
The compound of a metal found in nature is called a **mineral**.

The minerals from which metal can be economically and conveniently extracted are called **ores**.

An ore is usually contaminated with earthy or undesired materials known as gangue.

Note: All minerals are not ores but all ores are minerals.

Ores may be classified mainly into following two classes.

- (a) Native ores: Silver, gold, platinum etc, occur as native ores.
- (b) Combined ores: They contain the metal in combined form.
 - (i) Oxidised ores: Oxide ores, Carbonate ores, Sulphate ores, Phosphate ores, Silicate ores.
 - (ii) Sulphurised ores: These ores consist of sulphides of metals like iron, lead, zinc, mercury etc.
 - (iii) Halide ores: These ores consist of halides of metals

□ METALLURGY:

The scientific and technological process used for the extraction/isolation of the metal from its ore is called as metallurgy.

The isolation and extraction of metals from their ores involve the following major steps:

- (A) Crushing of the ore.
- (B) Dressing or concentration of the ore.
- (C) Isolation of the crude metal from its ore
- (D) Purification or refining of the metal.
- (A) Crushing and Grinding: The ore is first crushed by crushers and ground to a powder.
- (B) Concentration of the ore: The removal of unwanted, useless impurities from the ore is called dressing, concentration or benefaction of ore.

There are several steps for the concentration of Ores.

- (I) By physical separation
 - (a) Gravity separation (Levigation)
 - (b) Froth Floatation method
 - (c) Magnetic separation
- (i) Gravity separation or Levigation method:

It is based on the difference in the densities of the gangue and ore particles. This method is generally used for the concentration of oxide and native ores.

(ii) Electromagnetic separation:

It is based on differences in magnetic properties of the ore components.

It is used when either the ore or the impurities associated with it are magnetic in nature.

Examples:

Chromite ore(FeO.Cr₂O₃) is separated from non–magnetic silicious impurities and cassiterite ore(SnO₂) is separated from magnetic Wolframite (FeWO₄ + MnWO₄).

(iii) Froth floatation process: This process is based on differential wetting of the ore by oil and gangue by water.

Examples: Galena, PbS (ore of Pb); copper pyrites Cu₂S.Fe₂S₃ or CuFeS₂ (ore of copper); zinc blende, ZnS (ore of zinc) etc.

- (a) Frothers: Oil like pine oil, camphor oil etc., are used as frothers.
- (b) Frothers stablizer: Aneline & Cressol
- (c) Collectors: Potassium or sodium ethyl xanthate is used as a collector.
- (d) Activating and depressing agents: For example galena (PbS) usually contains the minerals namely zinc blende (ZnS) and pyrites (FeS₂) as impurities. Floatation is carried out by using potassium ethyl xanthate (used as a collector) along with NaCN and Na₂CO₃ (used as depressing agent).
- (II) By Chemical separation

Some of the ores are concentrated by means of chemical treatment.

Leaching: It involves the treatment of the ore with a suitable reagent. as to make it soluble while impurity remain insoluble. The ore is recovered from the solution by suitable chemical method.

- (i) Bayer's process
- (ii) Cyanide process

CALCINATION

Calcination is a process in which ore is heated, generally in the **absence of air**, to expel water from a hydrated oxide or carbon dioxide from a carbonate at temperature below their melting points.

For Example

- (i) $CaCO_3 \longrightarrow CaO + CO_2$
- (ii) Al_2O_3 . $2H_2O \longrightarrow Al_2O_3 + 2H_2O$

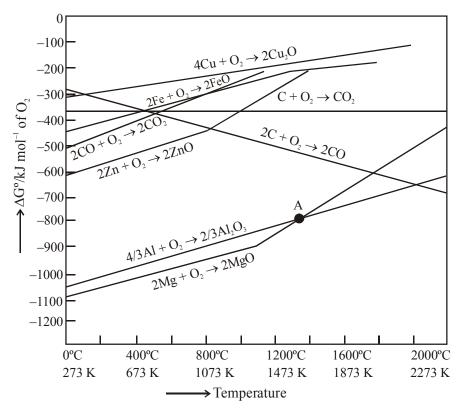
ROASTING

The removal of the excess sulphur contained in sulphide ores by heating **in an excess of air** is called roasting.

(Metal sulphides
$$\xrightarrow{+O_2}$$
 Metal oxide + SO₂)
(iii) 2Cu₂S + 3O₂ \longrightarrow 2Cu₂O + SO₂↑

THERMODYNAMICS OF REDUCTION PROCESSES (ELLINGHAM DIAGRAM)

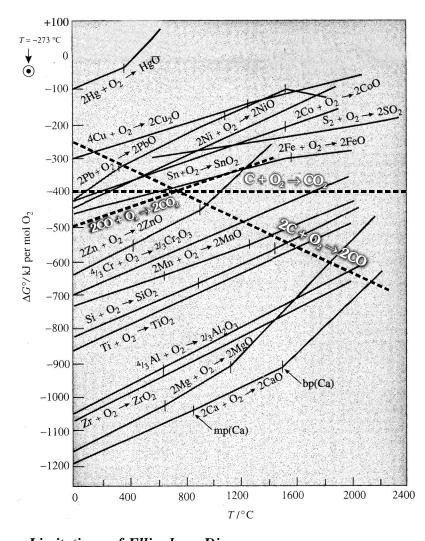
The extraction of metals from their oxides using carbon or other metals, and by thermal decomposition, involves a number of points which merit detailed discussion.


For a spontaneous reaction, the free energy change ΔG must be negative.

$$\Lambda G = \Lambda H - T\Lambda S$$

 ΔH is the enthalpy change during the reaction, T is the absolute temperature, and ΔS is the change in entropy during the reaction. Consider a reaction such as the formation of an oxide:

$$M + O_2 \rightarrow MO$$


Dioxygen is used up in the course of this reaction. Gases have a more random structure (less ordered) than liquids or solids. Consequently gases have a higher entropy than liquids or solids. In this reaction S the entropy or randomness decreases, the hence ΔS is negative. Thus if the temperature is raised then $T\Delta S$ becomes more negative. Since $T\Delta S$ is subtracted in the equation, then ΔG becomes less negative. Thus the free energy changed increases with an increase of temperature.

The free energy changes that occur when one gram molecule of a common reactant (in this case dioxygen) is used may be plotted graphically against temperature for a number of reactions of metals of their oxides. This graph is shown in figure and is called an Ellingham diagram (for oxides). Similar diagrams can be produced for one gram molecule of sulphur, giving an Ellingham diagram for sulphides, and similarly for halides.

The Ellingham diagram for oxides shows several important features:

- (i) The graph for metal oxide all slope upwards, because the free energy change increases with an increase of temperature as discussed above.
- (ii) The free energy changes all follows a straight line unless the materials metal or vaporize.
- (iii) When the temperature is raised, a point will be reached where the graph crosses the $\Delta G = 0$ line. Below this temperature the free energy of formation of the oxide is negative, so the oxide is stable. Above this temperature the free of formation of the oxide is positive, and the oxide becomes unstable, and should decompose into the metal and dioxygen.
- (iv) Any metal will reduce the oxide of other metals which lie above it in the Ellingham diagram because the free energy will become more negative by an amount equal to the different between the two graphs at that particular temperature.

Limitations of Ellingham Diagram

- (i) The graph simply indicates whether a reaction is possible or not i.e., the tendency of reduction with a reducing agent is indicated. This is so because it is based only on the thermodynamic concepts. It does not say about the kinetics of the reduction process (Cannot answer questions like how fast it could be ?).
- (ii) The interpretation of ΔG^{Θ} is based on $K(\Delta G^{\Theta} = -RT \ln K)$. Thus it is presumed that the reactants of products are in equilibrium.

REDUCTION OF ORE TO THE METAL

The calcined or roasted ore is then reduced to the metallic state in either of the following ways.

(i) Reduction by Carbon (Smelting)

• Concentrate ore (ore + gangue) + R.A. (carbon) + Flux [\therefore R.A. \Rightarrow Reducing agent]

$$PbO + C \longrightarrow Pb + CO$$

$$Fe_2O_3 + 3C \longrightarrow Fe + 3CO$$

Acidic impurity + Flux \longrightarrow slag

$$P_2O_5 + 3CaO \longrightarrow Ca_3 (PO_4)_2$$

Basic impurity + Flux \longrightarrow slag

$$MgCO_3 + SiO_2 \longrightarrow MgSiO_3 + CO_2 \uparrow$$

$$FeO + SiO_2 \longrightarrow FeSiO_3$$

(ii) Self Reduction

Sulphides of certain metals are reduced to metal without using any additional reducing agent. ores of Cu, Pb, Hg etc.

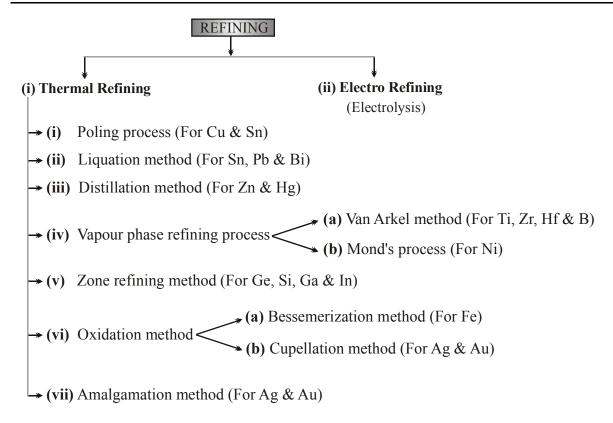
Self Reduction for Pb

(iii) Metal Displacement Method

$$2\text{Na}[\text{Au}(\text{CN})_2] + \text{Zn} \longrightarrow \text{Na}_2[\text{Zn}(\text{CN})_4] + 2\text{Au}$$

 $2\text{Na}[\text{Ag}(\text{CN})_2] + \text{Zn} \longrightarrow \text{Na}_2[\text{Zn}(\text{CN})_4] + 2\text{Ag}$
Sodium tetra cyanozincate

(iv) Electrolytic Reduction


This process is mainly used for the extraction of **highly electropositive metals**.

(v) Thermite Reduction or Thermite Process

Al is used as reducing agent in this process. This process is employed in the case of those metals which have very high melting points and are to be extracted from their oxides

$$Cr_2O_3 + 2Al \longrightarrow 2Cr + Al_2O_3$$

 $3Mn_3O_4 + 8Al \longrightarrow 9Mn + 4Al_2O_3$

REFINING OF METALS

□ OTHER METHOD : BY CHROMATOGRAPHIC METHOD

This method is based on the principle that different components of a mixture are differently adsorbed on an adsorbent. The mixture is put in a liquid or gaseous medium which is moved through the adsorbent.

Different components are adsorbed at different levels on the column. Later the adsorbed components are removed (eluted) by using suitable solvent (eluant). Depending upon the physical state of the moving medium and the adsorbent material and also on the process of passage of the moving medium, the chromatographic method is given the name. In one such method the column of Al_2O_3 is prepared in a glass tube and the moving medium containing a solution of the components is in liquid form.

This is an example of column chromatography. This is very useful for purification of the elements which are available in minute quantities and the impurities are not very different in chemical properties from the element to be purified. There are several chromatographic techniques such as paper chromatography, column chromatography, gas chromatography, etc. Procedures followed in column chromatography have been depicted in the following figures.

(a) Industrial method

(b) Laboratory method

Fig. Schematic diagrams showing column chromatography

EXTRACTION OF SOME INDIVIDUAL METALS

EXTRACTION OF COPPER

(1) Extraction of copper:

Occurrence: Copper occurs in free as well as in combined state. The main ores are as follows.

(i) Copper pyrites $CuFeS_2$ or Cu_2S . Fe_2S_3

(ii) Cuprite (Ruby copper) Cu₂O

(iii) Copper glance Cu₂S

(iv) Malachite Cu (OH)₂. CuCO₃

(v) Azurite 2Cu(OH)₂. CuCO₃

Extraction:

Copper is extracted from the ores (sulphide) by two process.

(A) Pyrometallurgical Process:

This is a dry process and applied to high grade ores (containing 4% or more copper).

(B) Hydrometallurgical Process:

This is a wet process and applied to low grade ores.

ALLEN

(A) Extraction from pyrites by pyrometallurgical process (Smelting Process)

(i) Concentration:

The finely powdered ore is concentrated by froth floatation process.

(ii) Roasting:

The concentrated ore is heated strongly in presence of air.

Sulphur, arsenic, and antimony are removed in form of their volatile oxides while the ore is converted into a mixture of cuprous and ferrous sulphides.

These sulphides are partially oxidised to oxides.

(a)
$$S + O_2 \rightarrow SO_2 \uparrow$$

(b)
$$2As_2S_3 + 9O_2 \rightarrow 2As_2O_3\uparrow + 6SO_2\uparrow$$

(c)
$$2Sb_2S_3 + 9O_2 \rightarrow 2Sb_2O_3 \uparrow + 6SO_2 \uparrow$$

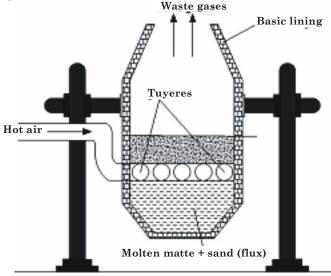
(d)
$$2\text{CuFeS}_2 + \text{O}_2 \rightarrow \text{Cu}_2\text{S} + 2\text{FeS} + \text{SO}_2$$

 $2\text{FeS} + 3\text{O}_2 \rightarrow 2\text{FeO} + 2\text{SO}_2$

(iii) Smelting

The roasted ore is mixed with sand (flux) and coke (fuel) and then heated in a reverberatory furnace water jacketed blast furnace called smelter. The oxidation of ferrous sulphide which started during roasting now goes a step further. Ferrous oxide formed, reacts with sand to form ferrous silicate (slag).

Here some FeS reacts with Cu₂O to form Cu₂S again.


(a)
$$\text{FeO} + \text{SiO}_2 \rightarrow \text{FeSiO}_3 \text{ (Slag)}$$

(b)
$$2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$$

(c)
$$Cu_2O + FeS \rightarrow Cu_2S + FeO$$

Slag (forming upper layer) and molten mass consisting of Cu₂S and a little FeS (**forming lower layer and commonly called matte**) are removed from separate holes.

(iv) Bessemerisation:

Molten matte is heated in a Bessemer converter and a blast of air mixed with sand is blown through the molten mass. Here iron (FeS) is completely removed as slag, a part of Cu_2S is oxidised to Cu_2O and a part of Cu_2S reduces Cu_2O to metallic copper.

(a)
$$2\text{FeS} + 3\text{O}_2 \rightarrow 2\text{FeO} + 2\text{SO}_2 \uparrow$$

 $\text{FeO} + \text{SiO}_2 \rightarrow \text{FeSiO}_3$

(b)
$$2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2 \uparrow$$

 $2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2 \uparrow$

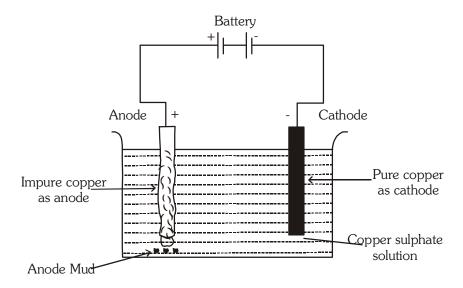
The molten copper is poured off into moulds. As it cools it gives up the dissolved sulphur dioxide which forms blister on the surface of the metal. Hence the metal thus obtained is called blister copper and contains 98 percent copper.

(v) Refining of copper:

(a) Poling:

The molten blister copper is heated in pressure of air and stirred with green wood **poles**. S and As are oxidised to their volatile oxides.

Iron is oxidised and forms a scum or slag which is skimmed off.


The cuprous oxide is reduced to Cu by CO and CH₄ from green wood.

$$Cu_2O + CO \rightarrow 2Cu + CO_2 \uparrow$$

 $4Cu_2O + CH_4 \rightarrow 8Cu + 2H_2O + CO_2$

(b) Electrolytic refining:

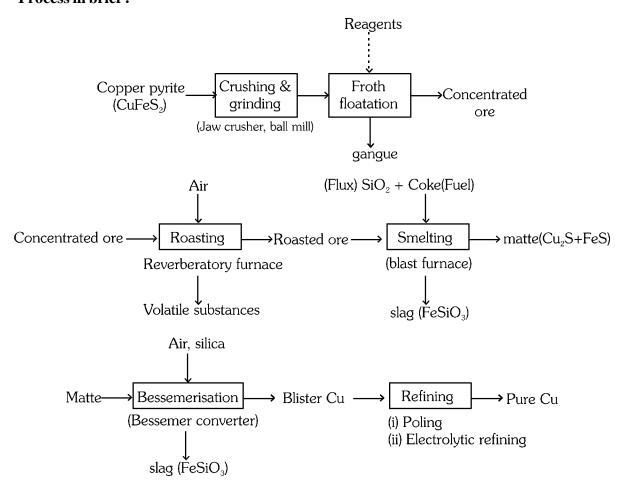
The electrolytic bath contains an acidified solution of copper sulphate. Impure copper acts as anode while cathode is of the pure copper strip. When electric current is passed, there is transfer of pure copper from anode to cathode which gradually grows in size.

The impurities like Fe, Zn, Ni, Co etc. dissolve in the solution as sulphates and others like Au and Ag settle down below the anode as **anode mud.** The cathode is removed and copper of about 99.99% purity is obtained.

Electrolytic refining of copper

10 JEE-Chemistry

(B) Hydrometallurgical Process:


Crushed and powdered low grade ore is exposed to air and water then copper sulphide is oxidised to copper sulphate. Some iron sulphate and sulphuric acid is also produced. The process is completed in about a year.

- (a) $CuFeS_2 + 4O_2 \rightarrow CuSO_4 + FeSO_4$ (Copper pyrite)
- (b) $2Cu_2S + 5O_2 \rightarrow 2CuSO_4 + 2CuO$ (Copper glance)
- (c) CuCO_3 . $\text{Cu(OH)}_2 + 2\text{H}_2\text{SO}_4 \rightarrow 2\text{CuSO}_4 + \text{CO}_2 \uparrow + 3\text{H}_2\text{O}$ (malachite)

The pale green liquor draining from the bottom of the heaps is CuSO₄ which is collected in pans and treated with iron scraps which precipitate out copper.

$$CuSO_4 + Fe/Zn/H_2 \rightarrow FeSO_4/ZnSO_4/H_2SO_4 + Cu \text{ (red ppt.) } \downarrow$$

Process in brief:

Uses:

Copper is the second most useful metal (the first being Iron) because of its stability in air and water and excellent conductivity.

It is used:-

- 1. In the manufacture of electrical wires, cables etc.
- 2. For electroplating.
- 3. As a coinage metal and in ornaments and jewellery.
- 4. For the manufacture of alloys like brass (Cu + Zn), bronze (Cu + Sn) German silver (Cu + Zn + Ni) bell metal (Cu + Sn) gun metal (Cu + Sn + Zn), coppper coins (Cu + Zn + Sn) etc.

ALLEN

EXTRACTION OF LEAD

(2) Extraction of lead:

Main Ore: Galena (PbS): There are mainly two types of process used in the extraction of Lead.

(a) Carbon reduction process (When impurity content is high):

- (i) Crushing & Grinding
- (ii) Concentration by Forth floatation method
- (iii) Roasting process with Lime stone ($CaCO_3$). Roasting in air to give PbO and SO_2 .

$$2 PbS(s) + 3O_2(g) \xrightarrow{\Delta} 2 PbO(s) + 2SO_2$$

(iv) Smelting (Carbon reduction method with coke + Fe_2O_3). Then reduction with coke or CO in a blast furnace take place.

$$2PbO(s) + C \xrightarrow{\Delta} 2Pb(\ell) + CO_2(g)$$

- (b) Self reduction process: (When the impurity content is less)
 - (i) Crushing & Grinding
 - (ii) Concentration by Forth floatation method
 - (iii) Self reduction process: PbS is partially oxidized by heating and blowing air through it. After some time the air is turned off and heating is continued. The mixture undergoes self reduction as given below.

$$\mathrm{PbS} + \mathrm{O_2} \longrightarrow \mathrm{PbO} + \mathrm{SO_2}$$

$$PbS + 2PbO \longrightarrow 3Pb + SO_2$$

Parallel reaction

$$PbS + 2O_2 \longrightarrow PbSO_4$$

$$PbS + PbSO_{_{4}} \longrightarrow 2Pb + 2SO_{_{2}}$$

- (c) Refining process:
 - (a) Liquation
 - (b) Bett's electrorefining

Anode
$$\rightarrow$$
 Impure Pb
Cathode \rightarrow Pure Pb

Electrolyte
$$\rightarrow$$
 Pb[SiF₆] + H₂SiF₆ + Gelatin (to adjust viscosity)

on the electrolysis Pb is deposited at cathode which give 99.95% pure metal.

12

EXTRACTION OF ZINC

(2) Extraction of zinc :

Occurrence: Its important minerals are:-

- (i) Zinc blende or black jack ZnS
- (ii) Zincite ZnO
- (iii) Calamine ZnCO₃

Extraction:

Electrolytic Process:

(i) Concentration:

The powdered ore ZnS is concentrated by froth floatation method.

(ii) (a) Roasting:

Concentrated ZnS is roasted at 700°C. A mixture of ZnO and ZnSO₄ is obtained

$$ZnS + 2O_2 \rightarrow ZnSO_4$$

$$2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$$

$$ZnS \xrightarrow{concentration} ZnS \xrightarrow{roasting} ZnO + SO_2$$


(b) Calcination Process

$$ZnCO_{3} \xrightarrow{\quad concentration \quad} ZnCO_{3} \xrightarrow{\quad calcination \quad} ZnO + CO_{2}$$

(iii) Carbon Reduction (Extraction of zinc from zinc oxide) :-

The reduction of zinc oxide is done using coke. The temperature in this case is higher than that in case of copper. For the purpose of heating, the oxide is made into brickettes with coke and clay.

$$ZnO + C$$
 (coke) $\xrightarrow{1673K}$ $Zn + CO$

Vertical retort process for the reduction of ZnO to Zn-metal.

The metal is distilled off and collected by rapid chilling is called **zinc spelter**.

(iv) Electrolysis (Electrolytic refining):

Anode \rightarrow Impure Zn

Cathode \rightarrow Thin Al-rod

Electrolyte \rightarrow Solution of ZnSO₄ + H₂SO₄ (dil.)

on the electrolysis zinc is deposited at cathode. The metal is scrapped off and melted to give 99.95% pure metal.

Uses:

(i) In making alloys e.g. brass, german silver, elektron (Alloy of Mg with smaller amount of Al, Y, Ag, Gd, Zn) etc.

- (ii) In the extraction of silver and gold by cyanide process.
- (iii) It is also used in large quantities in batteries and dry cells for making cathode container.
- (iv) Zn-Cu couple, Zn-Hg, zinc dust etc. are used as reducing agent in organic reactions.
- (v) large amount of zinc is used for galvanizing iron. Zinc is deposited on the surface of iron articles. This process is called galvanization.
- (vi) It is also used in large quantities in batteries, as a constituent of many alloys, e.g., brass, (Cu 60%, Zn 40%) and german silver (Cu 25-30%, Zn 25-30%, Ni 40–50%).
- (vii) Zinc dust is used as a reducing agent in the manufacture of dye-stuffs, paints, etc.

EXTRACTION OF TIN

Extraction of tin from cassiterite:

Main Ore: Cassiterite or Tinstone (SnO₂) + Major impurities

 $[(i) SiO_2, (ii) Sulphides of Fe & Cu, (iii) FeWO_4 + MnWO_4]$

Some following steps are involved:

(i) Crushing and concentration:

The ore is crushed and washed with a stream of running water to remove the lighter earthy and silicious impurities.

(ii) Electromagnetic separation:

The concentrated ore is subjected to the electromagnetic separation to remove magnetic impurity of Wolframite.

(iii) Roasting:

The ore is then heated in presence of air, when volatile impurities (S as SO_2 , As as As_2O_3 and Sb as Sb_2O_3) are removed. The impurities of pyrites of copper and iron are converted into their respective oxides and sulphates

$$\text{CuS} + 2\text{O}_2 \rightarrow \text{CuSO}_4$$
 ; FeS + 2O_2 \rightarrow FeSO_4

(iv) Leaching:

Sulphates of copper and iron are dissolved in water.

(v) Washing:

The ore is washed with running water to remove the fine iron oxide produced in roasting. Thus obtained ore contains 60 - 70% SnO₂ and is called as black tin.

(vi) Carbon reduction method: Coke & Lime stone (flux) is used.

Smelting:

The black tin is mixed with anthracite coal and heated to about 1500K in a reverberatory furnace. If SiO₂ is present as impurity then CaO is added as flux.

$$SnO_2 + C \rightarrow SnO + CO \uparrow$$

$$SnO + SiO_2 \rightarrow SnSiO_3$$
; $CaO + SiO_2 \rightarrow CaSiO_3$

$$SnSiO_3 + CaO + C \rightarrow Sn + CaSiO_3 + CO \uparrow$$

or use scrap iron $SnSiO_3 + Fe \rightarrow Sn + FeSiO_3$

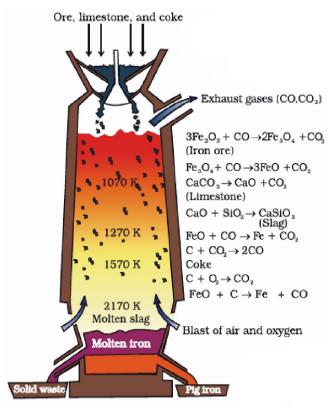
Refining method:

- (a) Poling (b) Electrorefining
 - Anode \rightarrow Impure Sn
 - Cathode \rightarrow Pure Sn
 - Electrolyte \rightarrow (SnSO₄ solution + dil. H₂SO₄)

EXTRACTION OF IRON

(1) Extraction of Iron:

Main Ore: Haematite (Fe_2O_3)


Some following steps are involved:

- (i) Crushing & Grinding:
- (ii) Concentration: By gravity separation method.
- (iii) Roasting:
- (iv) Carbon reduction (Blast furnace): Pig iron is obtained from this process

Smelting or reduction:

The calcined ore (8 parts) mixed with coke, a reducing agent (4 parts) and lime stone a flux (1 part) is reduced in a blast furnace.

Since the blast furnace has different temperatures at different zones, different reactions take place at different zones.

(a) Zone of combustion (1500 -1600°C)

This zone is near at the bottom of the furnace and little above the tuyers. It increases temp. of the furnace because of exothermic reactions.

$$2C + O_2 \rightarrow 2CO$$
 $C + O_2 \rightarrow CO_2$

(b) Zone of fusion (1200-1300°C)

It is just above the zone of combustion. Here the iron melts and trickles down in the hearth while the slag being lighter floats over the molten metal and thus prevents oxidation of Fe by blast of air.

(c) Zone of heat absorption or slag formation (800-1000°C)

This is the middle part of the furnace. Here rising CO₂ is reduced to carbon monoxide.

$$CO_2 + C \rightarrow 2CO$$

The reaction being endothermic, lowers the temperature of the zone.

Limestone decomposes forming CaO which reacts with SiO₂ forming slag.

$$CaCO_3 \rightarrow CaO + CO_2$$
 $CaO + SiO_2 \rightarrow CaSiO_3$ (Slag)

(d) Zone of reduction (400-700°C)

It is near the top of the furnace. Here the calcined ore is reduced to Fe by rising CO.

$$Fe_2O_3 + CO \Longrightarrow 2FeO + CO_2 \uparrow$$

 $Fe_3O_4 + CO \Longrightarrow 3FeO + CO_2 \uparrow$
 $FeO + CO \Longrightarrow Fe + CO_2 \uparrow$

To retard the backward reaction, supply of excess of CO is maintained by the following reaction.

$$CO_2 + C \rightarrow 2CO$$

Since the temperature of this zone is too low to melt iron, the metal produced is known as spongy iron.

Refining:

Purification of Fe can be done by different method which are as follows:

- (a) Puddling Process
- (b) Bessemerisation Process
- (c) Open hearth Process
- (d) L. D. Process

Thus we got pure iron.

Types of Iron

Cast iron or pig iron

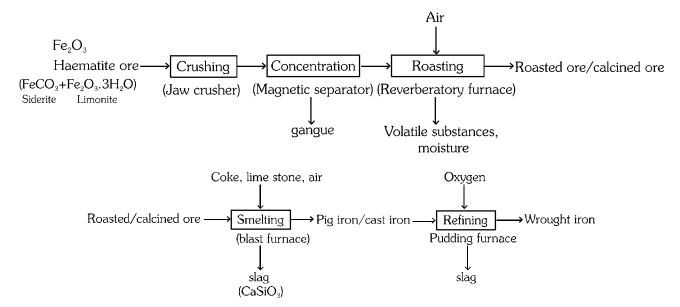
It is most impure form of Iron and contains the highest proportion of carbon (2.5 - 4%) along with traces of S, P, Mn and Si. Cast iron contain 2.5 to 4.3 & pig iron contain 2.5 to 5%.

Wrought iron (Fibrous iron) or malleable iron

It is the purest form of iron and contains minimum amount of carbon (0.12 - 0.25%) and less than 0.5% of other impurities.

Steel

It is the most important form of iron and finds extensive applications. As far as carbon content (impurity) is concerned it is mid-way between cast iron and wrought iron, it contains 0.25-2% carbon.


Thus all the three forms of iron differ in their carbon contents, both iron and steel are obtained from cast iron.

Order of M.P. Wrought Iron > Steel > Cast Iron or Pig Iron

% of Carbon in different type of Iron

	NAME	% of C
(1)	Wrought iron	0.1 to 0.25
(2)	Steel	0.25 to 2.0
(3)	Cast Iron	2.6 to 4.3
(4)	Pig Iron	2.3 to 4.6

Process in brief:

Manufacture of Steel: The addition of different desired impurities into molten pure iron is known as steel making

Bessemer process:

This process involves the use of a large pear- shaped furnace (vessels) called Bessemer converter. This is made of steel plates lined with silica (SiO_2) or magnesia (MgO) depending upon the nature of impurities. If the impurities are acidic e.g. P_4O_{10} or SiO_2 , basic lining of lime (CaO) or magnesia is used (Basic process). If the impurities are basic e.g. MnO, lining of silica bricks is used (acid process). Silicon and manganese (in acidic process) or phosphorus (in basic process) are oxidised to their oxides and thus removed as slag.

$$\begin{array}{lll} \textbf{Acid process:} & Si + O_2 \rightarrow SiO_2 \ ; \ 2Mn + O_2 \rightarrow 2MnO \ ; \ MnO + SiO_2 \rightarrow MnSiO_3 \ (Slag) \\ \textbf{Basic process:} & P_4 + 5O_2 \rightarrow P_4O_{10} & P_4O_{10} + 6CaO \rightarrow 2Ca_3(PO_4)_2 \ \ (Thomas \ slag) \\ \end{array}$$

Properties of Steel:

Steel combines the useful properties of cast iron and wrought iron. It is hard and elastic. The properties of steel depend upon its carbon content. With the increase in carbon content, the hardness of steel increases while its ductility decreases.

- (i) Low carbon or soft steel contain C upto 0.25%.
- (ii) Medium carbon steel or mild steel contain 0.25–0.5% C.
- (iii) High carbon or hard steel contain 0.5–1.5% C.

Heat Treatment of Steel

- (i) Quenching or hardening: Steel is heated to red hot temperature (700 to 800°C) and is then cooled suddenly by plunging into either cold water or oil. It makes steel hard and brittle.
- (ii) Annealing: The steel is heated to red hot temperature (700 to 800°C) and then cooled slowly. It makes steel soft.
- (iii) **Tempering:** If quenched steel is heated to temperature between 500 to 575 K and then cooled slowly, it becomes quite hard but brittleness disappears. The process is called tempering.

Surface treatment of steel

- (i) Nitriding: Process of heating steel at 1000 K in an atmosphere of NH₃. This gives hard coating of iron nitride on the surface.
- (ii) Case hardening: Process of giving a thin coating of hardened steel, by heating steel in contact with charcoal followed quenching in oil.
 - It is used for axles of railway wagons.

Uses

- (i) Cast iron: It is the most important form of iron, is used for casting stoves, railway sleepers, gutter pipes, toys, etc.
- (ii) It is used in the manufacture of wrought iron and steel.
- (iii) Wrought iron: It is used in making anchors, wires, bolts, chains and agricultural implements.
- (iv) Steel finds a number of uses: Alloy steel is obtained when other metals are added to it. Nickel steel is used for making cables, automobiles and aeroplane parts, pendulum, measuring tapes, chrome steel for cutting tools and crushing machines, and stainless steel for cycles, automobiles, utensils, pens, etc.

□ EXTRACTION OF SILVER & GOLD

(1) Extraction of silver:

Occurrence:

Ag found in free and combined state in nature.

Its main ore is Argentite Ag₂S.

Other ores are

Copper silver glance – Cu₂S . Ag₂S

Horn silver – AgCl

Argentiferrous lead – PbS(0.01-0.1% Ag)

Steps of Metallurgy:

- (A) From Argentite (Ag,S)
 - (i) Concentration: As it is a sulphide ore, so froth floatation process is used.
- (B) Leaching and reduction (Mac Arther cyanide process)
 - (a) Formation of cyanide complex:

(a)
$$Ag_2S + 4NaCN \rightleftharpoons 2Na[Ag(CN)_2] + Na_2S \xrightarrow{+O_2+H_2O} Na_2SO_4 + 'S' + 2NaOH$$

- [: O_2 is used to make reaction irreversible which remove Na_2S as $Na_2SO_4 + S$] Na_2SO_4 does not reacts with sod. Argento cyanide.
- (b) Displacement of Ag metal :-

$$2Na[Ag(CN)_2] + Zn \rightarrow Na_2[Zn(CN)_4] + 2Ag$$

Sodium tetra cyanozincate (black ppt).

 $Ag \xrightarrow{\Delta} Ag$ (Solid) Shining silver (impure)

node06/8080-BA/Kata/LEE/Advanced/\Enthuse\Chemistry\Sheet \Metallurgy\En

(C) Purification by electrolytic method:

Pure Ag — Cathode

Impure Ag — Anode

Electrolyte — AgNO₃

+ 1% HNO₃ — To increase ionisation and to avoid hydrolysis of AgNO₃ by common ion effect

(D) Ag from Argentiferrous lead (PbS – Galena):

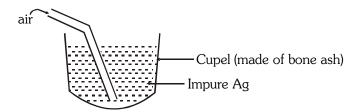
Galena has a little amount of silver

(1) Concentration: (PbS) by froth floatation process

(E) Reduction of metal:

- (a) Parke's process: Based on distribution law.
 - (i) Molten Ag is more soluble in molten zinc.

$$Pb (molten) \rightarrow Zn(molten)$$


- (ii) Melting point of Zn/Ag alloy is greater than lead, so Zn/Ag freezes first.
- (iii) Density of Zn/Ag is less than Pb so Zn/Ag forms the upper layer and Pb form lower layer.
- (iv) Upper layer taken out.
- (v) Ag is separated by using distillation method. (Vapourisation of Zn)

(b) Pattinson method :-

- (i) It is based upon fractional crystallisation.
- (ii) Ag/Pb is melted then cooled, the process is repeated again & again, concentration of Ag increases. Pb separate out in crystalline form.

(F) Purification:

(a) Cupellation:

Pb impurities separate (oxidised) out in the form of litharge.

(b) Electrolytic process :- As discussed earlier.

Uses

- (i) It is used in silver plating.
- (ii) Silver foils are used in medicine.
- (iii) Silver amalgam is used for dental filling.
- (iv) Compounds of silver are used in silvering of mirrors (AgNO₃ + HCHO + Red Pb), in photography, as laboratory reagents etc.
- (v) Silver is easily alloyed with copper, so it is used in making coins, ornaments, silver ware etc.

(vi) It gives black spot on skin due to decomposition so it is also used as hair dye and ink.

Extraction of Gold:

Occurrence: Au found in free (native) state in nature.

Same steps as are involved in the extraction of Silver metal.

- (i) Crushing & Grinding:
- (ii) Leaching process: Gold are extracted by the cyanide process (Mc Arthur Forest process).

Reaction involved:

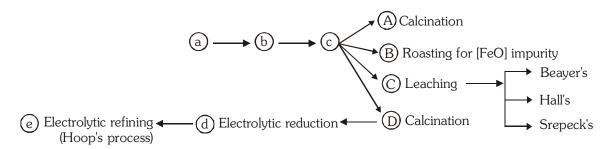
$$4\mathrm{Au} + 8\mathrm{NaCN} + \mathrm{O}_2 + 2\mathrm{H}_2\mathrm{O} \Longrightarrow 4\mathrm{Na}[\mathrm{Au}(\mathrm{CN})_2] + 4\mathrm{NaOH}$$

$$2\mathrm{Na}[\mathrm{Au}(\mathrm{CN})_2] + \mathrm{Zn} \longrightarrow \mathrm{Na}_2[\mathrm{Zn}(\mathrm{CN})_4] + 2\mathrm{Au}$$

(iii) Refining Process:

Anode
$$\rightarrow$$
 Impure Au

Cathode \rightarrow Pure Au


Electrolyte \rightarrow (AuCl₃ solution + dil. HCl)

EXTRACTION OF ALUMINIUM:

Ore - Bauxite
$$AlO_x(OH)_{3-2x}$$
 (where $O < x < 1$)

Extraction of Aluminium:

Short chart of Al from Al₂O₃.2H₂O (Bauxite)

BAUXITE

Step-1: Concentration of Bauxite ore

(a) Baeyer's process: (Used for red bauxite in which main impurity is iron oxide) Bauxite ore $\xrightarrow{\text{Roasted}}$ as to convert FeO into Fe₂O₃

(b) Hall's Process : (Red bauxite)

Bauxite ore + Na₂CO₃
$$\xrightarrow{\text{Fused}}$$
 NaAlO₂
 \downarrow extracted with water
Solution
 \downarrow warmed 50° – 60° C
CO₂ is circulated
 \downarrow
Al(OH)₃ + Na₂CO₃

6\B0B0BA\Kata\LEE(Advanced)\Enthuse\Chemistry\Sheet\Metallurgy\Eng.p

Serpeck's process: (Used for white bauxite in which main impurity is silica)

Bauxite ore + coke
$$\xrightarrow{1800^{\circ}\text{C}}$$
 AlN $\xrightarrow{\text{HzO}}$ Al(OH)₃ + NH₃ ppt.
(Nitrogen) N₂ $\text{C} + \text{SiO}_2 \text{ (gangue)} \rightarrow \text{CO}_2 \uparrow + \text{Si} \uparrow \downarrow$ \downarrow $\text{Step-2: CALCINATION}$ Al(OH)₃ $\xrightarrow{1500^{\circ}\text{C}}$ Al₂O₃

Step-3: Electrolytic Reduction

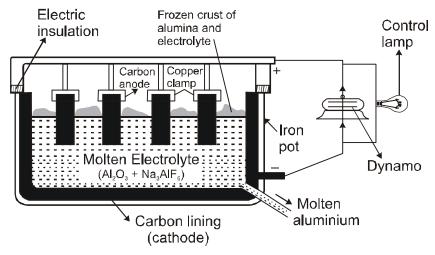
Electrolyte Al₂O₃ dissolved in Na₃AlF₆ and CaF₂

Cathode-Carbon lining

Anode – Graphite rods

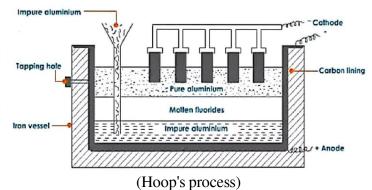
Electrolytic reduction (Hall-Heroult process):

The purified Al₂O₃ is mixed with Na₃AlF₆ (cryolite) or CaF₂ (fluorspar)) which lowers the melting point of the mixture and brings conductivity. The fused matrix is electrolysed. Steel cathode and graphite anode are used. The graphite anode is useful here for reduction to the metal. The overall reaction may be taken as:

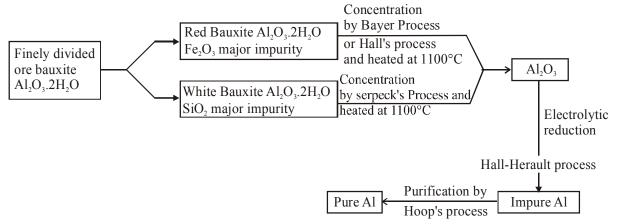

$$2Al_2O_3 + 3C \longrightarrow 4Al + 3CO_2$$

The electolysis of the molten mass is carried out in an electrolytic cell using carbon electrodes. The oxygen liberated at anode reacts with the carbon of anode producing CO and CO₂. This way for each kg of aluminium produced, about 0.5 kg of carbon anode is burnt away. The electrolytic reactions are:

Cathode: $A1^{3+}$ (melt) + $3e^{-} \longrightarrow Al(1)$


Anode:
$$C(s) + O^{2-} (melt) \longrightarrow CO(g) + 2e^{-}$$

$$C(s) + 2O^{2-} (melt) \longrightarrow CO_2(g) + 4e^{-}$$


$$\begin{array}{ccc} \text{Al}_2\text{O}_3 & \xrightarrow{\text{Electrolysis}} & \text{Al} + \text{O}_2 \\ \downarrow & 99.8\% \text{ pure} \end{array}$$

Step-4: Electrolytic Refining

Pure A1 (99.98 % pure)

Flow chart of Al from Al₂O₃.2H₂O (Bauxite)

Important points:

- (a) Useful gas NH₃ is evolved in the leaching of bauxite by serpeck's process.
- In the electrolytic reduction of Al₂O₃ cryotite (Na₃AlF₆) is added along with CaF₂ (fluorspar) to-(b)
 - decrease m.p. of Al₂O₃
 - decrease viscocity of electrolyte (CaF₂ is used)
 - -increase conductivity
- In the electrolytic reduction graphite anode get corrode or finishe due to reaction with O_2 liberates (c) at anode, hence it had to be changed periodically.
- In the electrolytic refining (4th step) no electrodes are used. In the Hoop's process molten pure Al is (d) used as cathode and molten impure Al is used as anode.
- In the Hoop's process carbon dust is sprayed over molten Al to (e)
 - avoid heat lose
 - minimise metallic lusture (glaze) which is harmful for the eyes.

Uses

- (i) Aluminium foils are used as wrappers for chocolates.
- (ii) The fine dust of the metal is used in paints and lacquers.
- (iii) Aluminium, being highly reactive, is also used in the extraction of chromium and manganese from their oxides.
- (iv) Wires of aluminium are used as electricity conductors.
- (v) Alloys containing aluminium, being light, are very useful.

22

EXTRACTION OF MAGNESIUM:

- (1) Extraction of Magnesium:
- (i) From Carnallite: Carnallite KCl.MgCl₂.6H₂O

The ore is dehydrated in a current of hydrogen chloride and the mixture of fused chlorides is electrolysed.

(ii) From Magnesite:

The concentrated ore is calcined at higher temperature

$$MgCO_3 \xrightarrow{Heated} MgO + CO_2$$

The calcined ore is heated with coke in a current of dry chlorine gas.

$$MgO + C + Cl_2 \xrightarrow{\Delta} MgCl_2 + CO$$

The magnesium chloride is fused and then electrolysed.

MgO + C (Other reducing agents like Si, Al can be used) $\xrightarrow{\text{2000°C}}$ Mg + CO

(iii) From Sea water (Dow's process):

Sea water contains 0.13% magnesium as chloride and sulphate. It involves following steps.

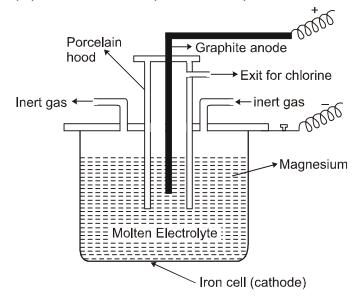
(a) Precipitation of magnesium as magnesium hydroxide by slaked lime:

$$MgCl_2 + Ca(OH)_2 \longrightarrow Mg(OH)_2 \downarrow + CaCl_2$$

(b) Preparation of hexahydrated magnesium chloride

$$Mg(OH)_2 + 2HCl(aq) \longrightarrow MgCl_2 + 2H_2O$$

The solution on concentration and crystallisation gives the crystals of MgCl₂.6H₂O


(c) Preparation of anhydrous magnesium chloride

$$MgCl_2.6H_2O \xrightarrow{\Delta(calcination)} MgCl_2 + 6H_2O$$

It is not made anhydrous by simple heating because it gets hydrolysed

$$MgCl_2$$
. $6H_2O \xrightarrow{\Delta} MgO + 5H_2O + 2HCl$

- (d) Electrolysis of fused anhydrous MgCl₂
 - (i) Electrolyte: Molten MgCl₂ + NaCl + CaCl₂
 - (ii) Anode: Graphite electrode
 - (iii) Cathode: Iron cell (steel container)

Magnesium chloride obtained by any of the above methods is fused and mixed with sodium chloride and calcium chloride in the temperature range of 973 - 1023 K. The molten mixture is electrolysed. Magnesium is liberated at the cathode (iron pot) and chlorine is evolved at graphite anode.

Reaction occurs:

The molten mixture is electrolysed. Magnesium is liberated at the cathode (iron pot) and chlorine is evolved at graphite anode.

$$MgCl_2 \implies Mg^{2+} + 2Cl^{-}$$

At cathode:
$$Mg^{2+} + 2e^{-} \longrightarrow Mg(99\% \text{ pure})$$
;

At anode:
$$2Cl^- \longrightarrow Cl_2 + 2e^-$$

A stream of coal gas is passed through the pot to prevent oxidation of magnesium metal. The magnesium obtained in liquid state is purified by distillation under reduced pressure. (1 mm of Hg at 873 K).

(iv) From Dolomite: In the Pidgeon Process Mg is Produced.

The concentrated ore is calcined at higher temperature

$$CaCO_3$$
. $MgCO_3 \xrightarrow{\Delta} CaO$. $MgO + 2CO_2$

It is then reduced by ferrosilicon at 1273 K under reduced pressure.

2CaO. MgO + Fe-Si
$$\xrightarrow{1150^{\circ}\text{C}}$$
 2Mg \uparrow + Fe + Ca₂SiO₄

Extraction of Na:

The fused mixture of NaCl and CaCl₂ is taken in Down's cell which consists of circular iron cathode and carbon anode. On passing the electric current the following reactions take place:

Ionisation of NaCl : NaCl \rightleftharpoons Na⁺ + Cl⁻

Collection of Na at cathode : $Na^+ + e^- \rightarrow Na(Reduction)$.

Collection of Cl₂ at anode : $Cl^- + e^- \rightarrow Cl$ (Oxidation), $Cl + Cl \rightarrow Cl_2$.

Aluminium	1. Bauxite, Al ₂ O ₃ . x H ₂ O 2. Cryolite, Na ₃ AlF ₆		For the extraction, a good source of electricity is required.
Iron	1. Haematite, Fe ₂ O ₃ 2. Magnetite, Fe ₃ O ₄	Reduction of the oxide with CO and coke in Blast furnace	Temperature approaching 2170 K is required.
Copper	1. Copper pyrites, CuFeS ₂ 2. Copper glance, Cu ₂ S 3. Malachite, CuCO ₃ .Cu(OH) ₂ 4. Cuprite, Cu ₂ O	Roasting of sulphide partially and reduction	It is self reduction in a specially designed converter. The reduction takes place easily. Sulphuric acid leaching is also used in hydrometal lurgy from low grade ores.
Zinc	 Zinc blende or Sphalerite, ZnS Calamine, ZnCO₃ Zincite, ZnO 	Roasting followed by reduction with coke	The metal may be purified by fractional distillation.

GENERAL PRINCIPLES & PROCESSES OF ISOLATION OF ELEMENTS

EXERCISE # 0-1

		ONLY ONE OF	PTION IS CORRECT.		
			ORES		
1.	Which of the follo	wing does not contain	Mg:		
	(A) magnetite	(B) magnesite	(C) asbestos	(D) carnallite	
					ML0001
2.	Which of the follo	wing is not an ore:			
	(A) malachite	(B) calamine	(C) stellite	(D) cerussite	
					ML0002
3.	Carnallite does not	contain			
	(A) K	(B) Ca	(C) Mg	(D) Cl	
					ML0003
4.	Among the follow	ing statements, the inco	orrect one is		
	(A) calamine and siderite are carbonate ores (B) argentite and cuprite are oxide ores				
	(C) zinc blende and	d pyrites are sulphide o	ores (D) malachite and a	zurite are ores of co	opper
					ML0004
5.	Select the correct s	tatement:			
	(A) Magnetite is a	n ore of manganese	(B) Pyrolusite is an	ore of lead	
	(C) Siderite is carb	onate ore of iron	(D) FeS ₂ is rolled go	old	
					ML0005
6.	"Fool's gold" is				
	(A) iron pyrites	(B) horn silver	(C) copper pyrites	(D) bronze	
					ML0006
7.	Assertion : Platin	um and gold occur in n	ative state in nature.		
		n and gold are noble me			
			and statement-2 is correc		
			d statement-2 is NOT the c	orrect explanation fo	or statement-1.
	, í	true, statement-2 is fals			
	(D) Statement-1 is	false, statement-2 is tru	ie.		MT 0007
		CONCENTE	ATION METHODS		ML0007
8.	$Ag_2S + NaCN + Z$		AIION MEIHODS		
0.	2		lex formation and then it	s displacement is c	alled:
	(A) Parke's method		(B) McArthur-Fores		anca.
	(A) I alke s illellio	u	(D) MICAI UIUI-I OTES	t memou	

(D) Hall's method

node06\B0B0-BA\Kota\EE(Advanced)\Enthuse\Chemistry\Sheet\Wetallurgy\Eng.p65

(C) Serpeck method

9.	Which one of the fol	lowing is not a met	hod of concentration of	ore?	·	
	(A) gravity separation		(B) froth floating	(B) froth floating process		
	(C) electromagnetic	separation	(D) smelting			
					ML0009	
10.	Chemical leaching is	s useful in the conce	ntration of:			
	(A) copper pyrites	(B) bauxite	(C) galena	(D) cassiterite		
					ML0010	
11.	In froth-floatation pr	-				
	(A) activator	(B) frother	(C) collector	(D) agitator		
					ML0011	
12.	Collectors are the su	bstances which hel	p in attachment of an or	re particle to air bubbl	e in froth. A	
	popular collector use	ed industrially is				
	(A) sodium ethyl xar	nthate	(B) sodium xenat	e		
	(C) sodium pyropho	sphate	(D) sodium nitrop	orusside		
					ML0012	
13.	In the cyanide proces	ss involving extract	ion of silver, zinc is used	d industrially as a(an)		
	(A) oxidising agent		(B) reducing ager	nt		
	(C) solvent		(D) solvating age	nt		
					ML0013	
14.	_	-	etting of ore by oil and g		place in	
	(A) Levigation (grav	rity separation)	(B) Froth floatation			
	(C) Leaching		(D) Bessemerisati	ion		
					ML0014	
15.	An non-magnetic ore containing the impurity of FeCr ₂ O ₄ is concentrated by					
	(A) magnetic-separat	tion	(B) gravity separa	ution		
	(C) froth-floatation n	nethod	(D) electrostatic n	nethod		
	(0) 110111 11011111111111111111111111111		(2) 0100 11 0000000 11		ML0015	
16.	The beneficiation of the sulphide ores is usually done by					
	(A) Electrolysis	•	(B) Smelting proc	cess		y\Eng.p65
	(C) Metal displacement	ent method	(D) Froth flotation	n method		et\Wetdlurg
					ML0016	emistry\She
17.	The process of the isolation of a metal by dissolving the ore in aqueous solution of suitable reagent followed by precipitation of the metal by a more electropositive metal is called:					ode06\B0B0BA\Kata\EE Advanced \Enthuse\Chemistry\Sheet\Wetdlurgy\Eng.pó
	(A) hydrometallurgy		(B) electrometallu			ata\JEE(Adv
	(C) zone refining		(D) electrorefining	g		30B0-BA\K
					ML0017	node06\@

AL	LEN	Metallurgy 27			
18.	Froth floatation process for conce	entration of ores is an illustration of the practical application of:			
	(A) Adsorption	(B) Absorption			
	(C) Coagulation	(D) Sedimentation			
		ML0018			
19.	Assertion: Sulphide ores are co	ncentrated by froth floatation process.			
	Reason: Pine oil acts as a frothing	ng agent in froth floatation process.			
	(A) Statement-1 is true, statement	-2 is true and statement-2 is correct explanation for statement-1.			
	(B) Statement-1 is true, statement-2	(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.			
	(C) Statement-1 is true, statement	-2 is false.			
	(D) Statement-1 is false, statement	nt-2 is true.			
		ML0019			
20.	Assertion: Wolframite impurities are separated from cassiterite by electromagnetic separation.				
	Reason: Cassiterite being magnetic is attracted by the magnet and forms a separate heap.				
	(A) Statement-1 is true, statement	-2 is true and statement-2 is correct explanation for statement-1.			
	(B) Statement-1 is true, statement-2	is true and statement-2 is NOT the correct explanation for statement-1.			
	(C) Statement-1 is true, statement	-2 is false.			
	(D) Statement-1 is false, statement	nt-2 is true.			
		ML0020			
	CA	LCINATION/ROASTING			
21.	Calcination is the process of heat	ing the ore:			
	(A) in inert gas	(B) in the presence of air			
	(C) in the absence of air	(D) in the presence of CaO and MgO			
		ML0021			
22.	When roasting is carried out:				
	(i) Sulphide are is converted into	oxide and sulphate			

- (i) Sulphide ore is converted into oxide and sulphate
- (ii) remove water of hydration
- (iii) the ore melts
- (iv) arsenic and sulphur impurities are removed

Of these statements:

(A) (i), (ii) and (iii) are correct (B) (i) and (iv) are correct

(C) (i), (ii) and (iv) are correct (D) (ii), (iii) and (iv) are correct

REDUCTION PROCESS

- 23. In the alumino thermite process, Al acts as
 - (A) An oxidising agent

(B) A flux

(C) A reducing agent

(D) A solder

ML0023

24. **Assertion:** All is used as a reducing agent in aluminothermy.

Reason: Al has a lower melting point than Fe, Cr and Mn.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

ML0024

25. Formation of metallic copper from the sulphide ore in the commercial thermo-metallurgical process essentially involves which one of the following reaction:

(A)
$$Cu_2S + \frac{3}{2}O_2 \longrightarrow Cu_2O + SO_2$$
;

$$CuO + C \longrightarrow Cu + CO$$

(B)
$$Cu_2S + \frac{3}{2}O_2 \longrightarrow Cu_2O + SO_2$$
; $2Cu_2O + Cu_2S \longrightarrow 6Cu + SO_2$

$$2Cu_2O + Cu_2S \longrightarrow 6Cu + SO_2$$

(C)
$$Cu_2S + 2O_2 \longrightarrow CuSO_4$$

$$(C) \ \mathrm{Cu}_2\mathrm{S} + 2\mathrm{O}_2 \longrightarrow \mathrm{Cu}\mathrm{SO}_4 \qquad \quad ; \qquad \quad \mathrm{Cu}\mathrm{SO}_4 + \mathrm{Cu}_2\mathrm{S} \ \longrightarrow 3\mathrm{Cu} + 2\mathrm{SO}_2$$

(D)
$$Cu_2S + \frac{3}{2}O_2 \longrightarrow Cu_2O + SO_2$$
; $Cu_2O + CO \longrightarrow 2Cu + CO_2$

$$Cu_2O + CO \longrightarrow 2Cu + CO_2$$

ML0025

- 26. The element which could be extracted by electrolytic reduction of its oxide dissolved in a high temperature melt is:
 - (A) sodium
- (B) magnesium
- (C) fluorine
- (D) aluminium

ML0026

- 27. In which of the following isolations no reducing agent is required:
 - (A) iron from haematite

(B) Tin from cassiterite

(C) mercury from cinnabar

(D) zinc from zinc blende

ML0027

PURIFICATION METHODS

- 28. A metal has a high concentration into the earth crust and whose oxides cannot be reduced by carbon. The most suitable method for the extraction of such metal is
 - (A) Alumino thermite process
- (B) Electrolysis process

(C) Van-Arkel's process

(D) Cupellation

29. Assertion : Alkali metals can not be prepared by the electrolysis of their chlorides in aqueous solution

Reason: Reduction potentials of alkali metals cations is much lower than that of H₂O.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

ML0029

30. Assertion : Magnesium can be prepared by the electrolysis of aq. MgCl₂.

Reason : The reduction potential of Mg^{2+} is much lower than that of H_2O .

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

ML0030

31. Bessemerisation is carried out for

I: Fe,

II: Cu,

III: Al,

IV: silver

(A)I,II

(B) II, III

(C) III, IV

(D) I, III

ML0031

- **32.** In the extraction of nickel by Mond process, the metal is obtained by:
 - (A) electrochemical reduction
- (B) thermal decomposition
- (C) chemical reduction by aluminium
- (D) reduction by carbon

ML0032

33. Formation of Ni(CO)₄ and subsequent its decomposition into Ni and CO (recycled) makes basis of Mond's process

$$Ni + 4CO \xrightarrow{T_1} Ni(CO)_4 \xrightarrow{T_2} Ni + 4CO$$

 T_1 and T_2 are:

(A) 100° C, 50° C

(B) 50° C, 100° C

(C) 50° C, 230° C

(D) 230° C, 50° C

ML0033

34. Zone refining is based on the principle of

(A) fractional distillation

(B) fractional crystallisation

(C) partition coefficient

(D) chromatographic separation

ML0034

35. Si and Ge used for semiconductors are required to be of high purity and hence purified by

(A) zone-refining

(B) electrorefining

(C) Van-Arkel's process

(D) cupellation process

ML0035

36. Which process of purification is represented by the following equation :

Ti (Impure) +
$$2I_2 \xrightarrow{250^{\circ}\text{C}}$$
 Ti $I_4 \xrightarrow{1400^{\circ}\text{C}}$ Ti (Pure) + $2I_2$

(A) Cupellation

(B) Poling

(C) Van-Arkel Process (D) Zone refining

30 JEE-Chemistry ALLEN

37. Which of the following employ(s) thermal decomposition of volatile iodide compounds?

(A) Thermite process (B) Hall's process

(C) Van-Arkel's process (D) Mond's process

ML0037

38. The method of zone refining of metals is based on the principle of:

- (A) Greater mobility of the pure metal than that of impurity.
- (B) Higher melting point of the impurity than that of the pure metal.
- (C) Greater noble character of the solid metal than that of the impurity
- (D) Greater solubility of the impurity in the molten state than in the solid

ML0038

39. Assertion : Titanium is purified by Van-Arkel method.

Reason: Ti reacts with I₂ to form volatile TiI₄ which decomposes at 1673 K to give pure Ti.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- $(B) \ Statement-1 \ is \ true, statement-2 \ is \ true \ and \ statement-2 \ is \ NOT \ the \ correct \ explanation \ for \ statement-1.$
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

ML0039

40. Assertion : Nickel is purified by the thermal decomposition of nickel tetracarbonyl.

Reason: Nickel is a transition element.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

ML0040

41. Refining of silver is done by:

(A) liquation

(B) poling

(C) cupellation

(D) van Arkel method

ML0041

42. Mercury is purified by:

(A) Passing through dilute HNO₃

(B) Distillation

(C) Distribution

(D) Vapour phase refining

ML0042

43. Assertion : Lead, tin and bismuth are purified by liquation method.

Reason: Lead, tin and bismuth have low m.p. as compared to impurities.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

44. When an impurity in a metal has greater affinity for oxygen and is more easily oxidi metal itself. Then, the metal is refined by			ed than the			
	(A) cupellation	(B) zone-refining	(C) distillation	(D) electrolytic pr	ocess ML0044	
		EXTRACTIO	ON OF METALS			
45.	Which of the follow	ring process is not assoc	ciated with recovery of t	he silver -		
	(A) As a side produc	ct in electrolytic refinin	g of copper			
	(B) Parke's process	in which Zn is used to e	extract silver by solvent	extraction from mo	lten lead	
	(C) By reaction of s	ilver sulphide with KC	N and then reaction of s	oluble complex wit	h Zn	
	(D) By boiling Na[A	$Ag(CN)_2$] aq.				
					ML0045	
46.	Blister Cu is about:					
	(A) 60% Cu	(B) 90% Cu	(C) 98% Cu	(D) 100% Cu		
					ML0046	
47.	Iron obtained from l			(D)		
	(A) wrought iron	(B) cast iron	(C) pig iron	(D) steel	MI 0047	
48.	Which of the follow	ing term is not related t	o A1 extraction		ML0047	
40.	Which of the following term is not related to A (A) Serpek's process		(B) Hall-Heroult pro	ress		
	(C) Thermite process		(D) Hoop's process			
	(-)		() P - P		ML0048	
49.	Dow's process					
	(A) involves purific	ation of copper	(B) involves extraction	on of magnesium		
	(C) gives metal chloride as product		(D) gives pure Na as	product		
					ML0049	
50.			g extraction in order to r			
	(A) cuprous sulphid	e (B) ferrous oxide	(C) ferrous sulphide	(D) cuprous oxide		
E 1	Addition of high pro	anantians of managanasa	malras staal vaaful in m	alzina naila af nailma	ML0050	
51.	manganese	oportions of manganese	makes steel useful in ma	aking rans of ranfoa	us, because	
	(A) gives hardness to steel		(B) helps the formation of oxides of iron			
	(C) can remove oxy	gen and sulphur	(D) can show highest	t oxidation state of -	+7 ML0051	
52.	In the commercial e	In the commercial electrochemical process for aluminium extraction the electrolyte used is				
	(A) Al(OH) ₃ in NaO		(B) an aqueous solut			
	(C) a molten mixture	of Al ₂ O ₃ ,Na ₃ AlF ₆ & Cal	F ₂ (D) a molten mixture	of Al ₂ O ₃ and Al(O	H) ₃ ML0052	

53.		ocarbon gases (like (on impure metal with grader CH_4). This process X is	•	
	(A) $X = cupellation$		(B) $X = poling, Y =$	= Cu ₂ O	
	(C) $X = poling, Y =$	-	(D) X = cupellation	-	
			_		ML0053
54.	A piece of steel is he makes it	ated until redness and	then plunged into cold w	ater or oil. This	treatment of steel
	(A) soft and malleab	ole	(B) hard but not bri	ttle	
	(C) more brittle		(D) hard and brittle	;	
					ML0054
55.	Modern method of s	teel manufacturing is			
	(A) open hearth pro-	cess	(B) L.D. Process		
	(C) Bessemerisation		(D) Cupellation		
					ML0055
56.	During electrolytic	reduction of alumina,	two auxiliary electroly	tes X and Y are	added to increase
	the electrical conductance and lower the temperature of melt in order to making fused mixture very conducting. X and Y are				
	(A) cryolite and flou	rspar	(B) cryolite and alu	ım	
	(C) alum and flours	oar	(D) flourspar and b	auxite	
					ML0056
57.	For extraction of so	dium from NaCl, the	electrolytic mixture Na	Cl + KCl + CaC	Cl ₂ is used. During
	extraction process, o	only sodium is deposi	ted on cathode but K an	nd Ca do not be	cause
	(A) Na is more reac	tive than K and Ca			
	(B) Na is less reactive	ve than K and Ca			
	(C) NaCl is less stable than Na ₃ AlF ₆ and CaCl ₂				
	(D) the discharge po	otential of Na ⁺ is less	than that of K^+ and Ca^{2-}	tions.	
					ML0057
58.	Railway wagon axle known as:	s are made by heating	iron rods embedded in	charcoal powde	er. This process is
	(A) Sherardising	(B) Annealing	(C) Tempering	(D) Case ha	ardening
					ML0058
59.	In the extraction of c	copper from its sulphic	de ore the metal is forme	ed by the reduct	ion of Cu ₂ O with:
	(A) FeS	(B) CO	$(C) Cu_2S$	(D)	SO_2
					ML0059
60.	Carnallite on electro	lysis gives:			
	(A) Ca and Cl ₂	(B) Na and	1 CO_2 (C) Al and	Cl ₂ (D)	Mg and Cl ₂

MISCELLANEOUS

- **61.** Which of the following statement is correct regarding Cu-extraction
 - (A) In the smelting step carbon reduction takes places
 - (B) During partial roasting Cu₂S remains almost unaffected
 - (C) In Bessemer converter, only self reduction occur, not slag formation
 - (D) Blister forms in the blister Cu is due to dissolved CO₂

ML0061

- **62.** Refractory materials are generally used in furnaces because
 - (A) they are chemically inert
- (B) they can withstand high temperature
- (C) they do not contain impurities
- (D) they decrease melting point of ore

ML0062

- **63.** Which of the following statements is correct regarding the slag formation during the extraction of a metal like copper or iron.
 - (A) The slag is lighter and has lower melting temperature than the metal
 - (B) The slag is heavier and has lower melting temperature than the metal
 - (C) The slag is lighter and has higher melting temperature than the metal
 - (D) The slag is heavier and has higher melting temperature than the metal

ML0063

Assertion : Generally in smelting, roasted/cacinated ore is heated with powdered coke in presence of a flux.

Reason: Oxides are reduced to metals by C or CO. Impurities are removed as slag.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

ML0064

65. Assertion : Magnesia and quick lime are used as basic flux.

Reason : MgO and CaO can withstand very high temperatures.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

ML0065

- **66. Assertion :** Wolframite impurity is separated from SnO₂ by magnetic separation
 - **Reason:** Tin stone is ferromagnetic, therefore attracted by magnet.
 - (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
 - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
 - (C) Statement-1 is true, statement-2 is false.
 - (D) Statement-1 is false, statement-2 is true.

EXERCISE # 0-2

ONE OR MORE THAN ONE OPTION MAY BE CORRECT

- 1. Which of the following is(are) sulphide ores?
 - (A) Argentite
- (B) Galena
- (C) Anglesite
- (D) Copper glance

ML0067

- **2.** Which of the following is (are) regarded as iron ores?
 - (A) Haematite
- (B) Magnetite
- (C) Limonite
- (D) Copper pyrites

ML0068

CONCENTRATION

- **3.** Which of the following ores is(are) concentrated by froth floatation?
 - (A) haematite
- (B) galena
- (C) copper pyrite
- (D) azurite

ML0069

- **4.** Which of the following ores is (are) concentrated industrially by froth floatation?
 - (A) Copper pyrites
- (B) Galena
- (C) Dolomite
- (D) Carnallite

ML0070

- **5.** Leaching is used for the concentration of:
 - (A) Red bauxite
- (B) Haematite
- (C) Gold ore
- (D) Silver ore

ML0071

CALCINATION/ROASTING

- **6.** Calcination and roasting processes of ores to form their oxides are beneficial
 - (A) to convert ores into porous form so that their reduction becomes easier
 - (B) as impurities like S, As, Sb, are removed
 - (C) as organic impurities are removed.
 - (D) as the ores are converted into oxide form which makes the reduction easier

ML0072

- 7. Which of the following reaction(s) occur during calcination?
 - (A) $CaCO_3 \rightarrow CaO + CO_2$
- (B) $4\text{FeS}_2 + 11\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2$
- (C) $2Al(OH)_3 \rightarrow Al_2O_3 + 3H_2O$
- (D) $CuS + CuSO_4 \rightarrow 2Cu + 2SO_2$

ML0073

- **8.** Which of the following is true for calcination of a metal ore?
 - (A) It makes the ore more porous
 - (B) The ore is heated to a temperature when fusion just begins
 - (C) Hydrated salts lose their water of crystallisation
 - (D) Impurities of S, As and Sb are removed in the form of their volatile oxides.

ML0074

- **9.** Roasting can be performed in
 - (A) blast furnace

(B) reverberatory furnace

(C) electric furnace

(D) None of these

REDUCTION

10.		- ·	r commercial extraction		ngst these:			
	(A) haematite	(B) cassiterite	(C) iron pyrite	(D) corundum				
					ML0076			
11.	-	ocess is used in extracti						
	(A) Cu	(B) Hg	(C) A1	(D) Fe				
					ML0077			
12.		· ·	are actually employed in	n commerical extract	ion of metals?			
	(A) $Fe_2O_3 + 2A1 - 4A1 - 4A$	\rightarrow Al ₂ O ₃ + 2Fe						
	(B) $Cr_2O_3 + 2Al -$	\rightarrow Al ₂ O ₃ + 2Cr						
	(C) $2Na[Au(CN)_2]$	$[2] + Zn \rightarrow Na_2[Zn(CN)]$) ₄] + 2Au					
	(D) $Cu_2S + Pb \rightarrow$	Cu + PbS ↓						
					ΜΛ0078			
		PUR	IFICATION					
13.		_	oy fused salt-electrolysi auxiliary electrolyte and	_	rocess), small			
	(A) improve the electrical conductance		(B) decrease the m	elting point of electr	olyte			
	(C) stabilise the mo	etallic sodium	(D) increase the te	mperature of electro	lysis			
					ML0079			
14.	Poling is employe	d in refining of						
	(A) iron	(B) copper	(C) tin	(D) lead				
					ML0080			
15.	Zone refining is us	sed for purification of						
	(A) Ge	(B) Si	(C) Ga	(D) In				
					ML0081			
16.	Metal(s) which do	Metal(s) which does/do not form amalgam is/are						
	(A) Fe	(B) Pt	(C) Zn	(D) Au				
	, ,	, ,	,	. ,	ML0082			
17.	Metals which can be commercially extracted by smelting process							
	(A) Pb	(B) Fe	(C) Zn	(D) Mg				
	, ,	, ,	,	·	ML0083			
		EXTRACTI	ON OF METALS					
18.	Hoop's process of purification of aluminium involves formation of layers during electrolysis. It involves							
	(A) the three layers have same densities but different materials.							
	(B) the three layers have different densities							
	(C) the upper layer is of pure aluminium which acts as a cathode							
		er is of impure alumini	um which acts as an an		r consists of			
	eryonic and b	2·			ML0084			

E

19. Metallurgical process of zinc involves roasting of zinc sulphide followed by reduction. Metallic zinc distills over as it is volatile and impurities like Cu, Pb and Fe gets condensed. The crude metal obtained is called spelter, which may be purified by

(A) electrolysis process

(B) fractional distillation

(C) polling

(D) heating with iodine

ML0085

20. Which of the following process (es) are used for purification of Bauxite ore?

(A) Hall's process

(B) Serpeck's process (C) Baeyer's process (D) Mond's process

ML0086

21. Common impurities present in Bauxite are

(A) CuO

(B) ZnO

(C) Fe_2O_3

(D) SiO,

ML0087

22. Calcium silicate slag formed in extraction of iron

- (A) prevents the reoxidation of molten iron.
- (B) catalyses the combustion of carbon.
- (C) reduces CO₂ to CO at the bottom of the furnace.
- (D) is used in cement industry.

ML0088

23. Amphoteric nature of aluminium is employed in which of the following process for extraction of aluminium?

(A) Baeyer's process

(B) Hall's process

(C) Serpec's process

(D) Dow's process

ML0089

24. The chief reaction(s) occurring in blast furnace during extraction of iron from haematite is(are)

(A) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$

(B) FeO + SiO₂ \rightarrow FeSiO₃

(C) $Fe_2O_3 + C \rightarrow 2Fe + 3CO$

(D) $CaO + SiO_2 \rightarrow CaSiO_3$

ML0090

25. Which of the following are true for electrolytic extraction of aluminium

- (A) cathode material contains graphite
- (B) anode material contains graphite
- (C) cathode reacts away forming CO₂
- (D) anode reacts away forming CO₂

ML0091

26. During extraction of copper, it is obtained in the form of molten *matte*. Which of the following is not true?

- (A) *matte* is further treated in Bessemer's coverter
- (B) molten *matte* is electrolysed
- (C) It is treated with a blast of air and sand
- (D) It is dissolved in CuSiF₆ and crystallised.

ALLEN

- 27. The major role of fluorspar (CaF_2) which is added in small quantities in the electrolytic reduction of alumina dissolved in fused cryolite (Na_3AlF_6) is
 - (A) as a catalyst
 - (B) to make the fused mixture very conducting
 - (C) to lower the melting temperature of the mixture
 - (D) to decrease the rate of oxidation of carbon at the anode.

ML0093

28. Which of the following reaction does not occur in blast furance during extraction of iron:

(A)
$$CaO + SiO_2 \longrightarrow CaSiO_3$$

(B)
$$Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$$

(C) FeO + SiO₂
$$\longrightarrow$$
 FeSiO₃

(D) FeO
$$\longrightarrow$$
 Fe + $\frac{1}{2}$ O₂

ML0094

MISCELLANEOUS

- **29.** Which of the following employ downward movement of ore due to gravity?
 - (A) Gravity separation

(B) Froth floatation

(C) Blast furnace

(D) Bessemer's coverter

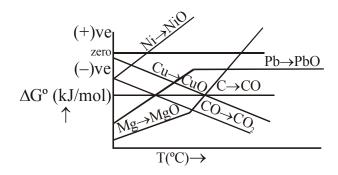
ML0095

- **30.** The **CORRECT** statements are :
 - (A) generally the calcination and roasting is done in blast furance
 - (B) the sandy and rocky materials associated with ore are called matrix
 - (C) froth floatation process is suitable for sulphide ores
 - (D) substance that reacts with gangue to form fusible mass is called slag

EXERCISE # S-1

1. Find the number of ore which are concentrated by magnetic sepration method. Haemetite, Cassiterite, Copper Glance, Chromite, Cinnabar

ML0097


2. Find the number of metals which are commercially extracted by carbon reduction method Pb, Fe, Zn, Mg, Al, Na, Au, Ag

ML0098

- 3. The number of following pairs is correctly matched
 - (i) Van Arkel method Zirconium
 - (ii) Mond Process Titanium
 - (iii) Froth Floatation Method Cerussite
 - (iv) Distillation method Zinc
 - (v) Poling Process Copper
 - (vi) amalgamation Gold

ML0099

4. Find the number of curves which are wrongly presented in the Ellingham diagram.

ML0100

5. How many of the following minerals containing Mg. Magnetite, Carnallite, Epsom salt, Siderite

ML0101

6. Find out the number of minerals given below contain iron as Fe(II). Haematite, Magnetite, Limonite, Siderite, Chromite, Wolframite

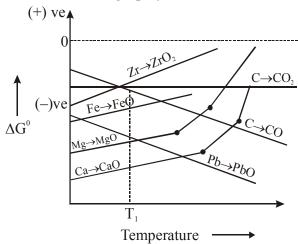
ML0102

7. Amongst the following ores, the total number of oxide ores are Siderite, Magnetite, Haematite, Malachite, Zincite, Cuprite

ML0103

8. Amongst the following, total number of sulphide ores are Calamine, Sphalertie, Copper pyrites, Copper glance, Iron pyrites, Bauxite

ML0104


9. How many of the following ores of silver?

Hornsilver, Cerrusite, Chalcopyrite, Galena, Anglesite, Argentite

EXERCISE # S-2

COMPREHENSION AND MATCH THE COLUMN ELLINGHAM DIAGRAM

Paragraph for 1 to 3

1. Which of the above curve is wrongly presented -

(A) $C \rightarrow CO_2$

(B) $Pb \rightarrow PbO$

(C) $Zr \rightarrow ZrO_2$

(D) $Mg \rightarrow MgO$

ML0106

2. Which of the above metal oxide is having minimum thermal decomposition temperature.

(A) CaO

(B) FeO

(C) ZrO₂

(D) MgO

ML0106

3. Which of the following metal's oxide can be reduced by Fe as reducing agent at temperature (T_1)

(A) Zr

(B) Ca

(C) Mg

(D) None of these

ML0106

PURIFICATION METHOD

Paragraph for 4 to 5

At high temperature carbon reacts with water to produce a mixture of carbon monoxide, CO and hydrogen, H₂.

$$C + H_2O \xrightarrow{\text{red heat}} CO + H_2$$

CO is separated from H_2 and then used to separate nickel from cobalt by forming a volatile compound, nickel tetracarbony, Ni (CO)₄.

$$Ni + 4CO \longrightarrow Ni(CO)_4$$

4. How many moles of Ni(CO)₄ could be obtained from the CO produced by the reaction of 75.0g of carbon? Assume 100% reaction and 100% recovery in both steps.

(A) 6.25

- (B) 1.563
- (C) 3.125
- (D) 25.0

ML0107

5. Formation of volatile Ni(CO)₄ and its subsequent heating gives pure Ni. Process is called -

(A) Hall

- (B) Dow
- (C) Serpeck
- (D) Mond

MISCELLANEOUS

Match Column

6. Match Column-I with Column-II

Column-I (Metals)

Column-II (Method used for refining)

- (A) Iron & copper
- (B) Zirconium & Titanium
- (C) Lead & Tin
- (D) Copper & Tin

- (P) Poling
- (Q) Bessemerisation
- (R) Van-Arkel
- (S) Liquation

ML0108

7. Match the following choosing one item from column X and the appropriate item from column Y.

Column -X

- (A) Zinc from ZnCO₃
- (B) Lead from PbS
- (C) Cu from CuFeS₂
- (D) Tin from cassiterite

- Column-Y
- (P) Calcination
 - (Q) Removal of iron
- (R) Froth floatation process
- (S) Poling

ML0109

8. Match column (I) (process) with column (II) (electrolyte)

Column (I) (process)

Column (II) (electrolyte)

(A) Downs cell

- (P) fused MgCl₂
- (B) Dow's sea water process
- (Q) fused $(Al_2O_3 + Na_3AlF_6 + CaF_2)$

(C) Hall-Heroult

(R) fused $(40\% \text{ NaCl} + 60\% \text{ CaCl}_2)$

Column - II (Element/compound)

(S) $(A\ell N + C + N_2)$

ML0110

9. Match column - I with column - II

Column - I (Property)

(P) Cu

(A) Explosive

(B) Self-reduction

- (Q) Fe_3O_4
- (C) Ferrimagnetic material
- (R) $Cu(CH_3COO)_2.Cu(OH)_2$

(D) Verdigris

(S) $Pb(NO_3)_2$

10. Match column - I and column - II and select the correct answer using the codes given below the lists:

Column - I

Column - II

(A) Cyanide process (P) Ultrapure Ge

(B) Floatation process

- Dressing of HgS (Q)
- (C) Electrolytic reduction
- (R) Extraction of Al

(D) Zone refining (S)Extraction of Au

ML0112

11. Match the items of Column I with items of Column II and assign the correct code:

Column I

Column II

(P) Blistered Cu

Aluminium (1)

(Q) Blast furnace

- (2) $2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$
- Reverberatory furnace (R)
- Iron (3)
- **(S)** Hall-Heroult process
- (4) $FeO + SiO_2 \rightarrow FeSiO_3$
- $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$ (5)

Code:

(A)
$$P \rightarrow (2)$$
; $Q \rightarrow (3)$; $R \rightarrow (4)$; $S \rightarrow (1)$

(A)
$$P \rightarrow (2)$$
; $Q \rightarrow (3)$; $R \rightarrow (4)$; $S \rightarrow (1)$ (B) $P \rightarrow (1)$; $Q \rightarrow (2)$; $R \rightarrow (3)$; $S \rightarrow (5)$

(C)
$$P \rightarrow (5) : Q \rightarrow (4) : R \rightarrow (3) : S \rightarrow (2)$$

(C)
$$P \rightarrow (5)$$
; $Q \rightarrow (4)$; $R \rightarrow (3)$; $S \rightarrow (2)$ (D) $P \rightarrow (4)$; $Q \rightarrow (5)$; $R \rightarrow (3)$; $S \rightarrow (2)$

ML0113

Answer Q.12, Q.13 and Q.14 by appropriately matching the information given in the three columns of the following table.

Column - I Extraction of metal	Column - II Methods for Reduction	Column - III Refining Method	
$(1) SnO_2 \rightarrow Sn$	(i) Carbon Reduction	(P) Poling	
$(2) Al_2O_3 \rightarrow Al$	(ii) Hydrometallurgic Reduction	(Q) Electrolytic Refining	
(3) Cu ₂ S→Cu	(iii) Electrolytic Reduction	(R) Distillation	
(4) ZnS→Zn	(iv) Self-Reduction	(S) Puddling Process	

12. Which of the following is **NOT** correctly matched?

- (A)(1),(iv),(S)
- (B)(3),(iv),(P)
- (C)(4),(i),(R)
- (D)(2),(iii),(Q)

ML0114

Which of the following match is the **CORRECT** reduction and purification methods for Zn **13.**

- (A)(i), (R)
- (B) (iv), (S)
- (C) (iv), (P)
- (D) None of these

ML0114

14. Which of the following set of code shows the **CORRECT** similarity with the extraction processes for Pb?

- (A)(1),(ii),(S)
- (B)(4),(iii),(P)
- (C)(2),(iii),(Q)
- (D)(3),(iv),(Q)

EXERCISE # JEE-MAINS

			# VEE MAIN				
1.	Aluminium is extrac	ted by the electrolysis	of :-	[AIEEE-2002]			
	(1) Bauxite		(2) Alumina				
	(3) Alumina mixed v	with molten cryolite	(4) Molten cryolite				
				ML0115			
2.	Pyrolusite is a/an :-			[AIEEE-2002]			
	(1) Oxide ore	(2) Sulphide ore	(3) Carbide ore	(4) Not an ore			
				ML0116			
3.	Which one of the fol	llowing ores is best cor	ncentrated by froth-flotati	on method: [AIEEE-2004]			
	(1) Galena	(2) Cassiterite	(3) Magnetite	(4) Malachite			
				ML0117			
4.				ide ores to the oxides and no			
	5 5 1	le ores to carbon reduct	•	[AIEEE-2008]			
		(1) Metal sulphides are thermodynamically more stable than CS_2					
	-	amically more stable th	-				
		re less stable than the co	orresponding oxides				
	(4) CO ₂ is more volat	ile than CS_2					
				ML0118			
5.	Which method of pur	rification is represented	l by the following equation	on: [AIEEE-2012]			
	$Ti(s) + 2I_2(g) = 523K$	$\rightarrow \operatorname{TiI}_4(g) \xrightarrow{1700 \mathrm{K}} \operatorname{Ti}(g)$	$s) + 2I_2(g)$				
	(1) Van Arkel	(2) Zone refining	(3) Cupellation	(4) Poling			
				ML0119			
6.	The substance used a	s froth stabilisers in fro	oth-floatation process is:	[J-Mains-2012 (On line)]			
	(1) Copper sulphate		(2) Aniline	(2) Aniline			
	(3) Sodium cyanide		(4) Potassium ethyl xa	anthate			
				ML0120			
7.	Which of the oxide groups among the following cannot be reduced by carbon:-						
				[J-Mains-2012 (On line)]			
	$(1) \operatorname{Fe_3O_4}, \operatorname{ZnO}$	(2) PbO, $\operatorname{Fe_3O_4}$	$(3) Cu_2O, SnO_2$	(4) CaO, K ₂ O			
				ML0121			
8.	In Goldschmidt alum	ino thermic process wh	nich of the following redu	icing agents is used:			
				[J-Mains-2013 (On line)]			
	(1) Calcium	(2) Coke	(3) Sodium	(4) Al-powder			

- **9.** Calcination is the process in which:
 - (1) Ore is heated strongly below its melting point in the presence of excess of air and is used for the conversion of carbonates and hydrated oxide ores to their respective oxides.
 - (2) Ore is heated strongly below its melting point in the absence or limited supply of air and is used for conversion of sulphide ores to their respective oxides
 - (3) Ore is heated strongly below its melting point either in the limited supply or absence of air and is used to convert carbonates and hydrated oxide ores to their respective oxides
 - (4) Ore is heated strongly above its melting point in the limited supply of air to convert sulphide ores to their respective oxides.

ML0123

10. The metal that cannot be obtained by electrolysis of an aqueous solution of its salts is :

[**JEE-MAINS-2014**]

(1) Cu (2) Cr (3) Ag (4) Ca

ML0124

11. The form of iron obtained from blast furnace is : [J-Mains-2014 (On line)]

(1) Steel (2) Wrought Iron (3) Cast Iron (4) Pig iron

ML0125

- 12. In the context of the Hall-Heroult process for the extraction of Al, which of the following statements is false?

 [JEE-MAINS-2015]
 - (1) Al³⁺ is reduced at the cathode to form Al
 - (2) Na₃AlF₆ serves as the electrolyte
 - (3) CO and CO₂ are produced in this process
 - (4) Al_2O_3 is mixed with CaF_2 which lowers the melting point of the mixture and brings conductivity

ML0126

13. Galvanization is applying a coating of :-

[**JEE-MAINS-2016**]

(1) Zn

(2) Pb

(3) Cr

(4) Cu

ML0127

14. Which one of the following ores is best concentrated by froth floatation method?

[**JEE-MAINS-2016**]

(1) Malachite

(2) Magnetite

(3) Siderite

(4) Galena

ML0128

What will occur if a block of copper metal is dropped into a beaker containing a solution of 1M ZnSO₄?[JEE-MAINS (Online) - 2016]

- (1) The copper metal will dissolve and zinc metal will be deposited
- (2) No reaction will occur
- (3) The copper metal will dissolve with evolution of oxygen gas
- (4) The copper metal will dissolve with evolution of hydrogen gas

44 JEE-Chemistry ALLEN

16. In the leaching method, bauxite ore is digested with a concentrated solution of NaOH that produces 'X'. When CO₂ gas is passed through the aqueous solution of 'X', a hydrated compound 'Y' is precipitated. 'X' and 'Y' respectively are :- [JEE MAIN ONLINE. 2018]

- (1) Na[Al(OH)₄] and Al₂O₃·x H₂O
- (2) Al(OH)₃ and Al₂O₃·x H₂O
- (3) Na[Al(OH)₄] and Al₂(CO₃)₃·x H₂O
- (4) Na AlO₂ and Al₂(CO₃)₃·x H₂O

ML0130

- 17. When metal 'M' is treated with NaOH, a white gelatinous precipitate 'X' is obtained, which is soluble in excess of NaOH. Compound 'X' when heated strongly gives an oxide which is used in chromatography as an adsorbent. The metal 'M' is [JEE MAIN OFFLINE. 2018]
 - (1) Ca
- (2) A1
- (3) Fe
- (4) Zn

EXERCISE # JEE-ADVANCED

1.	Carnallite does	not contain			
	(A) K	(B) Ca	(C) Mg	(D) Cl	
					ML0132
2.	During initial tr	reatment, preferential w	etting of ore by oil an	d gangue by water tal	kes place in
	(A) Levigation	(gravity separation)	(B) Froth floata	tion	
	(C) Leaching		(D) Bessemeris	ation	
					ML0133
3.	Which of the fo	ollowing is true for calc	ination of a metal ore	?	
	(A) It makes the	e ore more porous			
	(B) The ore is h	neated to a temperature	when fusion just beg	ins	
	(C) Hydrated sa	lts lose their water of c	rystallisation		
	(D) Sulphur in	sulphides is oxidised to	SO,		
	(E) Heating wit	h carbon leads to better	calcination		
					ML0134
4.	In the commerci	al electrochemical proce	ess for aluminium extra	ction, the electrolyte us	sed as:
		1		·	JEE-1999]
	(A) Al(OH) ₃ in	NaOH solution		Į.	, ,
		olution of $Al_2(SO_4)_3$			
		ture of Al_2O_3 and Na_3Al_2	F		
		xture of AlO(OH) and A	·		
	(D) a monten mi		M(O11) ₃		ML0135
_	The chemical nu	agass in the production s	of staal from baamatita	ana invalva. [2000]	
5.	-	ocess in the production of		ore involve: [2000 (Qualifying]
	(A) reduction		(B) oxidation		
	(C) reduction to	llowed by oxidation	(D) oxidation to	llowed by reduction	3.57.040
					ML0136
6.	•	ection of alumina to alun	ninium by Hall-Heroult	-	
	(A) in the presen			[2000 (Qualifying]
	(B) in the presence of fluorite(C) in the presence of cryolite which forms a melt with lower melting temperature				
	(D) in the preser	nce of cryolite which for	ms a melt with higher i	nelting temperature	N. ET . 0.1.25
_	TT 1 1 1 1	CH 1 H C	11 1 1 1 12		ML0137
7.		mposition of "slag" form	ned during the smelting	-	
	is:	(D) E-C(O	(C) CE-C		Qualifying]
	(A) $Cu_2O + Fes$	S (B) FeSiO ₃	(C) CuFeS ₂	(D) $Cu_2S + Fe$	
8.	Which of the foll	ovina processes is used	in autractive matalluras	of magnesium 2[2002	ML0138
0.	(A) Fused salt el	owing processes is used	(B) Self reduction	=	A nam Amal
		ution electrolysis	(D) Thermite red		
	(C) Aqueous sor	unon ciccuoty 818		auch011	ML0139
					1411/0137

Ε

9. In the process of extraction of gold,

[2003 Qualifying]

Roasted gold ore + $CN^- + H_2O \xrightarrow{O_2} [X] + OH^-$

$$[X] + Zn \longrightarrow [Y] + Au$$

Identify the complexes [X] and [Y]:

(A)
$$X = [Au(CN)_2]^-$$
, $Y = [Zn(CN)_4]^{2-}$

(B)
$$X = [Au(CN)_4]^{3-}, Y = [Zn(CN)_4]^{2-}$$

(C)
$$X = [Au(CN)_2]^-$$
, $Y = [Zn(CN)_6]^{4-}$

(D)
$$X = [Au(CN)_4]^-, Y = [Zn(CN)_4]^{2-}$$

ML0140

10. The methods chiefly used for the extraction of lead and tin from their ores are respectively :

[JEE-2004]

(A) self reduction and carbon reduction

(B) self reduction and electrolytic reduction

(C) carbon reduction and self reduction

(D) cyanide process and carbon reduction

ML0141

11. Which ore contains both iron and copper?

JEE-2004]

(A) Cuprite

(B) Chalcocite

(C) Chalcopyrite

(D) Malachite

ML0142

12. Extraction for zinc from zinc blende is achieved by :

[JEE-2007]

- (A) electrolytic reduction
- (B) roasting followed by reduction with carbon
- (C) roasting followed by reduction with another metal
- (D) roasting followed by self-reduction

ML0143

13. Native silver metal forms a water soluble complex with a dilute aqueous solution of NaCN in the presence of :-

(A) nitrogen

(B) oxygen

(C) carbon dioxide

(D) argon

[JEE-2008]

ML0144

Paragraph for questions 14 to 16

Copper is the most nobel of the first row transition metals and occurs in small deposits in several countries. Ores of copper include chalcanthite ($CuSO_4$. $5H_2O$), atacamite ($Cu_2Cl(OH)_3$), cuprite (Cu_2O), copper glance (Cu_2S) and malachite ($Cu_2(OH)_2CO_3$). However, 80% of the world copper production comes from the ore chalcopyrite ($CuFeS_2$). The extraction of copper from chalcopyrite involves partial roasting, removal of iron and self-reduction. [JEE-2010]

14. Partial roasting of chalcopyrite produces :-

(A) Cu₂S and FeO

(B) Cu₂O and FeO

(C) CuS and Fe₂O₃

(D) Cu₂O and Fe₂O₃

ML0145

15. Iron is removed from chalcopyrite as :-

(A) FeO

(B) FeS

(C) Fe₂O₃

(D) FeSiO,

16.	In self-reduction,	the reducing species is :-				
	(A) S	(B) O^{2-}	(C) S^{2-}	(D) SO ₂		
				2	ML0145	
17.	Match the extrac	tion processes listed in colu	mn I with metals	listed in column II.	[JEE-2006]	
	Column I		C	olumn II		
	(A) Self reduction	n	(P) Le	ead		
	(B) Carbon reduc	ction	(Q) Si	lver		
	(C) Complex for	mation and displacement by	y metal (R) C	opper		
	(D) Decompositi	on of iodide	(S) B	oron		
					ML0146	
18.		sions in Column I with the t	• •	• •	•	
	~	ning the appropriate bubble		•		
	Column I		Column I		[JEE-2008]	
	$(A) PbS \rightarrow PbO$		(P) Roasting			
	(B) $CaCO_3 \rightarrow CaO$		(Q) Calcination			
	(C) $ZnS \rightarrow Zn$		(R) Carbon red			
	(D) $Cu_2S \rightarrow Cu$		(S) Self reduct	ion		
					ML0147	
19.		allurgy of zinc partial fusio				
	the ore to the mol	ten metal is called	_(smelting, calcini	ing, roasting, sintering	-	
• •					ML0148	
20.		tal from the ore cassiterite in			[JEE-2011]	
	` '	tion of an oxide ore		ion of a sulphide or	e	
	(C) removal of co	opper impurity	(D) removal of	iron impurity	3.57.04.40	
21	0:1::	Ca			ML0149	
21.		of the metal in the minerals	_	•		
		natite and III in magnetite	* * *	(B) II, III in haematite and II in magnetite		
	(C) II in haematite and II, III in magnetite (D) III in haematite and II, III in magnetite					
22.	In the evenide ext	traction process of silver fro	m argantita ara the	o ovidizing and radu	ML0150	
22.	·	raction process or sirver fro	in argenine ore, in	e Oxidizing and redu	[JEE-2012]	
	are: $(A) \cap \text{and } C \cap r$	acnactivaly	(R) O and Zn	dust respectively	[JEE-2012]	
	(A) O_2 and CO re	n dust respectively.	<u>~</u>	dust respectively. CO respectively.		
	(C) 11100_3 and 21	ii dust respectively.	(D) 11100_3 and	CO respectively.	ML0151	
23.	Sulfide ores are o	common for the metals -			[JEE-2013]	
25.	(A) Ag, Cu and		(C) Ag Mg an	d Pb (D) Al, Cu	_	
	(A) Ag, Cu and	(b) Ag, Cu and Sir	(C) Ag, Wig an	(D) AI, Cu	ML0152	
24.	The carbon-based reduction method is NOT used for the extraction of [JEE-2013]					
	(A) tin from SnC		(B) Iron from I			
	(C) aluminium fr	<u></u>		$n \text{ from MgCO}_3$.CaC	CO	
	(-)	2 - 3	(= /		ML0153	
25.	Upon heating wi	th Cu ₂ S, the reagent(s) that	give copper metal	l is/are [.]	[EE Adv. 2014]	
	(A) CuFeS ₂	(B) CuO	(C) Cu ₂ O	(D) CuSO		
	2	• •		· / / /	ML0154	

node06/18080BA/Kata/JEE[Advanced]\Enthuse\Chemistry\Sheet\Metallurgy\Eng.p65

- Copper is purified by electrolytic refining of blister copper. The correct statement(s) about this process 26. [JEE Adv. 2015]
 - (A) Impure Cu strip is used as cathode
 - (B) Acidified aqueuous CuSO₄ is used as electrolyte
 - (C) Pure Cu deposits at cathode
 - (D) Impurities settle as anode-mud

ML0155

27. Match the anionic species given in Column-I that are present in the ore(s) given in Column-II

Column - I Column - II (A) Carbonate (P) Siderite (B) Sulphide (Q) Malachite (C) Hydroxide (R) Bauxite (D) Oxide (S) Calamine

(T) Argentite

ML0156

28. Extraction of copper from copper pyrite (CuFeS₂) involves [JEE Adv. 2016]

[JEE Adv. 2015]

- (A) crushing followed by concentration of the ore by froth-flotation
- (B) removal of iron as slag
- (C) self-reduction step to produce 'blister copper' following evolution of SO,
- (D) refining of 'blister copper' by carbon reduction

ML0157

29. Galena (an ore) is partially oxidized by passing air through it at high temperature. After some time, the passage of air is stopped, but the heating is continued in a closed furnance such that the contents undergo self-reduction. The weight (in kg) of Pb produced per kg of O, consumed is _____. (Atomic weights in g mol^{-1} : O = 16, S = 32, Pb = 207) [JEE ADV. 2018]

ML0158

- **30.** Calamine, malachite, magnetite and cryolite, respectively are
- [JEE ADV. 2019]

- (1) $ZnSO_4$, $CuCO_3$, Fe_2O_3 , AlF_3
- (2) ZnCO₃, CuCO₃.Cu(OH)₂, Fe₃O₄, Na₃AlF₆
- (3) $ZnSO_4$, $Cu(OH)_2$, Fe_3O_4 , Na_3AlF_6 (4) $ZnCO_3$, $CuCO_3$, Fe_2O_3 , Na_3AlF_6

ML0159

- The cyanide process of gold extraction involves leaching out gold from its ore with CN in the presence 31. of Q in water to form R. Subsequently, R is treated with T to obtain Au and Z. Choose the correct option(s). [JEE ADV. 2019]
 - (1) **T** is Zn
- (2) **R** is $[Au(CN)_4]^-$ (3) **Z** is $[Zn(CN)_4]^{2-}$ (4) **Q** is O₂

ANSWER-KEY

		ANSWI	EK-NET		
		EXERCI	SE # 0-I		
1. (A)	2. (C)	3. (B)	4. (B)	5. (C)	6. (A)
7. (A)	8. (B)	9. (D)	10. (B)	11. (B)	12. (A)
13. (B)	14. (B)	15. (A)	16. (D)	17. (A)	18. (A)
19. (B)	20. (C)	21. (C)	22. (C)	23. (C)	24. (B)
25. (B)	26. (D)	27. (C)	28. (B)	29. (A)	30. (D)
31. (A)	32. (B)	33. (C)	34. (B)	35. (A)	36. (C)
37. (C)	38. (D)	39. (A)	40. (B)	41. (C)	42. (B)
43. (A)	44. (A)	45. (D)	46. (C)	47. (C)	48. (C)
49. (B)	50. (B)	51. (A)	52.(C)	53.(B)	54. (D)
55. (B)	56. (A)	57. (D)	58. (D)	59.(C)	60. (D)
61. (B)	62. (B)	63. (A)	64. (A)	65. (B)	66. (C)
		EXERCIS	SE # O-II		
1. (A,B,D)	2. (A,B,C)	3. (B,C)	4. (A,B)	5. (A,C,D)	6. (A,B,C,D)
7. (A, C)	8. (A, C)	9. (A, B)	10. (A, B)	11.(A,B)	12. (B, C)
13. (A,B)	14. (B,C)	15. (A,B,C, D)	16. (A,B)	17. (A,B,C)	18. (B,C,D)
19. (A,B)	20. (A,B,C)	21. (C,D)	22. (A, D)	23. (A,B)	24. (A, D)
25. (A,B,D)	26. (B,D)	27. (B,C)	28. (C,D)	29. (A,C)	30. (B, C)
		EXERCI	SE # S-1		
1. (3)	2. (3)	3. (4)	4. (4)	5. (2)	6. (4)
7. (4)	8. (4)	9. (2)			
		EXERCI	SE # S-2		
1. (B)	2. (C)	3. (A)	4. (B)	5. (D)	
6. (A) Q; (B) I	R; (C) S; (D)P	7. (A) \rightarrow P, (B)	\rightarrow R; (C) \rightarrow	$Q, R, S(D) \rightarrow Q,$	S
8. (A) R; (B)	P; (C) Q	9. (A) S; (B) P;	(C) Q; (D) R		

13. (A)

14. (**D**)

10. (A) S; (B) Q; (C) R; (D) P 11. (A) 12. (A)

EXERCISE # JEE-MAINS

EXERCISE # JEE-ADVANCED

17. (A)
$$-P$$
, R; (B) $-P$; (C) $-Q$; (D) $-S$

18. (A)
$$-P$$
; (B) $-Q$; (C) $-P$, R; (D) $-P$, S

27.
$$(A) - P$$
, Q , S ; $(B) - T$; $(C) - Q$, R ; $(D) - R$

Sol. PbS + O,
$$\longrightarrow$$

$$\frac{1000}{32}$$
 mol

$$\frac{\text{Pb + SO}_2}{1000} \times 207 \text{ gm}$$

mol of Pb = mol of
$$O_2$$

$$=\frac{1000}{32}$$
 mol

$$\therefore \text{ mass of Pb} = \frac{1000}{32} \times 207g$$

$$= \frac{207}{32} \text{kg} = 6.47 \text{ kg}$$