \text{CuSO}_4 + \text{H}_2\text{O} \text{ [Commercial scale]} \\ & \quad \text{(Scrap)} \end{split}$$

 $Cu + dil. H_2SO_4 \longrightarrow$ no reaction {Cu is a below H in electrochemical series}

Properties: \rightarrow (i) It is crystallised as CuSO₄·5H₂O

(ii)
$$\text{CuSO}_4 \cdot 5\text{H}_2\text{O} \xrightarrow{\text{exposure} \\ \text{effloresence}} \text{CuSO}_4 \cdot 3\text{H}_2\text{O} \xrightarrow{100^{\circ}\text{C}} \text{CuSO}_4 \cdot \text{H}_2\text{O}$$

Blue take places Pale blue

Bluish white

CuSO₄(anh.)

white

$$\begin{array}{c|c} & & & \\ \hline & 800^{\circ}\mathrm{C} \\ \mathrm{CuO} + \mathrm{SO}_2 + \frac{1}{2}\mathrm{O}_2 \end{array} & \begin{array}{c|c} & & \\ \hline & \mathrm{CuO} + \mathrm{SO}_3 \end{array}$$

(iii) Revision with all others reagent

IRON COMPOUNDS

FeSO₄·7H₂O

Preparation:
$$\rightarrow$$
(i) Scrap Fe + H₂SO₄ \longrightarrow FeSO₄ + H₂ \uparrow (dil.)

(ii) From Kipp's waste

$$FeS + H_2SO_4(dil) \longrightarrow FeSO_4 + H_2S^{\uparrow}$$

(iii)
$$\operatorname{FeS}_2 + 2\operatorname{H}_2\operatorname{O} + \frac{7}{2}\operatorname{O}_2 \longrightarrow \operatorname{FeSO}_4 + \operatorname{H}_2\operatorname{SO}_4$$

Properties:→ (i) It undergoes aerial oxidation forming basic ferric sulphate

$$4 \mathrm{FeSO_4} + \mathrm{H_2O} + \mathrm{O_2} {\longrightarrow} 4 \mathrm{Fe(OH)SO_4}$$

(ii)
$$\operatorname{FeSO}_4 \cdot 7H_2O \xrightarrow{300^{\circ}C} \operatorname{FeSO}_4 \xrightarrow{\operatorname{high}} \operatorname{Fe}_2O_3 + SO_2 + SO_3$$

(iii) Aq. solution is acidic due to hydrolysis

$$FeSO_4 + 2H_2O \rightleftharpoons Fe(OH)_2 + H_2SO_4$$

weak base

(iv) It is a reducing agent

(a)
$$Fe^{2+} + MnO_4^- + H^+ \longrightarrow Fe^{3+} + Mn^{2+} + H_2O$$

(b)
$$Fe^{2+} + Cr_2O_7^{2-} + H^+ \longrightarrow Fe^{3+} + Cr^{3+} + H_2O$$

(c)
$$Au^{3+} + Fe^{2+} \longrightarrow Au + Fe^{3+}$$

(d)
$$Fe^{2+} + HgCl_2 \longrightarrow Hg_2Cl_2 \downarrow + Fe^{3+}$$

white ppt.

(v) It forms double salt. Example $(NH_4)_2SO_4 \cdot FeSO_4 \cdot 6H_2O$

Properties: It is stable at high temperature and on cooling slowly disproportionates into Fe₃O₄ and iron

$$4\text{FeO} \longrightarrow \text{Fe}_3\text{O}_4 + \text{Fe}$$

FeCl₂

Preparation: Fe + 2HCl $\xrightarrow{\text{heated in}}$ FeCl₂ + H₂

OR

$$2\text{FeCl}_3 + \text{H}_2 \xrightarrow{\Delta} 2\text{FeCl}_2 + 2\text{HCl}$$

Properties: \rightarrow (i) It is deliquescent in air like FeCl₃

- (ii) It is soluble in water, alcohol and ether also because it is sufficiently covalent in nature
- (iii) It volatilises at about 1000° C and vapour density indicates the presence of $\text{Fe}_{2}\text{Cl}_{4}$. Above 1300° C density becomes normal
- (iv) It oxidises on heating in air $12\text{FeCl}_2 + 3\text{O}_2 \longrightarrow 2\text{Fe}_2\text{O}_3 + 8\text{FeCl}_3$
- (v) H_2 evolves on heating in steam $3\text{FeCl}_2 + 4\text{H}_2\text{O} \longrightarrow \text{Fe}_3\text{O}_4 + 6\text{HCl} + \text{H}_2$
- (vi) It can exist as different hydrated form

 $FeCl_2 \cdot 2H_2O \longrightarrow colourless$

 $FeCl_2 \cdot 4H_2O \longrightarrow pale green$

 $FeCl_2 \cdot 6H_2O \longrightarrow green$

Ferric Chloride (FeCl₃)

This is the most important ferric salt. It is known in anhydrous and hydrated forms. The hydrated form consists of six water molecules, FeCl₃.6H₂O.

Preparation:

(i) Anhydrous ferric chloride is obtained by passing dry chlorine gas over heated iron fillings. The vapours are condensed in a bottle attached to the outlet of the tube.

$$2\text{Fe} + 3\text{Cl}_2 \rightarrow 2\text{FeCl}_3$$

(ii) $\operatorname{Fe_2(CO_3)_3} + 6\operatorname{HCl} \rightarrow 2\operatorname{FeCl_3} + 3\operatorname{H_2O} + 3\operatorname{CO_2}$

 $Fe(OH)_3 + 3HCl \rightarrow FeCl_3 + 3H_2O$

 $Fe_2O_3 + 6HCl \rightarrow 2FeCl_3 + 3H_2O$

The solution on evaporation and cooling deposits yellow crystals of hydrated ferric chloride. FeCl₃.6H₂O

Properties

(i)
$$\operatorname{Fe_2Cl_6} \xrightarrow{750^{\circ}\mathrm{C}} 2\operatorname{FeCl_3} \xrightarrow{\mathrm{Above}750^{\circ}\mathrm{C}} 2\operatorname{FeCl_2} + \operatorname{Cl_2}$$

(ii)
$$Cl$$
 Fe Cl Fe Cl Cl

(iii) It dissolves in water. The solution is acidic in nature due to its hydrolysis as shown below:

$$FeCl_3 + 3HOH \rightleftharpoons Fe(OH)_3 + 3HCl$$

- (iv) $FeCl_3 + 6NH_3 \rightarrow FeCl_3.6NH_3$
- (v) Ferric chloride acts as an oxidising agent.
 - (a) It oxidies stannous chloride to stannic chloride.

$$2\text{FeCl}_3 + \text{SnCl}_2 \rightarrow 2\text{FeCl}_2 + \text{SnCl}_4$$

(b) It oxidises SO₂ to H₂SO₄

$$2\text{FeCl}_3 + \text{SO}_2 + 2\text{H}_2\text{O} \rightarrow 2\text{FeCl}_2 + \text{H}_2\text{SO}_4 + 2\text{HCl}$$

(c) It oxidises H₂S to S

$$2\text{FeCl}_3 + \text{H}_2\text{S} \rightarrow 2\text{FeCl}_2 + 2\text{HCl} + \text{S}$$

(d) It liberates iodine from KI.

$$2\text{FeCl}_3 + 2\text{KI} \rightarrow 2\text{FeCl}_2 + 2\text{KCl} + \text{I}_2$$

(e) Nascent hydrogen reduces FeCl₃ into FeCl₂

$$FeCl_3 + [H] \rightarrow FeCl_2 + HCl$$

$$(vi)FeCl_3 + 3NH_4OH \rightarrow Fe(OH)_3 + 3NH_4Cl$$

(vii)
$$FeCl_3 + NH_4SCN \rightarrow Fe(SCN)Cl_2 + NH_4Cl$$

or
$$FeCl_3 + 3NH_4SCN \rightarrow Fe(SCN)_3 + 3NH_4Cl$$

(viii)
$$4\text{FeCl}_3 + 3\text{K}_4\text{Fe}(\text{CN})_6 \rightarrow \text{Fe}_4[\text{Fe}(\text{CN})_6]_3 + 12\text{KCl}$$

Prussian blue

(Ferri ferrocyanide)

(ix) On heating hydrated ferric chloride FeCl₃.6H₂O, anhydrous ferric chloride is not obtained. It is changed to Fe₂O₃ with evolution of H₂O and HCl.

$$2[FeCl_3.6H_2O] \xrightarrow{Heat} Fe_2O_3 + 6HCl + 9H_2O$$

Hydrated ferric chloride may be dehydrated by heating with thionyl chloride.

$$FeCl_3.6H_2O + 6SOCl_2 \longrightarrow FeCl_3 + 12HCl + 6SO_2$$

EXERCISE # 0-1

SELECT ONLY ONE IS CORRECT OPTIONS:

 $N_2(g) + 3H_2(g) \xrightarrow{Fe + Mo} 2NH_3(g)$; Haber's process, Mo is used as

General Properties of d-block

	(A) a catalyst		(B) a catalytic pro	omoter	
	(C) an oxidising	agent	(D) as a catalytic	poison	
					DB0001
2.	An ornamental of	of gold having 75% of g	gold, it is of car	rat.	
	(A) 18	(B) 16	(C) 24	(D) 20	
					DB0002
3.	Transition eleme	ents having more tende	ncy to form complex th	an representative ele	ements (s and
	p-block element	s) due to -			
	(A) availability of	of d-orbitals for bonding			
	(B) variable oxid	dation states are not sho	wn by transition element	ts	
	(C) all electrons	are paired in d-orbitals			
	(D) <i>f</i> -orbitals are	available for bonding			
					DB0003
4.	A compound of m	nercury used in cosmetics	, in Ayurvedic and Yunani	medicines and know	n as Vermilion
	is -				
	(A) HgCl ₂	(B) HgS	$(C) Hg_2Cl_2$	(D) HgI	
					DB0004
5.	Transition eleme	ents are usually characte	rised by variable oxidation	on states but Zn does	not show this
	property because	e of			
	(A) completion of	of np-orbitals	(B) completion o	f (n-1)d orbitals	
	(C) completion of	of ns-orbitals	(D) inert pair effe	ect	
					DB0005
6.	The d-block elen	nent which is a liquid at	room temperature, havin	g high specific heat, l	ess reactivity
	than hydrogen a	nd its chloride (MX ₂) is	s volatile on heating is		
	(A) Cu	(B) Hg	(C) Ce	(D) Pm	
					DB0006
7.	Coinage metals	show the properties of			
	(A) typical eleme	ents	(B) normal eleme	ents	
	(C) inner-transiti	on elements	(D) transition ele	ment	
					DB0007
8.	The transition m	etal used in X-rays tube			
	(A) Mo	(B) Ta	(C) Tc	(D) Pm	
					DB0008
9.		ation states of transition	elements are found to be	in the combination v	with A and B,
	which are				
	(A) F, O	(B) O, N	(C) O, Cl	(D) F, Cl	
					DB0009

0.	The metals presen	nt in insulin and haemog	globin are respectively		
	(A) Zn, Hg	(B) Zn, Fe	(C) Co, Fe	(D) Mg, Fe	
					DB0010
1.			g acids like conc. HNO which finds use for tonir		
	(A) Ag	(B) Hg	(C) Au	(D) Cu	
					DB0011
•	Manganese steel	is used for making raily	vay tracks because		
	(A) it is hard with	n high percentage of M	n		
	(B) it is soft with	high percentage of Mn	l		
	(C) it is hard with	small concentration of	manganese with impuri	ities	
	(D) it is soft with	small concentration of	manganese with impuri	ties	
					DB0012
3.	Transition elemen	nts in lower oxidation s	tates act as Lewis acid b	ecause	
	(A) they form con	nplexes			
	(B) they are oxidi	ising agents			
	(C) they donate e	lectrons			
	(D) they do not sl	how catalytic properties	3		
					DB0013
•	The electrons wh	ich take part in order to	exhibit variable oxidati	on states by transition	n metals are
	(A) ns only				
	(B) $(n-1)d$ only				
	(C) ns and $(n-1)c$	d only but not np			
	(D) $(n-1)d$ and n	p only but not ns			
					DB0014
5.		₄ is purple-coloured du	ie to		
	(A) d-d-transition				
	(B) charge transfe				
		-d-transition and charge	transfer		
	(D) none of these	;			
					DB0015
•			s two oxidation states x	and y, differ by two	units then
	- · · ·	n oxidation state x are i	•		
	_	n oxidation state x are i	-		
	-	n oxidation state y are o	•		
	(D) compounds in	n oxidation state y are o	covalent if $y < x$		
					DB0016

Compounds of d-block

 $\xrightarrow{\text{compd (U)} +\text{conc.H}_2\text{SO}_4} (V)_{\text{Red gas}}$ $\xrightarrow{\text{NaOH}+\text{AgNO}_3} (W)_{\text{Red ppt.}} \xrightarrow{\text{NH}_3 \text{ so ln.}} (X)$ **17.**

imparts violet

colour in the

flame test

$$(W)_{Red\ ppt.} \xrightarrow{\text{dil. HCl}} (Y)_{white\ ppt.}$$

(U)
$$\xrightarrow{\text{NaOH}} \Delta$$
 (Z)_{gas} (gives white fumes with HCl)

sublimes on

heating

Identify (T) to (Z).

(A)
$$T = KMnO_4$$
, $U = HCl$, $V = Cl_2$, $W = HgI_2$, $X = Hg(NH_2)NO_3$, $Y = Hg_2Cl_2$, $Z = N_2$

(B)
$$T=K_2Cr_2O_7$$
, $U=NH_4Cl$, $V=CrO_2Cl_2$, $W=Ag_2CrO_4$, $X=[Ag(NH_3)_2]^+$, $Y=AgCl$, $Z=NH_3$

(C)
$$T = K_2CrO_4$$
, $U = KCl$, $V = CrO_2Cl_2$, $W = HgI_2$, $X = Na_2CrO_4$, $Y = BaCO_3$, $Z = NH_4Cl$

(D) T =
$$K_2MnO_4$$
, U = NaCl, V = CrO_3 , W = $AgNO_2$, X = $(NH_4)_2CrO_4$, Y = $CaCO_3$, Z = SO_2

DB0017

18. The number of moles of acidified KMnO₄ required to convert one mole of sulphite ion into sulphate ion is

DB0018

19.
$$\operatorname{Cr}_2\operatorname{O}_7^{2-} \xrightarrow{X} \operatorname{2CrO}_4^{2-}$$
, X and Y are respectively

(A)
$$X = OH^{-}, Y = H^{+}$$

(B)
$$X = H^+, Y = OH^-$$

(C)
$$X = OH^-, Y = H_2O_2$$

(D)
$$X = H_2O_2$$
, $Y = OH^{-1}$

DB0019

CrO3 dissolves in aqueous NaOH to give 20.

(A)
$$Cr_2O_7^{2-}$$

(B)
$$CrO_4^{2-}$$

$$(C) Cr(OH)_3$$

(D)
$$Cr(OH)_{2}$$

DB0020

During estimation of oxalic acid Vs KMnO₄, self indicator is 21.

- (A) KMnO₄
- (B) oxalic acid
- (C) K₂SO₄
- (D) MnSO₄

DB0021

Acidified chromic acid + $H_2O_2 \xrightarrow{Org.solvent} X + Y$, X and Y are 22.

(blue colour)

- (A) CrO₅ and H₂O (B) Cr₂O₃ and H₂O (C) CrO₂ and H₂O
- (D) CrO and H₂O

 $\underset{(diatomic\ covalent}{Y} \xleftarrow{KI} CuSO_4 \xrightarrow{\quad dil\ H_2SO_4} X(Blue\ colour)\,,\ X\ and\ Y\ are$ 23.

- (A) $X = I_2$, $Y = [Cu(H_2O)_4]^{2+}$
- (B) $X = [Cu(H_2O)_4]^{2+}, Y = I_2$
- (C) $X = [Cu(H_2O)_4]^+, Y = I_2$
- (D) $X = [Cu(H_2O)_5]^{2+}, Y = I_2$

DB0023

(NH₄)₂Cr₂O₇ (Ammonium dichromate) is used in fire works. The green coloured powder blown in air 24.

- (A) Cr₂O₃
- (B) CrO₂
- (C) Cr₂O₄
- (D) CrO₃

DB0024

25. Iron becomes passive by due to formation of

(A) dil. HCl, Fe₂O₃

(B) 80% conc. HNO₃, Fe₃O₄

(C) conc. H₂SO₄, Fe₃O₄

(D) conc. HCl, Fe₃O₄

DB0025

- **26.** Bayer's reagent used to detect olifinic double bond is
 - (A) acidified KMnO₄

- (B) aqueous KMnO₄
- (C) 1% alkaline KMnO₄ solution
- (D) KMnO₄ in benzene

DB0026

27.
$$MnO_4^- + xe^- \xrightarrow{\text{(Alkaline medium)}} MnO_4^{2-} + ye^- \xrightarrow{\text{(Acidic medium)}} MnO_2^{2+} + ze^- \xrightarrow{\text{(Neutral medium)}} MnO_2$$

x, y and z are respectively

- (A) 1, 2, 3
- (B) 1, 5, 3
- (C) 1, 3, 5
- (D) 5, 3, 1

DB0027

 $Cu + conc. HNO_3 \longrightarrow Cu(NO_3)_2 + X$ (oxide of nitrogen); then X is 28.

- (A) N₂O
- (B) NO₂
- (C) NO
- (D) N_2O_3

DB0028

29. CuSO₄ solution reacts with excess KCN to give

- $(A) Cu(CN)_2$
- (B) CuCN
- (C) $K_2[Cu(CN)_2]$
- (D) $K_3[Cu(CN)_4]$

DB0029

30. Pick out the incorrect statement:

- (A) MnO₂ dissolves in conc. HCl, but does not form Mn⁴⁺ ions
- (B) MnO₂ react with hot concentrated H₂SO₄ liberating oxygen
- (C) K₂MnO₄ is formed when MnO₂ in fused KOH is oxidised by air, KNO₃, PbO₂ or NaBiO₃
- (D) Decomposition of acidic KMnO₄ is not catalysed by sunlight.

DB0040

31.	1 mole of Fe ²⁺ i	ons are oxidised to Fe ³⁺ io	ns with the help of (in	acidic medium)		
	(A) 1/5 moles o	f KMnO ₄	(B) 5/3 moles of	$KMnO_4$		
	(C) 2/5 moles of	•	(D) 5/2 moles of	•		
		7		т	DB0031	
32.	To an acidified	dichromate solution, a pinc	ch of Na ₂ O ₂ is added	and shaken. What is	observed:	
	(A) blue colour		(B) Orange colou	(B) Orange colour changing to green		
	(C) Copious evo	olution of oxygen	(D) Bluish - green	n precipitate		
					DB0032	
33.	The rusting of in	con is formulated as Fe ₂ O ₃ ·	xH ₂ O which involves	the formation of		
	(A) Fe_2O_3	(B) $Fe(OH)_3$	(C) $Fe(OH)_2$	(D) $Fe_2O_3 + F$	$\operatorname{Fe(OH)}_3$	
					DB0033	
34.	Solid CuSO ₄ ·5H	I ₂ O having covalent, ionic	as well as co-ordinate	e bonds. Copper ato	m/ion forms	
	со-о	rdinate bonds with water.				
	(A) 1	(B) 2	(C) 3	(D) 4		
					DB0034	
35.	KMnO ₄ + HCl (acidified)	\longrightarrow H ₂ O + X(g), X is a				
	(A) red liquid		(B) violet gas			
	(C) greenish yel	low gas	(D) yellow-brown	n gas		
					DB0035	
36.	Purple of cassiu	s is:				
	(A) Pure gold		(B) Colliodal solu	ition of gold		
	(C) Gold (I) hyd	lroxide	(D) Gold (III) chl	oride		
					DB0036	
37.	Amongst the following species, maximum covalent character is exhibited by					
	(A) FeCl ₂	(B) ZnCl ₂	(C) HgCl ₂	(D) CdCl ₂		
••					DB0037	
38.		of SnCl ₂ required for the redu			idic medium)	
	(A) 3	(B) 2	(C) 1	(D) 1/3	DD0020	
39.	Pick out the inco	orraat statamant:			DB0038	
39.						
	(A) MnO_4^{2-} is quite strongly oxidizing and stable only in very strong alkalies. In dilute alkali, neutral					
	solutions, it disproportionates.					
	(B) In acidic solu	utions, MnO_4^- is reduced to	Mn ²⁺ and thus, KMnC	₄ is widely used as ox	idising agent	
	(C) KMnO ₄ does not acts as oxidising agent in alkaline medium					
	(D) KMnO ₄ is manufactured by the fusion of pyrolusite ore with KOH in presence of air or KNO ₃ .				air or KNO ₃ ,	
	followed by elec	ctrolytic oxidation in strong	gly alkaline solution.			
					DB0039	
40.		lution of CuCrO ₄ is green b				
	(A) green Cu ²⁺		(B) green CrO ₄ ²⁻			
	(C) blue Cu ²⁺ ic	ons and green CrO ₄ ²⁻ ions	(D) blue Cu ²⁺ ior	ns and vellow CrO.2	- ions	

node06\B0B0-BA\Kota\EE|Advanced\Emiliuse\Chemistry\Shee\Wodule-SaltAmbysis, Hearing Effect & s,d-Block\Eng\(in) d-block compound.p65

- In nitroprusside ion, the iron exists as Fe²⁺ and NO as NO⁺ rather than Fe³⁺ and NO respectively. 41. These forms of ions are established with the help of
 - (A) magnetic moment in solid state
- (B) thermal decomposition method

(C) by reaction with KCN

(D) by action with K₂SO₄

DB0041

- **42.** Which of the following reaction is possible at anode?
 - (A) $2Cr^{3+} + 7H_2O \longrightarrow Cr_2O_7^{2-} + 14 H^+$ (B) $F_2 \longrightarrow 2 F^-$

(C) $\frac{1}{2}O_2 + 2H^+ \longrightarrow H_2O$

(D) None of these

DB0042

- **43.** Colourless solutions of the following four salts are placed separately in four different test tubes and a strip of copper is dipped in each one of these. Which solution will turn blue?
 - (A) KNO₃
- (B) AgNO₃
- (C) $Zn(NO_3)_2$
- (D) ZnSO₄

DB0043

- When acidified KMnO₄ is added to hot oxalic acid solution, the decolourization is slow in the beginning, 44. but becomes very rapid after some time. This is because:
 - (A) Mn²⁺ acts as autocatalyst
- (B) CO₂ is formed as the product

(C) Reaction is exothermic

(D) MnO₄ catalyses the reaction

DB0044

- 45. Metre scales are made-up of alloy
 - (A) invar
- (B) stainless steel
- (C) elektron
- (D) magnalium

DB0045

- The Ziegler-Natta catalyst used for polymerisation of ethene and styrene is $TiCl_4 + (C_2H_5)_3Al$, the 46. catalysing species (active species) involved in the polymerisation is
 - (A) TiCl₄
- (B) TiCl₃
- (C) TiCl₂
- (D) TiCl

DB0046

- 'Bordeaux mixture' is used as a fungicide. It is a mixture of **47.**
 - (A) $CaSO_4 + Cu(OH)_2$

(B) $CuSO_4 + Ca(OH)_2$

(C) CuSO₄ + CaO

(D) CuO + CaO

- Peacock ore is: 48.
 - (A) FeS₂
- (B) CuFeS₂
- (C) $CuCO_3.Cu(OH)_2$ (D) Cu_5FeS_4
 - **DB0048**

EXERCISE # O-2

SELECT MORE THAN ONE IS CORRECT OPTIONS

		General Pr	operties of d-block				
1.	Potash alum is a de	ouble salt, its aqueous s	olution shows the charac	eteristics of			
	(A) Al ³⁺ ions	(B) K ⁺ ions	(C) SO_4^{2-} ions	(D) Al ³⁺ ions but n	ot K ⁺ ions		
					DB0049		
2.	Addition of non-m	etals like B and C to the	e interstitial sites of a tra	nsition metal results tl	ne metal		
	(A) of more ductab	oility	(B) of less ductabil	ity			
	(C) less malleable		(D) of more hardne	ess			
					DB0050		
3.	Mercury is a liquid	d at 0°C because of					
	(A) very high ionis	sation energy	(B) weak metallic l	oonds			
	(C) high heat of hy	dration	(D) high heat of su	blimation			
					DB0051		
4.	The correct stateme	ent(s) about transition el	lements is/are				
	(A) the most stable	e oxidation state is +3 ar	nd its stability decreases	across the period			
	(B) transition elem	ents of 3d-series have a	almost same atomic sizes	from Cr to Cu			
	(C) the stability of	+2 oxidation state incre	eases across the period				
	(D) some transition	elements like Ni, Fe, Cr	may show zero oxidation	state in some of their co	ompounds		
					DB0052		
5.	The ionisation ene	rgies of transition eleme	ents are				
	(A) less than p-block elements		(B) more than s-blo	ock elements			
	(C) less than s-bloo	ck elements	(D) more than p-blo	ock elements			
					DB0053		
6.	The metal(s) which	n does/do not form ama	lgam is/are				
	(A) Fe	(B) Pt	(C) Zn	(D) Ag			
					DB0054		
7.	Which of the follo	wing statements concern	n with d-block metals?				
	(A) compounds containing ions of transition elements are usually coloured						
	(B) Zinc has lowest melting point among 3d-series elements						
	(C) they show vari	able oxidation states, v	which differ by two units	only			
	(D) they easily for	m complexes					
					DB0055		
8.	The highest oxidat	ion state among transition	on elements is				
	(A) + 7 by Mn	(B) + 8 by Os	(C) + 8 by Ru	(D) + 7 by Fe			
					DB0056		
9.	Amphoteric oxide(s) is/are					
	$(A) Al_2O_3$	(B) SnO	(C) ZnO	(D) Fe_2O_3			
					DB0057		

10.	The catalytic activity of transition elements is related to their					
	(A) variable oxidation states		(B) free suface va	alencies		
	(C) complex form	ation ability	(D) magnetic mo	ment		
					DB0058	
11.	In the equation: N	$M + 8CN^- + 2H_2O + O_2 -$	$\longrightarrow 4[M(CN)_2]^- + 4$	OH ⁻ , metal M is		
	(A) Ag	(B) Au	(C) Cu	(D) Hg		
					DB0059	
12.	$CuSO_4(aq) + 4NI$	$H_3 \longrightarrow X$, then X is				
	(A) $[Cu(NH_3)_4]^{2+}$		(B) paramagnetic	;		
	(C) coloured		(D) of a magnetic	c moment of 1.73 BM		
					DB0060	
13.	Amphoteric oxide	e(s) of Mn is/are				
	(A) MnO ₂	(B) Mn_3O_4	(C) Mn_2O_7	(D) MnO		
	-				DB0061	
14.	The lanthanide co	ontraction is responsible fo	r the fact that			
	(A) Zr and Hf hav	ve same atomic sizes	(B) Zr and Hf ha	ve same properties		
	(C) Zr and Hf hav	ve different atomic sizes	(D) Zr and Hf ha	ve different properties		
					DB0062	
15.	Ion(s) having non	zero magnetic moment (s	pin only) is/are			
	$(A) Sc^{3+}$	(B) Ti^{3+}	(C) Cu ²⁺	(D) Zn ²⁺		
					DB0063	
		Compour	nds of d-block			
16.	Correct statement	(s) is/are				
	(A) an acidified se	olution of K ₂ Cr ₂ O ₇ liberat	es iodine from KI			
	(B) $K_2Cr_2O_7$ is used as a standard solution for estimation of Fe^{2+} ions					
	(C) in acidic medium, $M = N/6$ for $K_2Cr_2O_7$					
	(D) (NH ₄) ₂ Cr ₂ O ₇ on heating decomposes to yield Cr ₂ O ₃ through an endothermic reaction					
	,		2 3		DB0064	
17.	Interstitial compo	unds are formed by				
	(A) Co	(B) Ni	(C) Fe	(D) Ca		
					DB0065	
18.	Acidified KMnO	can be decolourised by				
	(A) SO ₂	(B) H ₂ O ₂	(C) FeSO ₄	(D) $\operatorname{Fe_2(SO_4)_3}$		
	=		•			

EXERCISE # S-1

NUMERICAL GRID TYPE QUESTIONS:

1. When mixture of NaCl and K₂Cr₂O₇ is gently warmed with conc.H₂SO₄ then compound X is formed. What is the oxidation state of central atom of X.

DB0067

2. Number of ions which gives blue colour in aqueous state :

$$V^{+4}$$
, Ni^{+2} , Ti^{+3} , Co^{+2} , Fe^{+3} , Cu^{+2}

DB0068

3. Define the oxidation states of Mn in product of the given reaction

$$3K_2MnO_4+2H_2O+4CO_2 \rightarrow 2X+Y+4KHCO_3$$

If the oxidation state of Mn in product X and Y are n_1 and n_2 respectively. Then find out the value of (n_1+n_2) -

DB0069

4. Find number of metal ion which can produce high spin and low spin octahedral complex :

$$Sc^{+3}$$
, Ti^{+3} , V^{+3} , Cr^{+3} , Mn^{+3} , Fe^{+3} , Co^{+3} , Ni^{+2}

DB0070

5. How many non-axial d-orbitals are involved in hybridisation of CrO₂Cl₂.

DB0071

6. Find the number of species from the following which has magnetic moment value of 1.73 B.M.

$$Fe^{2+},\,Cu^{2+},\,Ni^{2+},\,NO_{_2},\,NO_{_2}^{^-},\,Ti^{3+}$$

DB0072

7. Total no. of moles of Mohr's salt are required for per mole of dichromate ions during volumetric analysis.

DB0073

8. Find number of reaction(s) in which no redox change takes place -

(I)
$$BaCl_2 + Na_2CrO_4 \xrightarrow{CH_3COOH}$$

(II)
$$K_2Cr_2O_7 + NaOH \longrightarrow$$

(III)
$$\operatorname{Cr_2O_7^{2-}} + \operatorname{NO_3^-} \xrightarrow{\operatorname{H}^+}$$

(IV)
$$\operatorname{Cr}_{2}\operatorname{O}_{7}^{2-} + \operatorname{C}_{2}\operatorname{H}_{5}\operatorname{OH} \xrightarrow{\operatorname{H}^{+}}$$

EXERCISE # S-2

COMPREHENSTION TYPE QUESTIONS:

Comprehension # 01 to 04

Transition metal and their compounds are used as catalysts in industry and in biological system. For example, in the Contact process, vanadium compounds in the +5 state $(V_2O_5$ or $VO_3^-)$ are used to oxidise SO₂ to SO₃:

$$SO_2 + \frac{1}{2}O_2 \xrightarrow{V_2O_5} SO_3$$

It is thought that the actual oxidation process takes place in two stages. In the first step, V5+ in the presence of oxide ions converts SO_2 to SO_3 . At the same time, V^{5+} is reduced to V^{4+} .

$$2\mathrm{V}^{5+} + \mathrm{O}^{2-} + \mathrm{SO}_2 \longrightarrow \ 2\mathrm{V}^{4+} + \mathrm{SO}_3$$

In the second step, V^{5+} is regenerated from V^{4+} by oxygen:

$$2V^{4+} + \frac{1}{2}O_2 \longrightarrow 2V^{5+} + O^{2-}$$

The overall process is, of course, the sum of these two steps:

$$SO_2 + \frac{1}{2}O_2 \longrightarrow SO_3$$

- 1. Transition metals and their compounds catalyse reactions because:
 - (A) They have competely filled s-subshell
 - (B) They have a comparable size due to poor shielding of d-subshell
 - (C) They introduce an entirely new reaction mechanism with a lower activation energy
 - (D) They have variable oxidation states differ by two units

DB0075

- 2. During the course of the reaction:
 - (A) Catalyst undergoes changes in oxidation state
 - (B) Catalyst increases the rate constant
 - (C) Catalyst is regenerated in its original form when the reactants form the products
 - (D) All are correct.

DB0075

- **3.** Catalytic activity of transition metals depends on:
 - (A) Their ability to exist in different oxidation states
 - (B) The size of the metal atoms
 - (C) The number of empty atomic orbitals available
 - (D) None of these

- 4. Which of the following ion involved in the above process will show paramagnetism?
 - (A) V^{5+}
- (B) V^{4+}
- (C) O^{2-}
- (D) VO₋³

Comprehension # 05 & 06

- (X) is very important laboratory reagent which is prepared by its naturally occurring ore which is called pyrolusite. Pyrolusite when fused with alkali in the presence of O_2 , green compound (Y) is produced.
- (Y) is converted into (X) by electrolysis or by using ozone.
- 5. On small scale (**X**) is prepared by disproportion of (**Y**) in acidic solution. Which of the following is produced by disproportion of (**Y**) in slight alkaline solution.
 - (A) KMnO₄, Mn⁺²

(B) KMnO₄, MnO₅

(C) MnO₂, Mn⁺²

(D) K_2MnO_4 , Mn^{+2}

DB0076

- **6.** Select the correct statements :
 - (A) (X) is tetrahedral & diamagnetic
 - (B) (Y) is tetrahedral & paramagnetic
 - (C) (X) produce dimangnese hepta oxide (oily liquid) with conc. H₂SO₄
 - (D) All are correct

DB0076

Comprehension # 07 to 09

Due to availability of vacant orbitals of sufficiently low energy, d-block elements form complexes, d-block elements have different properties such as- catalytic, magnetic, alloy formation, interistitial compounds formation. Interistitial compounds are those compounds in which small atoms like carbon and boron fits into interistices of d-block elements crystal. In interistitial compounds, there is no chemical bond formation takes place so, chemical properties remain almost same but physical properties may change.

- 7. Which of the property of interistitial compounds has the same behaviour as that of the element -
 - (A) Malleability

(B) Ductility

(C) Electrical conductance

(D) Hardness

DB0077

- **8.** Which of the following property gets decreased in interistitial compounds compared to that of the element -
 - (A) Malleability

(B) Metallic lustre

(C) Hardness

(D) Density

DB0077

- **9.** Select correct statement -
 - (A) Highest oxidation state of 3d-series is +8.
 - (B) Ni, Cu and Zn are not transition element.
 - (C) Ziglar natta catalyst contain vanadium.
 - (D) Aq. solution of Cu²⁺, Fe⁺³ and Cr³⁺ are blue, yellow and green respectively.

DB0077

node06\B0B0-BA\Kota\VEEJAdvanced\\Enthuse\Chemistry\Sheen\Wodule-SaltAnalysis, Heating Effed & s, d-Block\Eng\Viv) d-block compound p65

MATCH THE COLUMN: (Matrix Match)

10. Column-I (Metals)

- (A) Zn
- (B) Cu
- (C) Ag
- (D) Au

11. Column-I (catalyst)

- (A) TiCl₄
- (B) PdCl₂
- (C) Pt/PtO
- (D) Cu

Column-II

- (P) Cyanide process involve in the comerical extration
- (Q) Extracted by hydrometallurgical process
- (R) Roasting involve in the comerical extration
- (S) Present in Brass

DB0078

Column-II (Used)

- (P) Adams catalyst in reduction
- (Q) In preparation of (CH₃)₂ SiCl₂
- (R) Used as the ziegler-natta catalyst in polythene production
- (S) Wacker process for converting C₂H₄ to CH₃CHO

DB0079

SELECT CORRECT CODE:

12. Column-I

- (P) Cr_2O_3
- (Q) CrO₃
- $(R) Fe_3O_4$
- $(S) N_2O$

Select correct code for matching -

Code:

- P R S Q
- (A) 2 4 3 1
- (B) 2 3 4 1
- (C) 4 2 3 1
- (D) 4 3 1 2

Column-II

- (1) Neutral oxide
- (2) Amphoteric oxide
- (3) Mix oxide
- (4) Acidic oxide

DB0080

13. Column-I

(Metal ion of 3d-series)

- (P) Ni²⁺
- (Q) Cr²⁺
- (R) V^{2+}
- (S) Ti⁴⁺

Select correct code for matching -

2

4

Code:

(B) 3

- P R S Q
- 4 2 1 3 (A)
- 1 2 (C) 4 1 3
- (D) 1 2 4 3

Column-II

(Characterstic)

- (1) produce blue aq. solution
- (2) half filled t_{2g} orbitals in octahedral complex
- (3) diamagnetic ion
- (4) calculated $\mu = 2.84$ B.M. (spin only)

DB0081

BOBO-BA\Kota\UEE/Advanced)\Enthuse\Chemistry\Sheet\Woodule-SaltAnalysis, Heating Effect&s, d-Block\Eng\(iv)\d-block compound.pd

ASSERATION & REASONING:

Questions given below consist of two statements each printed as Assertion (A) and Reason (R); while answering these questions you are required to choose any one of the following four responses:

- (A) if both (A) and (R) are true and (R) is the correct explanation of (A)
- (B) if both (A) and (R) are true but (R) is not correct explanation of (A)
- (C) if (A) is true but (R) is false
- (D) if (A) is false and (R) is true
- **14. Assertion**: KMnO₄ is purple in colour due to charge transfer.

Reason: In MnO_4^- , there is no electron present in d-orbitals of manganese.

DB0082

15. Assertion : K_2CrO_4 has yellow colour due to charge transfer.

Reason : CrO_4^{2-} ion is tetrahedral in shape.

DB0083

16. Assertion: The highest oxidation state of chromium in its compounds is +6.

Reason: Chromium atom has only six electrons in ns and (n–1) d orbitals.

DB0084

17. Assertion: CrO₃ reacts with HCl to form chromyl chloride gas.

Reason : Chromyl chloride (CrO₂Cl₂) has tetrahedral shape.

DB0085

18. Assertion: Zinc does not show characteristic properties of transition metals.

Reason: In zinc outermost shell is completely filled.

DB0086

19. Assertion: Tungsten has a very high melting point.

Reason: Tungsten is a covalent compound.

DB0087

20. Assertion: Equivalent mass of KMnO₄ is equal to one-third of its molecular mass when it acts

as an oxidising agent in an alkaline medium.

Reason : Oxidation number of Mn is +7 in KMnO₄.

DB0088

21. Assertion : Cu⁺ ion is colourless.

Reason: Four water molecules are coordinated to Cu⁺ ion in water.

MATCHING LIST TYPE 1×3 Q. (THREE LIST TYPE Q.)

The following column 1, 2, 3 represent the different metals of 3d series and their properties Answer the questions that follow

Column-1 - Hexa aqua complex of dipositive ion of given metal

Column-2 - Magnetic moment (spin only)

Column-3 - Colour

Column - 1 Hexa aqua complex of dipositive ion of given metal	Column - 2 Magnetic moment (spin only)	Column - 3 Colour	
(I) Co	(i) $\sqrt{8}$ B.M.	(P) Green	
(II) Ni	(ii) √3 B.M.	(Q) Pink	
(III) V	(iii) √15 B.M.	(R) Colourless	
(IV) Zn	(iv) Zero	(S) Violet	
		(T) Blue	

22.	Select CORRECT co	ombination for metal w	hich have same magnetism	as in $[Ti(H_2O)_6]^{4+}$
	(A) (II), (iv), (R)	(B)(I), (iv), (R)	(C) (IV), (iv), (R)	(D)(IV),(iv),(T)
				DB0090

Which is **CORRECT** magnetic moment and colour combination of the product when $[Co(H_2O)_6]^{+2}$ 23. is react with conc. HCl solution

(A)(ii), (Q)

(B)(ii), (T)

(C) (iii), (Q)

(D) (iii), (T)

DB0090

Select $\mathbf{CORRECT}$ combination for hexaaqua complex of metal ion \mathbf{M}^{+2} which have half filled \mathbf{t}_{2g} 24. configuration (i.e. t_{2g}^3)

(A) (III), (iii), (S)

(B) (III), (iii), (P)

(C) (III), (ii), (S)

(D) (III), (iv), (P)

 $[M(H_2O)_c]^{+2}$ of a metal in **column-1** have combination (i), (P) in **column-2**, 3. Select **CORRECT 25.** combination for hexaammine complex of same metal ion.

(A)(i), (T)

(B)(i),(S)

(C) (iv), (R)

(D) (iv) (T)

DB0090

- What would happen when a solution of potassium chromate is treated with an excess of dilute nitric 1. acid -[AIEEE-2003]
 - (1) Cr^{3+} and $\operatorname{Cr}_2 \operatorname{O}_7^{2-}$ are formed
- (2) $\operatorname{Cr}_2 \operatorname{O}_7^{2-}$ and $\operatorname{H}_2 \operatorname{O}$ are formed
- (3) $Cr_2 O_7^{2-}$ is reduced to +3 state of Cr (4) $Cr_2 O_7^{2-}$ is oxidised to +7 state of Cr

DB0091

- 2. Excess of KI reacts with CuSO₄ solution and then Na₂S₂O₃ solution is added to it. Which of the statements is incorrect for this reaction: [AIEEE-2004]
 - (1) Evolved I₂ is reduced

(2) CuI₂ is formed

(3) $Na_2S_2O_3$ is oxidised

(4) Cu₂I₂ is formed

DB0092

- In context with the transition elements, which of the following statements is incorrect?[AIEEE-2009] **3.**
 - (1) In the highest oxidation states of the first five transition elements (Sc to Mn), all the 4s and 3d electrons are used for bonding.
 - (2) Once the d⁵ configuration is exceeded, the tendency to involve all the 3d electrons in bonding decreases.
 - (3) In addition to the normal oxidation states, the zero oxidation state is also shown by these elements in complexes.
 - (4) In the highest oxidation states, the transition metal show basic character and form cationic complexes.

- 4. Iron exhibits +2 and +3 oxidation states. Which of the following statements about iron is incorrect? [AIEEE-2012]
 - (1) Ferrous compounds are more easily hydrolysed than the corresponding ferric compounds.
 - (2) Ferrous oxide is more basic in nature than the ferric oxide.
 - (3) Ferrous compounds are relatively more ionic than the corresponding ferric compounds.
 - (4) Ferrous compounds are less volatile than the corresponding ferric compounds.

DB0094

5. Consider the following reaction: [**JEE MAIN-2013**]

$$xMnO_4^- + yC_2O_4^{2-} + zH^+ \rightarrow xMn^{2+} + 2yCO_2 + \frac{z}{2}H_2O$$

The values of x, y and z in the reaction are respectively:-

- (1) 5,2 and 16
- (2) 2,5 and 8
- (3) 2, 5 and 16
- (4) 5,2 and 8

DB0095

- **6.** Which of the following arrangements does not represent the correct order of the property stated against [JEE MAIN-2013] it?
 - (1) $V^{2+} < Cr^{2+} < Mn^{2+} < Fe^{2+}$: paramagnetic behaviour
 - (2) $Ni^{2+} < Co^{2+} < Fe^{2+} < Mn^{2+}$: ionic size
 - (3) $\text{Co}^{3+} < \text{Fe}^{3+} < \text{Cr}^{3+} < \text{Sc}^{3+}$: stability in aqueous solution
 - (4) Sc < Ti < Cr < Mn : number of oxidation states

- (1) CrO₃
- (2) $Cr_{2}O_{3}$
- (3) CrCl,
- (4) CrO₂Cl₂

DB0097

8. The element with which of the following outer electron configuration may exhibit the largest number [JEE MAIN-2013, Online] of oxidation states in its compounds:

- $(1) 3d^74s^2$
- $(2) 3d^84s^2$
- $(3) 3d^54s^2$
- $(4) 3d^64S^2$

DB0098

9. When a small amount of KMnO₄ is added to concentrated H₂SO₄, a green oily compound is obtained which is highly explosive in nature. Compound may be: [JEE MAIN-2013, Online]

- $(1)Mn_2O_3$
- (2) MnSO₄
- $(3) \text{ Mn}_{2}\text{O}_{7}$
- (4) MnO₂

DB0099

Which series of reactions correctly represents chemical relations related to iron and its compound? **10.**

- (1) Fe $\xrightarrow{\text{Cl}_2, \text{ heat}}$ FeCl₃ $\xrightarrow{\text{heat, air}}$ FeCl₂ $\xrightarrow{\text{Zn}}$ Fe
- (2) Fe $\xrightarrow{O_2, \text{ heat}}$ Fe₃O₄ $\xrightarrow{CO, 600^{\circ}C}$ FeO $\xrightarrow{CO, 700^{\circ}C}$ Fe
- (3) Fe $\xrightarrow{\text{dil H}_2SO_4}$ FeSO₄ $\xrightarrow{\text{H}_2SO_4, O_2}$ Fe₂(SO₄)₃ $\xrightarrow{\text{Heat}}$ Fe
- (4) Fe $\xrightarrow{O_2, \text{ heat}}$ FeO $\xrightarrow{\text{dil H}_2SO_4}$ FeSO₄ $\xrightarrow{\text{Heat}}$ Fe

[JEE MAIN-2014]

DB0100

11. The equation which is balanced and represents the correct product (s) is : [JEE MAIN-2014]

- (1) $[Mg(H_2O)_6]^{2+} + (EDTA)^{4-} \xrightarrow{excess NaOH} [Mg(EDTA)]^{2+} + 6H_2O$
- (2) $CuSO_4 + 4KCN \rightarrow K_2[Cu(CN)_4] + K_2SO_4$
- (3) $\text{Li}_2\text{O} + 2\text{KCl} \rightarrow 2\text{LiCl} + \text{K}_2\text{O}$
- (4) $[CoCl (NH_3)_5]^+ + 5H^+ \rightarrow Co^{2+} + 5NH_4^+ + Cl^-$

DB0101

- **12.** Which of the following is **not** formed when H_2S reacts with acidic $K_2Cr_2O_7$ solution?
 - (1) K₂SO₄

(2) $Cr_2(SO_4)_3$

(3) S

- (4) CrSO₄
- [JEE MAIN-2014, Online] **DB0102**

[JEE MAIN-2014, Online]

- (1) the formation of a layer of cupric oxide on the surface of copper.
- (2) the formation of basic copper sulphate layer on the surface of the metal
- (3) the formation of a layer of cupric hydroxide on the surface of copper.
- (4) the formation of a layer of basic carbonate of copper on the surface of copper.

DB0103

Which one of the following exhibits the largest number of oxidation states? 14.

[JEE MAIN-2014, Online]

- (1) Mn(25)
- (2) V(23)
- (3) Cr (24)
- (4) Ti (22)

DB0104

15. How many electrons are involved in the following redox reaction? [JEE MAINS-2014,Online]

$$\text{Cr}_2\text{O}_7^{2-} + \text{Fe}^{2+} + \text{C}_2\text{O}_4^{2-} \rightarrow \text{Cr}^{3+} + \text{Fe}^{3+} + \text{CO}_2$$
 (Unbalanced)

- (1) 3

(4)6

DB0105

16. Amongst the following, identify the species with an atom in +6 oxidation state:

[JEE MAIN-2014, Online]

- $(1) [MnO_4]^-$
- (2) $[Cr(CN)_6]^{3-}$ (3) Cr_2O_3
- (4) CrO₂Cl₂

DB0106

17. Match the catalysts to the correct processes:- [JEE MAIN-2015]

	Catalyst		Process
(A)	TiCl ₃	(i)	Wacker process
(B)	PdCl ₂	(ii)	Ziegler-Natta polymerization
(C)	CuCl ₂	(iii)	Contact process
(D)	V_2O_5	(iv)	Deacon's process

- (1) A-ii, B-iii, C-iv, D-i
- C-ii, (2) A-iii, B-i, D-iv
- (3) A-iii, B-ii, D-i C-iv,
- (4) A-ii, B-i, C-iv, D-iii

node06\B0B0·BA\Koko\JEEJAdvanaed\\Enihuse\Chemistry\Sheer\Wodule-Sd1Analysis, Heaing Effed & s,d-Block\Eng\(iv)\d-block compound.p65

E

18. Which of the following statements is false:

[JEE MAIN-2015, Online]

- (1) $Cr_2O_7^{2-}$ has a Cr O Cr bond
- (2) CrO_4^{2-} is tetrahedral in shape
- (3) Na₂Cr₂O₇ is a primary standard in volumetry
- (4) K₂Cr₂O₇ is less soluble than Na₂Cr₂O₇

DB0108

19. The transition metal ions responsible for colour in ruby and emerald are, respectively:

[Jee Main 2016]

- (1) Cr³⁺ and Cr³⁺
- (2) Cr^{3+} and Co^{3+}
- (3) Co^{3+} and Cr^{3+}
- (4) Co^{3+} and Co^{3+}

DB0109

20. Galvanization is applying a coating of :-

[Jee Main 2016]

- (1) Zn
- (2) Pb
- (3) Cr
- (4) Cu

DB0110

- 21. Which of the following compounds is metallic and ferromagnetic?
- [Jee Main 2016]

- (1) MnO₂
- (2) TiO₂
- (3) CrO₂
- (4) VO₂

DB0111

- **22.** Which one of the following species is stable in aqueous solution?
- [Jee Main 2016]

- (1) MnO_4^{3-}
- (2) MnO_4^{2-}
- $(3) Cu^{+}$
- $(4) Cr^{2+}$

DB0112

- 23. What will occur if a block of copper metal is dropped into a beaker containing a solution of 1M ZnSO₄?
 - (1) The copper metal will dissolve and zinc metal will be deposited
- [Jee Main 2016]

- (2) No reaction will occur
- (3) The copper metal will dissolve with evolution of oxygen gas
- (4) The copper metal will dissolve with evolution of hydrogen gas

DB0113

24. Which of the following ions does **not** liberate hydrogen gas on reaction with dilute acids?

[JEE MAIN-2017, Online]

- $(1) \text{Ti}^{2+}$
- $(2) Cr^{2+}$
- $(3) \text{ Mn}^{2+}$
- $(4) V^{2+}$

25. In the following reactions, ZnO is respectively acting as a/an:

[JEE MAIN-2017]

- (a) ZnO + Na₂O \rightarrow Na₂ZnO₂
- (b) ZnO + $CO_2 \rightarrow ZnCO_3$
- (1) base and acid

(2) base and base

(3) acid and acid

(4) acid and base

(A) 4 Cr – O bonds are equivalent

(C) all Cr - O bonds are equivalent

		EXERCISE #	JEE-ADVANCE	\mathbf{D}			
	TRUE/FALSE:						
1.	Cu ⁺ disproportion	ates to Cu ²⁺ and elemer	ntal copper in solution.		[JEE 1991]		
					DB0116		
	FILL IN THE B	LANKS:					
2.	Silver jewellery ite	ems tarnish slowly in th	e air due to their reacti	on with	[JEE 1997]		
					DB0117		
	MULTIPLE CH	OICE QUESTIONS	WITH ONE CORRE	ECT ANSWER:			
3.	Which one is solde	er?			[JEE 1995]		
	(A) Cu and Pb	(B) Zn and Cu	(C) Pb and Sn	(D) Fe and Zi	ı		
					DB0118		
4.	Ammonium dichr	omate is used in some	fireworks. The green	coloured powder b	lown in the air [JEE 1997]		
	(A) CrO ₃	(B) Cr_2O_3	(C) Cr	(D) $CrO(O_2)$			
					DB0119		
5.	The number of mo solution is -	les of KMnO ₄ that will	be needed to react with	n one mole of sulph	ite ion in acidic [JEE 1997]		
	(A) 2/5	(B) 3/5	(C) 4/5	(D) 1			
					DB0120		
6.	Read the follow below:	ving statement and e	explanation and ans	wer as per the	options given [JEE 1998]		
	Assertion : Zn ²⁺ is diamagnetic.						
	Reason: Two electrons are lost from 4s orbital to form Zn ²⁺ .						
	(A) If both assertion and reason are correct, and reason is the correct explanation of the assertion.						
	(B) If both assertion	(B) If both assertion and reason are correct, but reason is not the correct explanation of the assertion					
	(C) If assertion is o	(C) If assertion is correct but reason is incorrect.					
	(D) If assertion is i	incorrect but reason is c	orrect.				
					DB0121		
7.	In the dichromatic	anion,			[JEE 1999]		

(B) 6 Cr – O bonds are equivalent

(D) all Cr – O bonds are non-equivalent

node06\B080-BA\Kota\LEEAdvanced\Lenhuse\Chemisty\Shee\Wodule-Sd1Analysis, Heaning Effed 8. s, d-Block\Eng\(in) d-block compound.p65

E

8.	Anhydrous ferric chloride is prepared by:			[JEE 2002]		
	(A) heating hydrated ferric chloride at a high temperature in a stream of air					
	(B) heating metallic iron in a stream of dry chlorine gas					
	(C) reaction of fe	erric oxide with HCl				
	(D) reaction of m	netallic iron with HCl				
					DB0123	
9.	When MnO ₂ is f	used with KOH, a cold	oured compound is formed	d, the product and	l its colour is:	
	(A) K_2MnO_4 , gr	een	(B) KMnO ₄ , purpl	e	[JEE 2003]	
	(C) Mn ₂ O ₃ , brow	wn	(D) Mn ₃ O ₄ , black			
					DB0124	
10.	The product of o	xidation of I ⁻ with Mn	${ m O_4^-}$ in alkaline medium is	s -	[JEE 2004]	
	(A) IO_3^-	$(B) I_2$	(C) IO-	(D) IO_4^-		
					DB0125	
11.	$(NH_4)_2Cr_2O_7$ on	heating liberates a gas	s. The same gas will be ob	tained by -	[JEE 2004]	
	(A) heating NH ₄	NO_2	(B) heating NH ₄ N	O_3		
	(C) treating H ₂ O	with NaNO ₂	(D) treating Mg ₃ N	with H ₂ O		
					DB0126	
12.	Which of the follo	owing combination w	rill produce H ₂ gas ?	[JEE A	Advance 2017]	
	(A) Zn metal and	NaOH(aq)	(B) Au metal and	NaCN(aq) in the	presence of air	
	(C) Cu metal and	conc. HNO ₃	(D) Fe metal and	conc. HNO ₃		
					DB0127	
MU	LTIPLE CHOICE	QUESTIONS WITH	ONE OR MORE THAN	N ONE CORREC	CT ANSWER:	
13.	Which of the following	lowing alloys contains	s (s) Cu and Zn?		[JEE 1993]	
	(A) Bronze	(B) Brass	(C) Gun metal	(D) Type met	al	
					DB0128	
14.	Addition of high manganese.	proportions of magna	nese makes steel useful in	making rails of ra	ailroads, becuse [JEE 1998]	
	(A) gives hardne	ss to steel				
	(B) helps the form	mation of oxides of iro	on			
	(C) can remove of	oxygen and sulphur				
	(D) can show hig	ghest oxidation state of	f +7.			
					DB0129	

ALLEN

15. The correct statement(s) about Cr²⁺ and Mn³⁺ is (are)

[JEE Advance 2015]

[Atomic numbers of Cr = 24 and Mn = 25]

- (A) Cr²⁺ is a reducing agent
- (B) Mn³⁺ is an oxidizing agent
- (C) Both Cr²⁺ and Mn³⁺ exhibit d⁴ electronic configuration
- (D) When Cr²⁺ is used as a reducing agent, the chromium ion attains d⁵ electronic configuration

DB0130

- 16. Fusion of MnO₂ with KOH in presence of O₂ produces a salt W. Alkaline solution of W upon eletrolytic oxidation yields another salt X. The manganese containing ions present in W and X, respectively, are Y and Z. Correct statement(s) is (are) [JEE Advance 2019]
 - (1) Y is diamagnetic in nature while Z is paramagnetic
 - (2) Both Y and Z are coloured and have tetrahedral shape
 - (3) In both Y and Z, π -bonding occurs between p-orbitals of oxygen and d-orbitals of manganese.
 - (4) In aqueous acidic solution, Y undergoes disproportionation reaction to give Z and MnO₂.

DB0131

17. Consider the following reactions (unbalanced)

[JEE Advance 2019]

$$Zn + hot conc. H_2SO_4 \rightarrow G + R + X$$

$$Zn + conc. NaOH \rightarrow T + Q$$

$$G + H_2S + NH_4OH \rightarrow Z$$
 (a precipitate) + X + Y

Choose the correct option(s).

- (1) The oxidation state of Zn in T is +1
- (2) Bond order of Q is 1 in its ground state
- (3) Z is dirty white in colour
- (4) R is a V-shaped molecule

ANSWER KEY

EXERCISE # O-1				
1. (B)	2. (A)	3. (A)	4. (B)	
5. (B)	6. (B)	7. (D)	8. (A)	
9. (A)	10. (B)	11. (C)	12. (A)	
13. (A)	14. (C)	15. (B)	16. (B,C)	
17. (B)	18. (A)	19. (A)	20. (B)	
21. (A)	22. (A)	23. (B)	24. (A)	
25. (B)	26. (C)	27. (B)	28. (B)	
29. (D)	30. (D)	31. (A)	32. (A,C)	
33. (D)	34. (D)	35. (C)	36. (B)	
37. (C)	38. (A)	39. (C)	40. (D)	
41. (A)	42. (A)	43. (B)	44. (A)	
45. (A)	46. (B)	47. (B)	48. (D)	

	EXERCISE # O-2				
1.	(A, B, C)	2. (B, C, D)	3. (A, B)	4. (A, C, D)	
5.	(\mathbf{A}, \mathbf{B})	6. (A, B)	7. (A, B, D)	8. (B, C)	
9.	(A, B, C)	10. (A, B, C)	11. (A, B)	12. (A, B, C, D)	
13.	(\mathbf{A}, \mathbf{B})	14. (A, B)	15. (B, C)	16. (A, B, C)	
17.	(A, B, C)	18. (A, B, C)			

EXERCISE # S-1

- 1. (6), In this reaction CrO_2Cl_2 is formed in which Cr is +6.
- 2. (2), V⁺⁴, Cu⁺²
- **3.** (11), +7, +4
- **4. (3),** Mn⁺³, Fe⁺³, Co⁺³
- 5. CrO_2Cl_2 has d^3S hybridisation and all 3d-orbitals are non-axial which are d_{xy} ; d_{yz} and d_{xz} .
- **6.** (003)
- 7. **(6),** Mohr's salt

$$\begin{aligned} &\text{FeSO}_4 \ .(\text{NH}_4)_2 \text{SO}_4.6 \text{H}_2 \text{O} \\ &6 \ \text{Fe}^{+2} + \text{Cr}_2 \text{O}_7^{2-} + 14 \ \text{H}^+ \rightarrow 2 \text{Cr}^{+3} + 7 \text{H}_2 \text{O} + 6 \text{Fe}^{+3} \end{aligned}$$

- 8. 3
- $\begin{array}{ll} \text{(I)} & \text{BaCl}_2 + \text{Na}_2\text{CrO}_4 & \xrightarrow{\text{CH}_3\text{COOH}} & \text{BaCrO}_4 \downarrow + 2\text{NaCl} \\ \text{(II)} & \text{K}_2\text{Cr}_2\text{O}_7 + \text{NaOH} & \xrightarrow{\text{K}_2\text{CrO}_4} \end{array}$
- (II) $K_2Cr_2O_7 + NaOH \longrightarrow K_2CrO_7$ $CrO_4^{2-} \xrightarrow{H^+} Cr_2O_7^{2-}$
- (III) $\operatorname{Cr}_2\operatorname{O}_7^{2-} + \operatorname{NO}_3^- \xrightarrow{\operatorname{H}^+}$ no reaction.
- (IV) $Cr_2O_7^{2-} + C_2H_5OH \xrightarrow{H^+} CH_3 COOH + Cr^{+3}$

EXERCISE # S-2

1. (C)

- 2. (D)
- 3. (A)
- 4. (B)

5. (B)

- 6. (D)
- 7. (C)
- 8. (A)

- **9. (D)**
- 10. (A)-(R,S); (B)-(R,S); (C)-(P,Q); (D)-(P,Q)
- 11. (A)-(R); (B)-(S); (C)-(P); (D)-(Q)
- 12. (A)
- 13. (C)

14. (B)

- 15. (B)
- 16. (A)
- 17.(B)

18. (C)

- **19.** (C)
- 20. (B)
- **21.** (C)

22. (C)

- 23. (D)
- 24. (A)
- 25. (A)

EXERCISE # JEE-MAIN

1. (2)

- 2. (2)
- 3. (4)
- 4. (1)

5. (3)

- **6.** (1)
- 7. (4)
- **8.** (3)

9. (3)

- 10. (2)
- 11. (4)
- **12.** (4)

13. (4)

- **14.** (1)
- **15.** (4)
- **16.** (4)

17. (4)

21. (3)

18. (3)

22. (2)

- 19. (1) 23. (2)
- 20. (1)
- 24. (3) 25. (4)

EXERCISE # JEE-ADVANCED

TRUE/FALSE:

- 1. True
 - FILL IN THE BLANKS:
- 2. H₂S

MULTIPLE CHOICE QUESTIONS WITH ONE CORRECT ANSWER:

3. (C)

- **4.** (B)
- **5.** (A)
- **6.** (B)

7. (B)

- **8.** (B)
- **9.** (A)
- **10.** (A)

11. (A)

12. (A)

MULTIPLE CHOICE QUESTIONS WITH ONE OR MORE THAN ONE CORRECT ANSWER:

- **13.** (B, C)
- **14.** (A)
- **15.** (A), (B), (C)

16. Ans.(2,3,4)

$$MnO_2 + 2KOH + \frac{1}{2}O_2 \xrightarrow{\Delta} K_2MnO_4 + H_2O$$
(W)

$$(W) = K_2 MnO_{4(aq)} \rightleftharpoons 2K_{(aq)}^{\oplus} + MnO_{4(aq)}^{2-}$$

$$(Y)$$

$$K_2MnO_4 + H_2O \xrightarrow{\text{Electolytic}} H_2 + KOH + KMnO_4$$
(X)

[anion of
$$X = MnO_4^-$$
]
(Z)

$$\begin{bmatrix} :: & MnO_4^{2-} \xrightarrow{Electrolytic} & MnO_4^{-} + e^{-} \\ & (Y) & (Z) \end{bmatrix}$$

: In acidic solution; Y undergoes disproportionation reaction

$$\left[3MnO_{4(aq)}^{2-} + 4H^{\oplus} \longrightarrow 2MnO_{4}^{-} + MnO_{2} + 2H_{2}O\right]$$
(Z)

17. Ans.(2,3,4)

Sol.
$$Zn + 2H_2SO_4$$
 (Hot and conc.) $\rightarrow ZnSO_4 + SO_2 \uparrow + 2H_2O$
(G) (R) (X)

$$Zn + 2NaOH (conc.) \rightarrow Na_2ZnO_2 + H_2 \uparrow$$

$$(T)$$
 (Q)

$$ZnSO_4 + H_2S + 2NH_4OH \rightarrow ZnS^{\downarrow} + 2H_2O + (NH_4)_2SO_4$$
(Z) (X) (Y)

Important Notes				

Ε