
CHEMICAL BONDING

Note: Hydrogen bond is an extreme manifestation of dipole dipole interaction.

CHEMICAL BOND

- (a) The attractive force which holds various constituents (atoms, ions, etc.) together in different chemical species is called a chemical bond.
- (b) It is the combination of two or more chemical species involving redistribution of e⁻ among them.
- (c) This process is accompanied with decrease in energy.
- (d) Decrease in energy strengthens the bond.
- (e) Therefore, molecules are more stable than atoms.

CAUSE OF CHEMICAL COMBINATION

- 1. Tendency to acquire minimum energy:
- 2. Tendency to acquire noble gas configuration (Octet rule):

Atoms combine to complete an octet of electrons in their outer most shell. Hence all atoms have a tendency to acquire octet (ns²np⁶) configuration or to attain nearest noble gas configuration in their outermost orbit. This can be achieved by combining with other atom or ion.

LIMITIATION OF OCTET RULE

1. Contraction of octet (incomplete octet)

These compounds are hypovalent.

2. Expansion of Octet (due to empty d-orbitals)

$$PCl_5 SF_6 ClF_3 IF_5 IF_7$$

 $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$
 $(10e^-) (12e^-) (10e^-) (12e^-) (14e^-)$

These compounds are hypervalent.

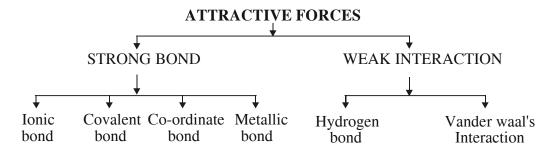
3. Odd electron species

Ex. NO, NO $_2$, ClO $_2$ etc.

OTHER EXCEPTIONS OF OCTET RULE

1. Compounds of Noble gases

Noble gases which have already completed their octets (or duplet in case of He.) should not form compounds. However, their compounds like XeF₂, XeF₆ & KrF₂ etc., have been actually prepared.


2. Transition metal ions

$$Cr^{3+}$$
 Mn^{2+} Fe^{2+} [Ar]3d³ [Ar]3d⁵ [Ar]3d⁶ [2, 8, 11] [2, 8, 13] [2, 8, 14]

3. Pseudo inert gas configuration $[(n-1)s^2p^6d^{10}]$

$$Zn^{2+}$$
 Cd^{2+} $[Ar]3d^{10}$ $[Kr]4d^{10}$

CLASSIFICATION OF BONDS

ELECTROVALENT OR IONIC BOND

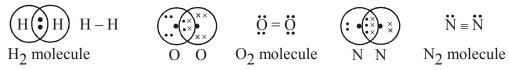
(a) The chemical bond formed between two or more atoms as a result of the complete transfer of one or more electrons from one atom to another is called as ionic or electrovalent bond.

Ex.

(i)
$$Mg + O \longrightarrow Mg^{+2} + O^{-2} = MgO$$

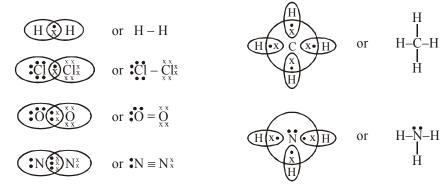
(2, 8, 2) (2, 6)

electrovalency of Mg = 2 electrovalency of O = 2


Note: Ionic bond is non-directional.

FACTORS FAVOURING IONIC BOND FORMATION

- (a) Less ionization energy of atom forming cation
- (b) Higher electron affinity of atom forming anion
- (c) Greater lattice energy of formed product.
- (d) Greater electronegativity difference between atoms forming cation & anion.


COVALENT BOND

(a) A covalent bond is formed by the mutual sharing of electrons between two atoms.

- (b) The shared pair of electrons must have opposite spins, and are localised between two atoms concerned.
- (c) On the basis of electrons being shared between two atoms the bonds are of three types
 - (i) Single bond, (ii) Double bond, (iii) Triple bond

It is represented by (–) small line. – means single bond; = means double bond; \equiv means triple bond.

Covalency: Capacity to form covalent bond is known as covalency

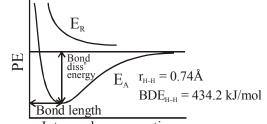
COORDINATE BOND (DATIVE BOND)

The bond formed between two atom in which contribution of an electron pair is made by one of them while the sharing is done by both.

(i)
$$NH_4^+$$
 (ammonium ion) $H \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} H^+ \longrightarrow \begin{bmatrix} H \\ H - N - H \\ H \end{bmatrix}^+$
Donor Acceptor

(ii) O_3 (ozone) O_3

VALENCE BOND THEORY


Valence bond theory was introduced by Heitler and London (1927) and developed further by Pauling and others. A discussion of the valence bond theory is based on the knowledge of atomic orbitals, electronic configurations of elements, the overlap criteria of atomic orbitals and the hybridization of atomic orbitals.

Formation of H₂ molecule:

When two 'H'-atoms approaches towards each other for the formation of H_2 molecule. The following interactions takes place.

- (i) e-e repulsion
- (ii) e-p attraction
- (iii) p-p repulsion

Experimentally, it has been found that the magnitude of attractive forces is more than the repulsive forces. As a result, when two atoms approach each other then potential energy decreases. Ultimately a stage is reached where the net force of attraction balances the force of repulsion and system acquires minimum energy.

Internuclear separation

The potential energy curve for the formation of H_2 molecule as a function of internuclear distance of the H atoms. The minimum in the curve corresponds to the most stable state of H_2 .

At this stage two hydrogen atoms are said to be bonded together to form a stable molecule having the bond length of 74 pm. Since the energy gets released when the bond is formed between two hydrogen atoms, the hydrogen molecule is more stable than that of isolated hydrogen atoms.

Bond Length : Internuclear distance at minimum potential energy is called bond length.

Bond Dissociation Energy: The amount of energy released when one mole of same type of bonds are formed is called B.D.E.

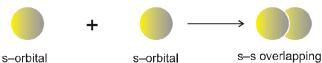
434.2 kJ/mol of energy is required to dissociate one mole of H₂ molecule.

 $H_2(g) + 434.2 \text{ kJ mol}^- \rightarrow H(g) + H(g)$

ORBITAL OVERLAP CONCEPT

In the formation of hydrogen molecule, there is a minimum energy state when two hydrogen atoms are so near that their atomic orbitals undergo partial interpenetration. This partial merging of atomic orbitals is called overlapping of atomic orbitals which results in the pairing or merging of electrons. The extent of overlap decides the strength of a covalent bond. In general, greater the overlap the stronger is the bond formed between two atoms. Therefore, according to orbital overlap concept, the formation of a covalent bond between two atoms results by pairing of electrons, present in the valence shell having opposite spins.

E

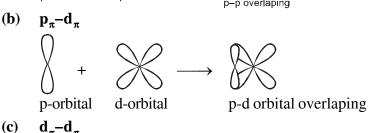

Directional Properties of Bonds:

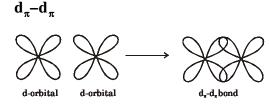
The valence bond theory explains the formation and directional properties of bonds in polyatomic molecules like CH_4 , NH_3 and H_2O , etc. in terms of overlap and hybridisation of atomic orbitals.

Types of Overlapping and Nature of Covalent Bonds

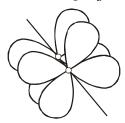
The covalent bond may be classified into following types depending upon the types of overlapping :- (i) $sigma(\sigma)$ bond (ii) $pi(\pi)$ bond (iii) $delta(\delta)$ bond

- (i) Sigma (σ) bond: This type of covalent bond is formed by the end to end (head on or axial) overlap of bonding orbitals along the internuclear axis. This can be formed by any one of the following types of combinations of atomic orbitals.
 - s-s overlapping: In this case, there is overlap of two half filled s-orbitals along the internuclear axis as shown below:


• s-p overlapping: This type of overlap occurs between half filled s-orbital of one atom and half filled p-orbital of another atom.



• p-p overlapping: This type of overlap takes place between half filled similar p-orbitals of the two approaching atoms.


- (ii) $Pi(\pi)$ bond: In the formation of π bond the atomic orbitals overlap in such a way that their axis remain parallel to each other and perpendicular to the internuclear axis. The orbitals formed due to sidewise overlapping consists of two saucer type charged clouds above and below the plane of the participating atoms.

JEE-Chemistry ALLEN

(iii) **Delta** (δ) **bond :** are the covalent bonds where four lobes of d-orbital of one atom overlap with four lobes of the similar d-orbital of other atom. Except d_{s^2} all d orbitals form δ bond.

Strength of sigma and pi bonds:

Basically the strength of a bond depends upon the extent of overlapping- In case of sigma bond, the overlapping of orbitals takes place to a larger extent. Hence, it is stronger as compared to the pi bond where the extent of overlapping occurs to a smaller extent. Further, it is important to note that pi bond between two atoms is formed in addition to a sigma bond. It is always present in the molecules containing multiple bond (double or triple bonds)

Advantages of VBT:

- ❖ It explain various bond characteristics e.g., bond length, bond strength.
- Lexplains the quantitative relationship between the extent of overlapping and bond dissociation energy.
- This theory accounts for shape and nature of bonding of the molecule whose covalency is not according to the number of half-filled orbitals present in the ground state.
- This theory redefined the stability of molecules e.g. BF₃, AlCl₃, PCl₅, SF₆ etc which are exception to octet rule.

Disadvantages of VBT:

- ★ According to this theory three bond angle in CH₄ should be 90°, as these are formed by p–p overlapping, but actually it has four 109°28 angles. In NH₃ & H₂O, angle should be 90°. This is in disagreement with the actual bond angles of 107° & 104.5° in NH₃ & H₂O molecules respectively.
- In order to explain the characteristic geometrical shapes of polyatomic molecules like CH₄, NH₃, H₂O etc. Pauling introduced the concept of hybridisation.

HYBRIDISATION

The phenomenon of intermixing of the orbitals of slightly different energies so as to redistribute their energies, resulting in the formation of new set of orbitals of equivalent energies and shape. For example when one 2s and three 2p-orbitals of carbon hybridise, there is the formation of four new sp³ hybrid orbitals.

Salient features of hybridisation: The main features of hybridisation are as under:

- 1. The number of hybrid orbitals is equal to the number of the atomic orbitals that get hybridised.
- 2. The hybridised orbitals are always equivalent in energy and shape.
- 3. The hybrid orbitals are more effective in forming stable bonds than the pure atomic orbitals.
- **4.** These hybrid orbitals are directed in space in some preferred direction to have minimum repulsion between electron pairs and thus a stable arrangement. Therefore, the type of hybridisation indicates the geometry of the molecules.

Important conditions for hybridisation

- (i) The orbitals present in the valence shell of the atom are hybridised.
- (ii) The orbitals undergoing hybri disation should have almost equal energy.
- (iii) Promotion of electron is not essential condition prior to hybridisation.
- (iv) It is not necessary that only half filled orbitals participate in hybridisation. In some cases, even filled orbitals of valence shell take part in hybridisation.

Types of Hybridisation

There are various types of hybridisation involving s, p and d orbitals. The different types of hybridisation are as under:

(i) sp hybridisation

Molecule

six

seven

- (ii) sp^2 hybridisation
- (iii) sp³ hybridisation

Hybridisation

(iv) sp^3d hybridisation: (v) sp^3d^2 hybridisation: (vi) sp^3d^3 hybridisation:

Determination of hybridisation state:

To predict the hybridisation following formula may be used:

Number of hybrid orbital = Steric Number (S.N.) = Number of σ -bond arround that atom + Number of lone pair on that atom.

NH_4^+	S.N. = 4 + 0 =	4 sp ³ hybrid	disation.
Numbe	r of hybrid orbitals	Hybridisation	
two		sp	
three		sp^2	
four		sp ³	
five		sp ³ d	1

Hybridisation of following species in their specified state

Species	Cationic part	Anionic part
PCl ₅ (solid)	PCl_4^+ (sp ³)	$PCl_6^-(sp^3d^2)$
PBr ₅ (solid)	$PBr_4^+ (sp^3)$	Br^-
XeF ₆ (solid)	$XeF_5^+ (sp^3d^2)$	F ⁻
N ₂ O ₅ (solid)	NO_2^+ (sp)	$NO_3^- (sp^2)$
I ₂ Cl ₆ (liquid)	$ICl_2^+(sp^3)$	$ICl_4^-(sp^3d^2)$
Cl ₂ O ₆ (solid)	$ClO_2^+ (sp^2)$	$\text{ClO}_4^-(\text{sp}^3)$
I ₂ (molten state)	I_3^+ (sp ³)	$I_3^-(sp^3d)$

VALENCE SHELL ELECTRON PAIR REPULSION THEORY (VSEPR)

- (a) Molecules having covalent bond have definite geometry as covalent bonding has directional characteristics. A simple theory was given for the molecular shape of the covalent molecules by Gillespie and Nyholm in 1957.
- (b) This theory predicts the shape of the molecule by considering the most stable configuration of the bond angles in the molecule. This theory states
 - (i) Electron pairs in the valence shell of the central atom of a molecule, whether bonding or lone pairs are regarded as occupying localised orbitals. These orbitals arange themselves in so as to minimize the mutual electronic repulsions.
 - (ii) The magnitude of the different types of electronic repulsions follows the order given below: lone pair-lone pair > lone pair > bonded pair > bonded pair bonded pair
 - (iii) The electronic repulsion between two pairs of electrons will be minimum if they are as far apart as possible.
 - (iv) The actual shape of the molecules containing lone pairs is a little distorted from the basic shape as in the NH₃ and H₂O molecules, the bond angles are not 109°28' but 107° and 104.5° respectively due to presence of one lone pair in NH₃ and two lone pairs in H₂O.

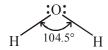
SHAPES OF MOLECULES BASED ON VSEPR THEORY

Total no. of hybrid orbitals	No. of b.p. (bond pairs)	No. of unshared pair i.e. l_p	General formula	Type of hybridisation	Stereo chemical formula/str.	Shape	Exam.
2	2	0	AB ₂	sp	B—A—B	linear	BeCl ₂
3	3	0	AB ₃	sp ²	B 120° B A B	Trigonal planar	BCl ₃ , NO ₃ – GaF ₃ , CO ₃ –
3	2	1	AB_2	sp^2	B <120° B	V or Bent or angular	SnCl ₂ , O ₃ ,SO ₂
4	4	0	AB_4	sp ³	B 109°28' B B	Tetrahedron	CH ₄ , SiF ₄ , NH ₄
4	3	1	AB_3	sp ³	B B <109°	Trigonal pyramidal	NH ₃ , CH ₃
4	2	2	AB_2	sp ³	A B <109° B	V or Bent or angular	H ₂ O, SF ₂
4	1	3	AB	sp ³	B bond l angle A N.A.	linear	C1O-
5	5	0	AB_5	sp ³ d	B B B B B B B	Trigonal bipyramidal	PF ₅ , SF ₅ ⁺ , SbBr ₅ , XeO ₃ F ₂
5	4	1	AB_4	sp ³ d	B B B B	Seesaw	SF ₄
5	3	2	AB_3	sp ³ d	B - A B	T-shaped	ClF _{3,} BrF ₃
5	2	3	AB_2	sp³d	B -A 180° B	Linear	$ICl_{2}^{-},$ $XeF_{2},$ I_{3}^{-}
6	6	0	AB_6	sp ³ d ²	$\begin{array}{ccc} B & B & B \\ A & 90^{\circ} \\ B & B & B \\ All bond \angle = 90^{\circ} \end{array}$	Octahedral or Square bipyramidal	SF ₆ , IF ₆
6	5	1	AB_5	sp ³ d ²	B B B B B S S S S S S S S S S S S S S S	Square pyramidal	IF ₅ , XeOF ₄ , BrF ₅

6	4	2	AB_4	$\mathrm{sp}^3\mathrm{d}^2$	B ; B	Square planar	IF ₄ , XeF ₄ , ICl ₄
7	7	0	AB_7	sp ³ d ³	B B B B 90° 772° B A B B B B	Pentagonal bipyramidal	IF ₇
7	5	2	AB_5	sp ³ d ³	B B 72° A-B B B	Pentagonal Planar	XeF ₅
PO	ND DAD	METED	<u> </u>				

BOND PARAMETERS

(I) Bond Length (Bond distance) (II) Bond Angle (III) Bond Enthalpy (IV) Bond order


(I) Bond Length: Bond length is defined as the equilibrium distance between the nuclei of two bonded atoms in a molecule.

Factors affecting bond length

- (a) Size of atoms
- (b) Effect of bond order or number of bonds
- (c) Effect of Resonance
- (d) Effect of Electronegativity difference
- (f) Effect of Hybridisation

(II) Bond angle:

It is defined as the angle between the orbitals containing bonding electron pairs around the central atom in a molecule/complex ion. Bond angle is expressed in degree which can be experimentally determined by spectroscopic methods. For example $H-\hat{O}-H$ bond angle in water can be represented as under:

Factors affecting bond angle

(a) State of Hybridisation

- (b) Presence of lone pair
- (c) Electronegativity of central atom
- (d) Electronegativity of surrounding atom

- (e) Size of surrounding atom
- (f) Lone pairs may sometimes be transferred from a filled shell of one atom to an unfilled shell of another bonded atom, causing less repulsion.
- (g) Multiple bond orbital repel other orbitals more strongly than single bond orbitals.

(III) Bond Enthalpy

It is defined as the amount of energy required to break one mole of bonds of a particular type between two atoms in a gaseous state. The unit of bond enthalpy is kJ mol⁻¹. For example, the H–H bond enthalpy in hydrogen molecule is 435.8 kJ mol⁻¹.

$$H_2(g) \longrightarrow H(g) + H(g)$$
; $\Delta_a H^{\Theta} = 435.8 \text{ kJ mol}^{-1}$

node06\B0B0-BA\Kota\JEE|Advanced|\Lecden\Che\Sheen\Chemical Banding\Eng\01_Theary.p65

⇒ In polyatomic molecules the **term mean or average bond enthalpy** is used. It is obtained by dividing total bond dissociation enthalpy by the number of bonds broken as explained below in case of water molecule,

$$H_2O(g) \longrightarrow H(g) + OH(g)$$
; $\Delta_a H_1^{\theta} = 502 \text{ kJ mol}^{-1}$

$$OH(g) \longrightarrow H(g) + O(g)$$
; $\Delta_a H_2^{\Theta} = 427 \text{ kJ mol}^{-1}$

Average bond enthalpy =
$$\frac{502 + 427}{2}$$
 = 464.5 kJ mol⁻¹

(IV) Bond Order

The Bond Order is given by the number of bonds between the two atoms in a molecule.

The bond order, for example in H_2 (with a single shared electron pair), in O_2 (with two shared electron pairs) and in N_2 (with three shared electron pairs) is 1,2,3 respectively.

Note : Isoelectronic molecules and ions have identical bond orders; for example, F_2 and O_2^{2-} have bond order 1. N_2 , CO and NO^+ have bond order 3.

Note: A general correlation useful for understanding the stabilities of molecules is that: with increase in bond order, bond enthalpy increases and bond length decreases.

RESONANCE

When a molecule cannot be completely represented by a single Lewis structure but it's characteristic properties can be described by two or more different structures, with similar energy position of nuclei, bonding and non-bonding pairs of electrons, then the true structure is said to be resonance hybrid of these structures. The phenomenon is called resonance and different contributing structures are called resonating structures or canonical structures.

- Resonance stabilizes the molecule as the energy of the resonance hybrid is less than the energy of any single canonical structure.
- Resonance averages the bond characteristics as a whole.
- ❖ The canonical forms have no real existence.

Resonance Structure of Some Molecules/Ions:

(i) Azide ion, N_3^- :

The azide ion may be represented as -

$$\begin{array}{c} : \stackrel{+}{N} = \stackrel{+}{N} : \longleftarrow \\ I & \qquad \qquad \vdots \\ \stackrel{+}{N} = \stackrel{+}{N} : \longleftarrow \\ I & \qquad \qquad \vdots \\ I & \qquad \qquad III \\ \end{array}$$

The structures II and III contribute equally and the molecule has almost double bond character in each N–N bond.

$$B.O. = 1.33$$

$$BO = 1.5$$

$$(iv) R-C \longleftrightarrow R-C \circlearrowleft = \begin{bmatrix} R-C \circlearrowleft \\ 0 \end{bmatrix}$$

Bond order =
$$\frac{2+1}{2} = \frac{3}{2} = 1.5$$

BENT'S RULE

- (i) A lone pair of electron prefers to occupy that hybrid orbitals which has greater percentage of s-character.
- (ii) A more electronegative atom/group prefers to occupy that hybrid orbital which has smaller percentage of s-character.

Ex. Draw the geometry of PCl_3F_2

Sol.

Because highly electronegative atom occupy axial position (axial position has smaller percentage of s-character).

DRAGO'S RULE

On the basis of experimental bond angles of certain molecules fulfilling the following three conditions,

- (i) Central atom belongs to third or lower period in periodic table
- (ii) Central atom must contain atleast one lone pair of electron, and
- (iii) Electronegativity of surrounding atom is ≤ 2.5

Drago generalised that in such molecules justification of experimental bond angle can be made satisfactorily if one considers no hybridisation, i.e., overlapping of almost pure atomic orbitals from central atom.

In such molecules bond angle is approximately 90°.

Group 15	Bond angle	Group 16	Bond angle
NH_3	107°48'	H_2O	104°28'
PH_3	93°36'	H_2S	92°
AsH_3	91°48'	H_2 Se	91°
SbH ₃	91°18'	H ₂ Te	90.5°

• Right order of bond angle.

(a)
$$H_2O > H_2S > H_2Se > H_2Te$$

(b)
$$NH_3 > PH_3 > AsH_3 > SbH_3$$

ELECTRON DEFICIENT BONDING

(a) Bridge Bonding

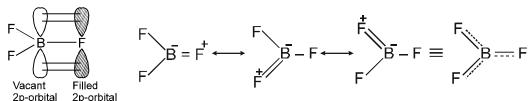
There are many compounds in which some electron deficient bonds are present apart from normal covalent bonds or coordinate bonds which are $2c-2e^-$ bonds (two centre two electron bonds). These electron deficient bonds have less number of electrons than the expected such as three centre-two electron bonds (3c-2e) which are present in diborane B_2H_6 , $Al_2(CH_3)_6$, $BeH_2(s)$ etc.

bonding in B_2H_6 (diboarane)

$$H_{IIIIII}$$
 H_{t}
 H_{t}

The structure of diborane containing four terminal(t) and two bridging(b) hydrogen atoms. The model determined by molecular orbital theory indicates that the bonds between boron and the terminal hydrogen atoms are conventional 2c-2e⁻ covalent bonds.

The bonding between the boron atoms and the bridging hydrogen atoms is, however different from that in molecules such as hydrocarbons. Having used two electrons in bonding to the terminal hydrogen atoms, each boron has one valence electron remaining for additional bonding. The bridging hydrogen atoms provide one electron each. Thus the B₂H₂ ring is held together by four electrons, an example of 3c-2e⁻bonding. This type of bond is sometimes called as 'banana bond'. Group 13, gallium is known to form a similar compound, digallane, Ga₂H₆.


But Al₂Cl₆ have covalent bond only and there is no electron deficient bonding as depicted in the given structure.

Examples of 3c-4e⁻bonding are:- dimer and polymer of BeCl₂, Al₂Cl₆, I₂Cl₆ etc

(b) Back Bonding

Back bonding generally takes place when out of two bonded atoms one of the atom has vacant orbitals(generally this atom is from second or third period) and the other bonded atom is having some non-bonded electron pair(generally this atom is from the second period). Back bonding increases the bond strength and decreases the bond length.

For example, in BF₃ the boron atom completes its octet by accepting 2p-electrons of fluorine into 2p empty orbital.

0 Decrease in B – F bond length is due to delocalised $p\pi$ – $p\pi$ back bonding between filled p-orbital of F atom and vacant p-orbital of B atom.

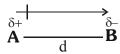
The extent of back bonding is much larger if the orbitals involved in the back bonding are of same size, for example the extent of back bonding in boron trihalides is as follows:

$$BF_3 > BCl_3 > BBr_3$$

There is $p\pi$ - $p\pi$ back bonding in boron trihalide. The extent of back bonding decreases from BF₃ to BI₃ because of increasing size of p-orbitals participating in back bonding that is from 2p(in F) to 5p(in I).

STRUCTURE OF ODD ELECTRONIC SPECIES

(1)
$$NO_2$$
:


 NO_2 :

(2) ČH₃:

Structure:
$$H \xrightarrow{C} H$$
 $p(containing free electron)$

DIPOLE MOMENT

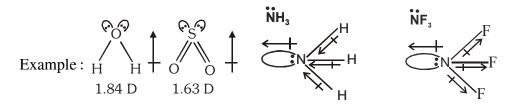
- The degree of polarity of covalent bond is given by the dipole moment (μ)
- It is the product of the either charge and the distance between them.

Electronegativity of A < Electronegativity of B

$$\mu = \delta \times d$$

• Dipole moment is a vector quantity.

The direction of dipole moment is represented by \longrightarrow

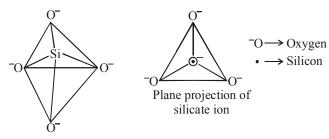

- Units = Cm (S.I.) or esu cm(cgs) or Debye (common unit)
- 1 D = 10^{-18} esu cm = 3.33×10^{-30} coulomb m

Dipole moment depends on

- **★** Electronegativity difference between bonded atoms
- → Direction of bond dipole moment
- **♦** Angle between various bonds
- **→** Influence of unshared e⁻ pairs
- **→** Magnitude of polarity of the molecule
- **♦** Symmetrical / Unsymmetrical shape.

Application of dipole moment

• To determine the polarity and geometry of molecules


Note: To the calculate the percentage of ionic character

% ionic character =
$$\frac{\text{observed } \mu}{\text{calculated } \mu \text{ (for } 100 \text{ \% ionic)}} \times 100$$

SILICATES

Silicates are metal derivatives of silicic acid, H_4SiO_4 or $Si(OH)_4$. Silicates are formed by heating metal oxide or metal carbonates with sand, e.g.,

$$Na_2CO_3 \xrightarrow{Fused \text{ with sand} \atop SiO_2} Na_4SiO_4, Na_2(SiO_3)_n, \text{ etc.}$$

14

Silicates have basic unit of SiO_4^{4-} , each silicon atom is bonded with four oxide ions tetrahedrally. There are following types of silicates

Silicates	Sharing of O-atom / Basic Tetrahedral unit	Contribution of O-atom/Basic Tetrahedral unit	General formula
Ortho	0	4	SiO_4^{4-} $Si_2O_7^{-6}$
Pyro	1	3.5	$\mathrm{Si}_2\mathrm{O}_7^{-6}$
Cyclic	2	3	$(SiO_3)_n^{2n-}$
Simple chain	2	3	$(SiO_3)_n^{2n-}$
(pyroxene) Double chain (Amphibole)	(3, 2) av = 2.5	$\frac{11}{4} = \left(\frac{5.5}{2}\right)$	$(Si_4O_{11})_n^{6n-}$
2D or (Sheet)	3	2.5	$(Si_2O_5)_n^{2n-}$
3D	4	2	$(SiO_2)_n$

INERT PAIR EFFECT

In p-block elements the stability of the lower oxidation state increases on descending the group. Because increased effective nuclear charge holds no electrons tightly due to poor shielding effect of inner d & f orbitals and thereby, restrict their (no electrons) participation in bonding only np electrons take part in bond formation. As a result of this, +1 oxidation state of Tl is more stable than it's +3 oxidation state. Pb shows +2 stable oxidation state and Bi shows +3 stable oxidation state.

For example:

Group 13	Group 14
B (+3)	C (+4)
Al (+3)	Si (+4)
Ga (+3), (+1)	Ge (+4), (+2)
In(+3), (+1)	Sn (+4), (+2)
T1(+3), (+1)	Pb (+4), (+2)

Order of stability : $Tl^{+1} > In^{+1} > Ga^{+1}$ (due to inert pair effect) **Order of stability :** $Pb^{+2} > Sn^{+2} > Ge^{+2}$ (due to inert pair effect)

- Ex. PbCl₄ is stable at room temperature whereas PbI₄ doesn't exist.
- **Sol.** Due to inert pair effect Pb(4) is less stable than Pb(2). Hence it is very good oxidant.

$$Pb(4) + 2e^{-} \longrightarrow Pb(2)$$

Reducing abilities of halides follows the sequence

$$I^- > Br^- > Cl^-$$

MOLECULES THAT DO NOT EXIST

- (1) SF₄, SF₆ & PF₅ exist while. OF₄, OF₆, NF₅ do not exist
- (2) (a) PI₅(vap) & SCl₆ do not exist
 - (b) SCl₆ does not exist while TeCl₆ exist
 - (c) PI₅ (Solid) exist
- (3) SF₆, PF₅, XeF₆, XeF₄ & XeF₂ exist while SH₆, PH₅, XeH₆, XeH₄, XeH₂ do not exist

HYDROLYSIS:

In hydrolysis of covalent molecules the nucleophilic centre of molecule is replaced by OH group of water generally through nucleophilic substitution reaction.

Ex. Hydrolysis of SiCl₄

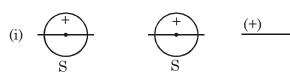
 $\mathbf{Note}: \mathbf{CCl}_4, \mathbf{NF}_3$, is inert towards hydrolysis due to the absence of d orbital, but under drastic condition these molecules under goes hydrolysis.

$$CCl_4 + H_2O \xrightarrow{superheated} COCl_2 + 2HCl$$

Note: Hydrolysis of XeF₂ & XeF₄ takes place through with redox reaction.

$$XeF_2 + H_2O \longrightarrow Xe + 2HF + \frac{1}{2}O_2$$

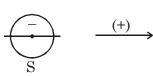
 $3XeF_4 + 6H_2O \longrightarrow 2Xe + XeO_3 + 12HF + \frac{3}{2}O_2$
 $XeF_6 + 3H_2O \longrightarrow XeO_3 + 6HF$


MOLECULAR ORBITAL THEORY (MOT)

Given by Hunds & Mulliken

- (a) Two atomic orbital come nearer & then overlap each other to form two molecular orbitals (MO)
- (b) Combination of atomic orbital (AO) forms molecular orbital (MO)

LINEAR COMBINATION OF ATOMIC ORBITALS (L.C.A.O.) σ -bond

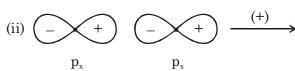

s-s overlapping

Constructive Interference

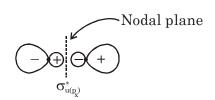
Nodal plane $\sigma_{u(s)}^*$

Destructive Interference

E


16 JEE-Chemistry ALLEN

p-p overlapping

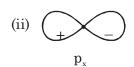


 $\overbrace{-}\underbrace{+}_{\sigma_{g(p_{x})}}$

 $\begin{array}{cc} p_x & p_x \\ Constructive\ Interference \end{array}$

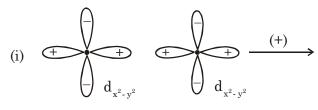
p_x
Destructive Interference

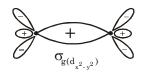
s-p overlapping

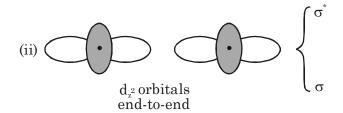


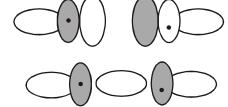
+ •

Constructive Interference

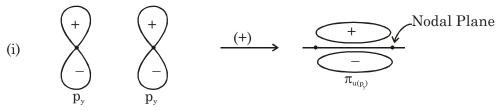


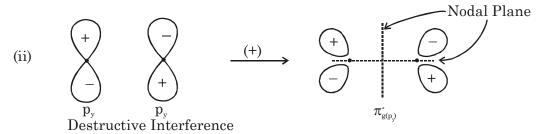




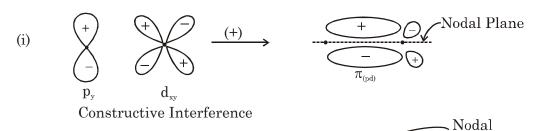

Destructive Interference

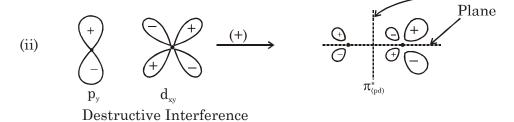
d-d overlapping



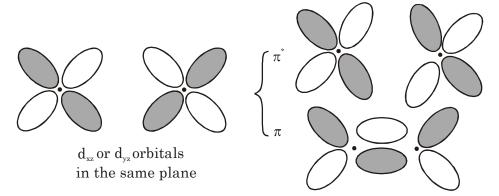


π -bond

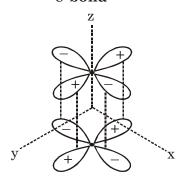

p-p overlapping

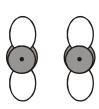


Constructive Interference

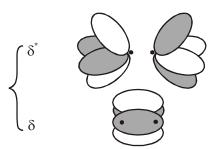


p-d overlapping

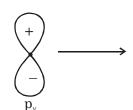


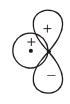


d-d overlapping



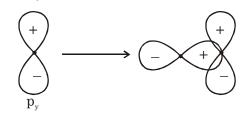
E

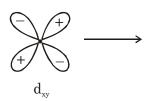

 $d_{x^2-y^2}$ or d_{xz} orbitals in parallel planes



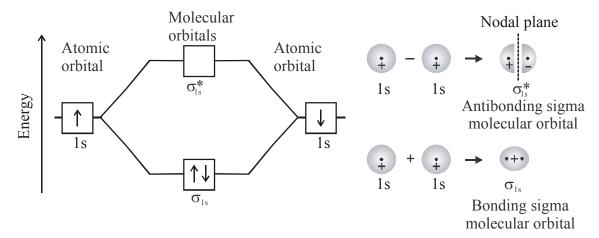
non bonding molecular orbitals

(i)

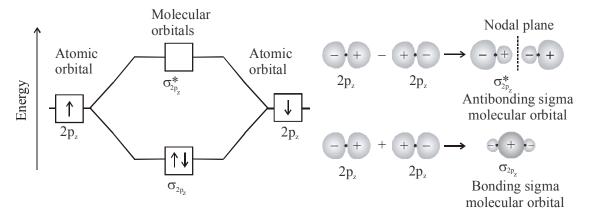



(ii)

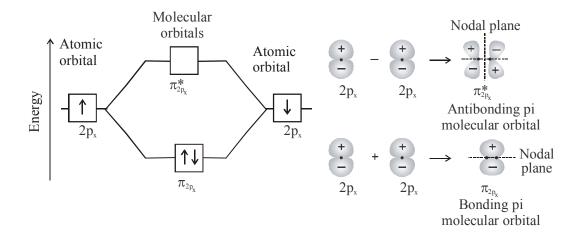
(iii)

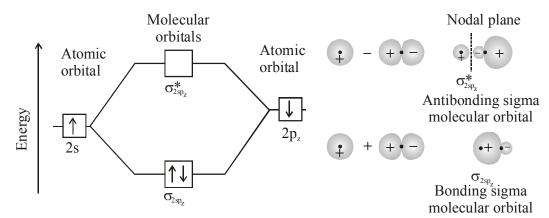


Types of molecular orbitals


Molecular orbitals of diatomic molecules are designated as $\sigma(\text{sigma}), \pi(\text{pie}), \delta(\text{delta})$ etc.

In this nomenclature, the sigma (σ) molecular orbitals are symmetrical around the inter molecular axis (assumed to be z-axis) while pi (π) molecular orbitals are not symmetrical.


(1) s-s combination of orbitals


(2) p-p combination of orbitals(end to end overlap)

(3) p-p combination of orbitals (side by side overlap)

(4) s-p combination of orbitals

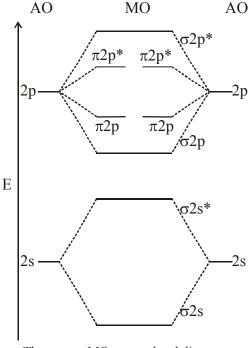
- (c) Energy of BMO < Energy of ABMO.
- (d) Molecular orbitals can be filled by electrons according to Aufbau, Hund's, Pauli's principle.
- (e) Energy order of the molecular orbitals of homonuclear di-atomic molecules.

Note : Molecular orbital energy diagram for up to \boldsymbol{N}_2 (molecule having ≤ 14 electrons)

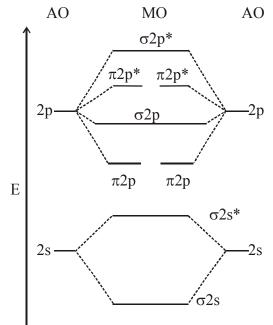
$$\sigma_{1s} < \sigma_{1s}^* < \sigma_{2s} < \sigma_{2s}^* < \pi_{2p_x} = \pi_{2p_y}^* < \sigma_{2p_z}^* < \pi_{2p_x}^* = \pi_{2p_y}^* < \sigma_{2p_z}^*$$

Note : Molecular orbital energy diagram for ${\rm O_2}$ and ${\rm F_2}$ (molecule having > 14 electrons)

$$\sigma_{1s} < \sigma_{1s}^* \; ; < \sigma_{2s} < \sigma_{2s}^* < \sigma_{2p_z} < \pi_{2p_z} = \pi_{2p_y} < \pi_{2p_x}^* = \pi_{2p_y}^* < \sigma_{2p_z}^* < \sigma_{2p_z}^*$$


 $\sigma *, \pi * =$ antibonding molecular orbital

 σ , π = bonding molecular orbital


Ex. Why molecular orbital have different order of energy in $N_2 & O_2$?

Sol. s-p mixing

Hint

The correct MO energy-level diagram when s-p mixing is not allowed.

The correct MO energy-level diagram when s-p mixing is allowed, the energies of the σ_{2p} and π_{2p} orbitals are reversed.

Bond Order

Bond order can be defined as:

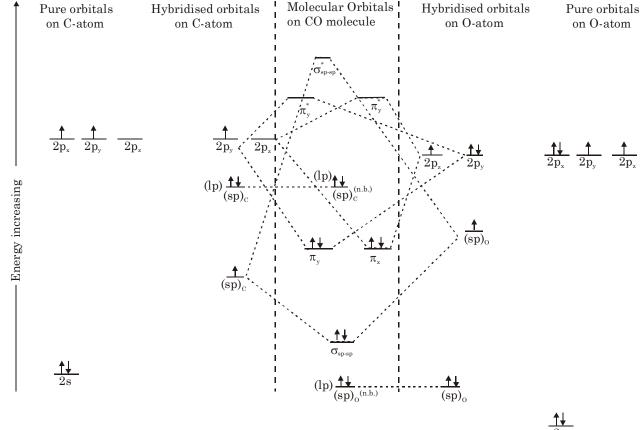
Bond order =
$$\frac{N_b - N_a}{2}$$

 $N_b = No.$ of electron in bonding MO's

 $N_a = No.$ of electron in antibonding MO's

- If bond order = 0, it means species does not exist.
- Bond order of 1, 2 & 3 corresponds to a single bond, double & triple bond respectively.
- Bond order \uparrow stability of molecule \uparrow bond length \downarrow

Magnetic behaviour

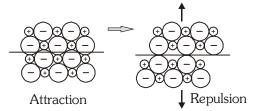

- If the molecule has one or more unpaired electron, it will be paramagnetic,
- If all the electrons are paired it will be diamagnetic.
- Magnetic strength can be calculated by using spin only formula of magnetic moment (μ) .
- $\mu = \sqrt{n(n+2)}$ B.M. (where n = number of unpaired electron)

Ex. $H_2 = \text{Configuration} : \sigma_{(1s)}^2, \sigma_{(1s)}^{*0}$

Bond order =
$$\frac{N_b - N_a}{2} = \frac{2 - 0}{2} = 1$$
, Hence H – H (dimagnetic)

Hetero Nuclear Species

- NO
- CO



Molecular orbital energy level diagram of CO molecule

IONIC COMPOUNDS

Properties of ionic compound

(a) Physical state: Ionic compounds are hard, crystalline and brittle due to strong electrostatic force of attraction. Brittleness \rightarrow {Same charged ions comes nearer. So they repell each other}

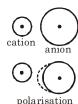
(b) Isomorphism: The phenomenon of different ionic compounds, having same crystal arrangement of ions is termed as isomorphism

Condition of Isomorphism:

- (i) Same charge on cation & anion between isomorphs
- (ii) Same radius ratio range of cation & anion between isomorphs
- (iii) Same number of water of crystalization between isomorphs
- Ex. (i) ZnSO₄·7H₂O, FeSO₄·7H₂O are isomorphous
 - (ii) All alums are isomorphous
 - (c) Boiling point and melting point: Ionic compounds have high boiling point and melting point due to strong electrostatic force of attraction among oppositely charged ions.
 - (d) Conductivity: It depends on ionic mobility.
 - (i) In solid state No free ions Bad conductor of electricity.
 - (ii) In fused state or aqueous solution Due to free ions Good conductor of electricity.

Conductivity order: Solid state < fused state < Aqueous solution

(e) Solubility:


Ionic compounds are more soluble in polar solvalents and less soluble in non polar solvents. Solubility of ionic compounds in water mainly depends upon hydration energy & lattice energy.

- **Q.1** Why does the solubility of alkaline earth metal hydroxides in water increase down the group?
- **Ans.** Among alkaline earth metal hydroxides, the anion being common the cationic radius will influence the lattice enthalpy. Since lattice enthalpy decreases much more than the hydration enthalpy with increasing ionic size, the solubility increases as we go down the group.
- **Q.2** Why does the solubility of alkaline earth metal carbonates and sulphates in water decrease down the group?
- **Ans.** The size of anions being much larger compared to cations, the lattice enthalpy will remain almost constant within a particular group. Since the hydration enthalpies decrease down the group, solubility will decrease as found for alkaline earth metal carbonates and sulphates.

FAJANS RULE

Just as all the covalent bonds have some partial ionic character, the ionic bonds also have partial covalent character. The partial covalent character of ionic bonds was discussed by Fajans in terms of the following rules:

- The smaller the size of the cation and the larger the size of the anion, the greater the covalent character of an ionic bond.
- The greater the charge on the cation, the greater the covalent character of the ionic bond.
- For cations of the same size and charge, the one, with electronic configuration (n-1)d^xns⁰, typical of transition metals, is more polarising than the one with a noble gas configuration, ns² np⁶, typical of alkali and alkaline earth metal cations.

⇒ Polarisation power of a cation is usually called ionic potential or charge density.

Ionic potential
$$\phi$$
 (phi) = $\frac{\text{Charge on cation}}{\text{Size of cation}}$

APPLICATION OF THE CONCEPT OF POLARISATION:

- (a) To compare the covalent and ionic character of molecule
- (b) To compare the nature of oxide
- (c) To compare the electrical conductivity of ionic comopounds
- (d) Tendency of the formation of complex compounds
- (e) To compare the thermal stability of metal salts
- (f) To compare the intensity of colour of compounds
- (g) To compare the solubility of heavier metal halide in water.
- (h) To compare melting point of some ionic solids

ORDER OF MELTING POINT

3.
$$NaCl > MgCl_2 > AlCl_3$$

5.
$$NaBr > KBr > RbBr > CsBr > LiBr$$

7.
$$A\ell F_3 > A\ell Cl_3 > A\ell I_3 > A\ell Br_3$$

9.
$$NaF > KF > LiF > RbF > CsF$$

2.
$$AlF_3 > MgF_2 > NaF$$

6.
$$BeCl_2 < MgCl_2 < CaCl_2 < SrCl_2 < BaCl_2$$

8.
$$MgO > SrO > CaO > BeO > BaO$$

10.
$$SrF_2 > CaF_2 > BaF_2 > MgF_2 > BeF_2$$

VANDER WAAL'S FORCES

- ⇒ These are the weakest type of inter molecular forces that exist among the chemical species which being significant change in physical properties.
- ⇒ These are non-directional, non-valence cohesive forces. These attractive forces being played between the two molecules are independent of the presence of other molecules.
- ⇒ Solid, liquid or gaseous states of many molecules are explained on the basis of inter molecular forces other than covalent, ionic or metallic bonds. Although inert gases do not form any type of bond but may exist in liquid and solid states. This shows that the atoms of inert gases are attracted by each other through some type of inter molecular forces. These intermolecular forces are called Vander Waals forces.

Types of Vander Waal's Forces

(1) Dipole-dipole interaction (Keesom forces): The force of attraction between the oppositely charged poles of two polar molecules (for example: H_2S , HCl, PH_3 etc.) is called dipole-dipole attraction.

- Dipole-induced dipole interaction (Debye forces): This type of cohesive forces occurs in a mixture (2) of polar and non polar molecules. The former induce polarity in non polar molecules by disturbing their electron system. for example force of attraction between Cl₂ and H₂O.
- Instantaneous dipole-Induced dipole interaction (Dispersion forces/London forces): The weak (3) intermolecular forces operating in similar non polar gaseous molecules are called London forces. These forces are very weak in nature and exists only at low temperature. For example weak intermolecular forces in F_2 , Cl_2 , N_2 , molecules and in noble gasses.

(Note:- London forces present in both polar and non polar species)

Other Weak Interactions

- *Ion-dipole interaction*: Polar molecules are attracted by ions. The negative pole is attracted by cation (1) and positive pole attracted by the anion. This type of attraction is called ion dipole attraction, iondipole attraction is observed generally in the process of solvation when sodium chloride (Na⁺ Cl⁻) is dissolved in water because negative poles of water aggregate around Na⁺ ions and positive poles around Cl-ions.
- (2) **Ion-induced dipole interaction:** When non polar molecules come in contact with ions, its electron cloud gets polarised and the oppositely charged end of it is attracted by the ion. For example attraction between I⁻ and I₂ molecule.

ORDER OF BOILING POINT

2.

4.

6.

8.

10.

12.

14.

16.

- 1. $F_2 < Cl_2 < Br_2 < I_2$
- $\tilde{CH}_4 < \tilde{SiH}_4 < \tilde{GeH}_4 < SnH_4$ 3.
- $PF_5 < PCl_5$ 5.
- $CH_3F < CH_3C1$ 7.
- $H_2 < D_2 < T_2$ 9.

11.
$$Cl$$
 $C = C$ H $C = C$ H

- 13. F = N = N = N = N
- **15.** $H_2O_2 > H_2O$
- **17.** $CH_3OCH_3 < CH_3OH < H_2O$
- **18.** $CH_3CH_2CH_2NH_2 > CH_3 CH_2 NH > H_3C N$

o-nitrophenol < p-nitrophenol

Glycol

He < Ne < Ar < Kr < Xe

 $BF_3 < BCl_3 < BBr_3 < BI_3$

 H_3C = CH_3 H_3C = CH_3

n-pentane > isopentane > neopentane

 $\begin{aligned} &\operatorname{CO_2} < \operatorname{CS_2} \\ &\operatorname{CH_4} < \operatorname{CF_4} < \operatorname{CCl_4} \end{aligned}$

 $H_2O < D_2O$

Ethanol

- 1° amine
- 2° amine

Glycerol

- $CH_{3}CH_{2}CH_{2}OH > CH_{3}CH_{2}CHOH > CH_{3} C OH$ $CH_{3} CH_{3} CH_$ 19.
 - 1° alcohol
- 2° alcohol
- 3° alcohol

E

21. $H_2S < H_2Se < H_2Te < H_2O$

22. $PH_3 < AsH_3 < NH_3 < SbH_3$

23. HC1 < HBr < HI < HF

- **24.** Pyrol > Pyridine > Benzene
- **25.** o-dichlorobenzene > p-dichlorobenzene > m-dichlorobenzene
- **26.** $CCl_4 > SiCl_4$

27. $CH_{\Delta} < CF_{\Delta}$

28. $C_2H_6 < C_2F_6$

29. $C_3H_8 < C_3F_8$

30. $n-C_5H_{12} > n-C_5F_{12}$

31. $H_2 > He$

ORDER OF MELTING POINT

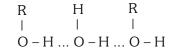
- 1. $PH_3 < AsH_3 < SbH_3 < NH_3$
- 2. $H_2S < H_2Se < H_2Te < H_2O$

3. HCl < HBr < HF < HI

HYDROGEN BONDING

+ Hydrogen bonding: When a hydrogen atom is bonded to a highly electronegative atom (like F, O or N) comes under the influence of another strongly electronegative atom, then a weak electrostatic force of attraction is developed between them, which is called as hydrogen bond.

Cause of Formation of Hydrogen Bond


When hydrogen is bonded to strongly electronegative element $\ddot{e}Xi$, the electron pair shared between the two atoms moves far away from hydrogen atom. As a result the hydrogen atom becomes highly electropositive with respect to the other atom eXi. Since there is displacement of electrons towards X, the hydrogen acquires fractional positive charge (δ^+) while $\ddot{e}Xi$ attain fractional negative charge (δ^Θ). This results in the formation of a polar molecule having electrostatic force of attraction which can be represented as:

$$H^{\delta +} - X^{\delta -} - - - H^{\delta +} - X^{\delta -} - - - H^{\delta +} - X^{\delta -}$$

The magnitude of H-bonding depends on the physical state of the compound. It is maximum in the solid state and minimum in the gaseous state. Thus, the hydrogen bonds have strong influence on the structure and properties of the compounds.

Types of H-bonding:

- **→** Intermolecular H-bond
 - (i) This type of H-bonding takes place between two moleules. Ex. ROH, H₂O, R OH & H₂O

- (ii) In such compounds molecular wt., M.P, & B.P. are high.
- (iii) Extent of H-bonding ↑ viscosity & density ↑.
- **♦** Intramolecular H-bond

This type of hydrogen bond takes place with in a molecule.

Normally when 2 hydroxyl groups are present on the same carbon atom i.e. gem diols are unstable, but "chloralhydrate" is a stable molecule due to formation of H-bond.

Applications:

- (a) Abnormal behaviour of water.
- (b) Association of molecules eg. dimersiation of CH₃COOH, HCOOH
- (c) Dissociation of a polar species.
- (d) Abnormal melting point & boiling point.
- (e) Enhanced solubility in water.

node06\B0B0·BA\Kota\VEE(Advanced)\Lexder\Che\Sheet\Chemical Banding\Eng\01_Theay.p65

SOME EXAMPLES & APPLICATIONS OF H-BONDING

1. Explain the structure of Boric acid in solid state.

Structure of boric acid; The dotted lines represent hydrogen bonds

- 2. Boiling point of o-Nitrophenol is less than meta and para nitrophenol. Why?
- Inter molecular H-Bonding in case of para nitro phenol is strong enough to increase boiling point Sol. which is not favoured in o-Nitro phenol.
- Maleic acid is more acidic than fumaric acid. Why? **3.**
- Maleic acid anion gets stabilize due to intra molecular H-bonding which is not possible in anion of Sol. Fumaric acid. So H+ releasing tendency is more in case of maleic acid

Maleic acid

- 4. H-F is only liquid among halogen acid. Why?
- **Sol.** Due to strong H-Bonding in H–F

- 5. Ammonia is more easily liquefied than HCl, explain.
- **Sol.** Due to H-Bonding in NH₃.
- **6.** Why ice floats on water?
- **Sol.** Density of ice is higher than that of water due to cage like structure of ice volume of ice increases and density decreases.
- 7. Water shows maximum density at 4°C. Why?
- **Sol.** On heating ice in temperature range 0–4°C H-bonds of ice break down, which decreases volume, hence density of H₂O increases. On heating ice after 4°C thermal vibrations of H₂O molecules increases which increases effective volume of ice, so density of ice again decreases.
- 8. HI is the strongest halogen acid, whereas H-F is the weakest. Why?
- **Sol.** H-I bond is weak as compare to H-F so it can be dissociated easily and can give H⁺ easily.
- **9.** Wood pieces are used to hold ice-cream. Why?
- **Sol.** The organic matter in wood participate in H-bonding with water molecules in ice-cream.
- **10.** KHF₂ is possible but not KHBr₂ or KHI₂. Why?
- **Sol.** $K^+[F-H\cdots F^-]$ But $KHBr_2 \& KHI_2$ can't form H-Bond. H-bonding
- 11. O Nitrophenol is less soluble in H_2O than p Nitrophenol. Why?
- **Sol.** In o-Nitrophenol intra molecular H-bond is present which decreases it's solubility in water.

Ortho Nitro-phenol

- **12.** o-Hydroxy benzaldehyde is a liquid at room temperature while p-hydroxy benzaldehyde is a high melting solid.
- **Sol.** In o-hydroxy benzeldehyde intramolecular H-bond is present which is less stronger than intermolecular H-bond in p-hydroxy benzeldehyde.
- **13.** Glycerol is more viscous than ethanol. Explain.
- **Sol.** Extent of H-bonding in glycerol is more as compare to ethanol so it is more viscous.
- 14. CH₄ and H₂O have nearly same molecular weight. Yet CH₄ has a boiling point 112 K and water 373 K. Explain.
- **Sol.** Due to H-bonding in H₂O

15. The experimental molecular weight of acetic acid is just double than theoretical molecular weight of acetic acid. Why?

Sol. Due to H-bonding in acetic acid it forms dimer so overall molecular weight is just double of original

$$H_3C$$
 — C C — C

Dimer of CH₃COOH

- **16.** Although chlorine has same electronegativity as nitrogen but the former does not form effective H-bonding. Explain.
- **Sol.** Due to bigger size of 'Cl' atom it's interaction is not enough to evolve the aomount of energy which lies in the range of H-bond.
- 17. Molar entropy change of vapourization of acetic acid is less than that of water. Explain

Sol.
$$(AcOH)_n \xrightarrow{on \ vapour} \frac{n}{2} (AcOH)_2$$
 } Not completely converted

But in
$$(H_2O)_n \xrightarrow{\text{on vapour}} n(H_2O)$$

Here all H₂O molecule gets vapourised. So entropy change is more

- **18.** Heat of vapourization of water is higher than HF, however strength of H-bond in HF is higher than water. Explain
- **Sol.** As extent of H-bond is more in H₂O as compare to HF, heat of vaporisation of water is higher than HF.

INORGANIC OXY-ACIDS

Those compounds which contain X–O–H bond are called oxy-acids. Where X is usually a non-metal. But sometimes X may also be a metal.

$$\begin{array}{c} H_2SO_4\\ Sulphuric\ acid \end{array} H \hspace{-0.5cm} - \hspace{-0.5cm} O \hspace{-0.5cm} - \hspace{-0.5cm} H \hspace{-0.5cm} \\ O \hspace{-0.5cm} - \hspace{-0.5cm} O \hspace{-0.5cm} - \hspace{-0.5cm} H \hspace{-0.5cm} \end{array}$$

$$H_2SO_3$$
 $H\longrightarrow O$ $S\longrightarrow O\longrightarrow H$

$$\begin{array}{c}
\text{HClO}_{3} \\
\text{Chloric acid} \\
\end{array} \left(\begin{array}{c}
\text{H - O - \r{C}} \stackrel{\bullet}{\text{I}} = \text{O} \\
\text{O}
\end{array} \right)$$

In oxy acids, all the hydrogens are attached with oxygen. Although there are a very few exceptions (as given below), in which all hydrogens are not attached with oxygen.

$$\begin{array}{ccc} & O \\ \parallel \\ H_3PO_3 & H \longrightarrow O \longrightarrow P \longrightarrow O \longrightarrow H \\ Phosphorus \ acid & & H \end{array}$$

$$H_3PO_2$$
 H O P H

In these three oxyacids circled hydrogens are not attached with oxygen.

In oxyacids, those hydrogens which are attached with oxygen are acidic in nature, i.e., they ionise in solution.

$$\begin{array}{c|c}
O & O & O \\
H & O & S & O \\
O & Basicity=2) & O \\
O & O &$$

No. of hydrogens attached with oxygen is known as basicity of the acid. One notable exception is H_3BO_3 in which all the three hydrogens are attached with oxygen yet, they do not ionise in solution. In fact, H_3BO_3 when dissolved in water, it behaves as a monobasic acid.

$$\begin{array}{c} OH \\ HO \longrightarrow B \longrightarrow OH + 2H_2O \longrightarrow HO \longrightarrow B \stackrel{\ominus}{\longrightarrow} OH + H_3O^+ \\ OH & OH \end{array}$$

Oxyacids are actually aqueous solutions of acidic oxides.

$$\underbrace{SO_2 + H_2O \longrightarrow H_2SO_3}_{acidic\ oxide} \left(\underbrace{H \longrightarrow O \longrightarrow S}_{--}O \longrightarrow H \right)$$

$$SO_3 + H_2O \longrightarrow H_2SO_4 \left| \begin{array}{c} O \\ \parallel \\ H \longrightarrow O \longrightarrow S \longrightarrow O \longrightarrow H \\ (acid) \parallel \\ O \end{array} \right|$$

• Some acids have suffix-ic acid and some has-ous acid. Usually, when the central atom in oxy acid is in higher oxidation state the name of the acid ends with –ic acid and when the central atom is in lower oxidation state, it's name ends with –ous acid.

Oxyacids can be classified as

□ PYRO ACIDS:

When one mole of water is removed from two moles of an oxyacid, the resultant oxy acid is known as pyro acid. In general pyro acids contain X—O—X bonds.

Oxy acid (2 moles) $\xrightarrow{-H_2O}$ Oxy acid [Pyro acid]

• H_2SO_4 (2 moles) = $H_4S_2O_8 \xrightarrow{-H_2O} H_2S_2O_7$ [Pyrosulphuric acid] [Sulphuric acid]

In general Pyro acids contain X-O-X bond.

• H_3PO_4 (2 moles) = $H_6P_2O_8 \xrightarrow{-H_2O} H_4P_2O_7$ [Pyrophosphoric acid] [Orthophosphoric acid]

- $2H_3PO_3$ (phosphorus acid) \longrightarrow $H_4P_2O_5$ (pyrophosphorus acid) HO \longrightarrow P \longrightarrow OH \longrightarrow H \longrightarrow H
- $2H_2SO_3 \xrightarrow{-H_2O} H_2S_2O_5$ (Pyrosulfurous acid)

Exception : $H_2S_2O_5$ [Pyrosulfurous acid] does not contain S–O–S linkage.

Pyrosulfurous acid

HYPO ACID:

Hypo prefix is added to those oxy acids which is obtained when one oxygen atom is removed from ous form of (usually) acids.

Oxy acid(-ous form) $\xrightarrow{-0}$ Oxy acid (Hypo -ous acid)

$$\begin{array}{ccc} +3 & & +1 \\ HXO_2 & -[O] & \longrightarrow & HOX \\ Halousacid & & Hypohalous acid \\ (x=Cl,Br,I) & & \end{array}$$

HOCl - Hypochlorous acid

HOBr - Hypobromous acid

HOI - Hypoiodous acid

HNO exist in dimeric from i.e. as $(HNO)_2 = H_2N_2O_2$

$$\begin{array}{c} \text{OH} \\ (+1)N \\ \parallel \\ (+1)N \end{array} \qquad \text{Hyponitrous acid} \\ \text{OH} \\ \end{array}$$

If one O is removed from pyro 'ic' acid it produce hypo 'ic' acid

$$\begin{array}{c} \text{H}_2\text{S}_2\text{O}_7 & \xrightarrow{\text{-"O"}} & \text{H}_2\text{S}_2\text{O}_6 \\ \text{Pyrosulphuric} & \text{Hyposulphuric} \\ \text{acid} & \text{acid} \end{array}$$

$$\begin{array}{c} H_4 \stackrel{(+5)}{P_2} O_7 & \xrightarrow{"-O"} & H_4 \stackrel{(+4)}{P_2} O_6 \\ \text{Pyrophosphoricacid} & \text{Hypophosphoricacid} & H \longrightarrow O \longrightarrow P \longrightarrow OH \\ OH OH \end{array}$$

PER ACID AND PEROXY ACID:

When one oxygen in added to –ic form of acid and if the oxidation number of central atom in resulting oxy acid is more than the –ic form of acid, then it is per acid.

$$\begin{array}{c}
(+5) \\
HXO_3 + O \longrightarrow HXO_4 \\
(X=Cl,Br,l) \\
Halic acid
\end{array}$$

$$\begin{array}{c}
(+7) \\
HXO_4 \\
Perhalic acid
\end{array}$$

$$\begin{array}{c}
H \longrightarrow X \Longrightarrow O \\
\parallel \\
O
\end{array}$$

 $\mathrm{HClO_4}$ perchloric acid $\mathrm{HBrO_4}$ - Perbromic acid.

Peroxy prefix is added to those oxy acids which are obtained when one oxygen is added to –ic from of acid and the oxidation number of central atom remains the same. Peroxy acids contain peroxy linkage (—O—O—).

• Orthophosphoric acid

• Orthophosphoric acid

• Orthophosphoric acid

• Orthophosphoric acid

• H₂SO₄ + O
$$\longrightarrow$$
 H₂SO₅

Peroxysulfuric acid (caro's acid)

• H₂SO₇ + O \longrightarrow H₄P₂O₈
• diphosphoric acid pyrophosphoric acid pyrophosphoric acid

• Peroxy diphosphoric acid pyrophosphoric acid disulphuric acid disulphuric acid disulphuric acid acid (Marshall acid)

• H₂S₂O₇ + O \longrightarrow H₂S₂O₈

• Pyrosulphuric acid acid (Marshall acid)

• H₂S₂O₇ + O \longrightarrow H₂S₂O₈

• Proxydisulphuric acid acid (Marshall acid)

• H₂S₂O₇ + O \longrightarrow H₂S₂O₈

• Proxydisulphuric acid acid (Marshall acid)

• H₂S₂O₇ + O \longrightarrow H₂S₂O₈

• Proxydisulphuric acid acid (Marshall acid)

Note: Peroxynitric acid does not contain N—O—H bond, yet it is considered to be oxy acid.

Exception : H_2 Mn O_4 is manganic acid when one hydrogen is removed from H_2 Mn O_4 , HMn O_4 is formed which is named as permanganic acid.

$$\begin{array}{c} (+6) \\ \text{H}_2\text{MnO}_4 \\ \text{Manganic acid} \\ \text{O} \\ \text{H} \\ \text{O} \\ \text{H} \\ \text{O} \\ \text{O} \\ \text{(+6)} \end{array} \begin{array}{c} (+7) \\ \text{HMnO}_4 \\ \text{Permanganic acid} \\ \text{O} \\ \text{II} \\ \text{O} \\ \text{Mn} \\ \text{O} \\ \text{(+7)} \end{array}$$

□ ORTHO ACIDS AND META ACIDS :-

When one mole of H_2O is removed from one mole of an oxy acid, the resulting compound, if an oxy acid (i.e. it contains at least one X–OH bond) then the oxy acid from which H_2O is removed is named as ortho acid and the product oxyacid is known as META ACID.

$$\begin{array}{c}
Oxy acid(1 mol) \xrightarrow{-H_2O} Oxy acid \\
(ortho) & meta
\end{array}$$

- $H_3PO_4 \xrightarrow{-H_2O} HPO_3$ Meta phosphoric acid (*It forms Cyclic polymetaphosphoric acids*) (ortho phosphoric acid)
- Cyclic polymetaphosphoric acids :

(HPO₃)₂ - Dimetaphosphorsphoric acid

$$(H_2P_2O_6)$$
 $H-O$ P O P $O-H$ (expected)

Trimetaphosphoric acid

Tetrametaphosphoric acid

An ortho acid must contain at least three hydrogens.

- $H_3BO_3 \xrightarrow{-H_2O} HBO_2$ Ortho-boric Meta boric acid acid
- $H_2SO_4($ ortho-sulphuric acid $) \xrightarrow{-H_2O}$ sulfur trioxide(anhydride of H_2SO_4)

As SO_3 does not contain any hydrogen (i.e., X–OH/S–OH bond), so SO_3 is not an oxy acid rather it is anhydride of sulphuric acid (H_2SO_4) so, H_2SO_4 can't be prefixed with ortho, and its name does not contain any prefix and it is named as sulphuric acid.

□ POLYPHOSPHORIC ACID :

Oxy acids having general formula $H_{(n+2)} P_n O_{(3n+1)}$ are known as polyphosphoric acids. These contain (n-1) P-O-P bonds.

OH

H₅P₃O₁₀ - Tripolyphosphoric acid

OH

OH

ÓН

 $H_6 P_4 O_{13}$ - Tetrapolyphosphoric acid

☐ THIO ACID:

• 1. Oxy acids in which one oxygen atom are replaced by sulphur are considered as thio acid. For example :-

$$\begin{array}{c} H_2SO_4\\ Sulphuric\ acid \end{array} \middle| H-O-S-O-H \\ \hline \\ O \end{array} \longrightarrow \begin{array}{c} H_2S_2O_3\\ Thiosulphuric\ acid \\ \hline \\ O \end{array} \middle| H-O-S-O-H \\ \hline \\ O \end{array}$$

Cyanic acid

Thiocyanic acid (Hydrothionic acid)

• 2. Oxy acids of sulphur containing S—S bonds are known as thio acids.

$$H_2S_2O_4$$
 H — O — S — S — OH dithionous acid. $(+3)(+3)$

Thionic acids : Oxy acids of sulphur containing S—S bond and having general formula $H_2S_{(n+2)}O_6$ are known as thionic acids

Dithionic acid (hyposulphuric acid)

$$H_2S_3O_6 - H - O - S - S - S - OH$$

Trithionic acid

Tetrathionic acid

Pentathionic acid

Polythionic acid

TABLE OF OXIDATION STATE OF OXY-ACIDS:

Element	-Ous acid	–ic acid
P	$(+3, H_3PO_3, H_4P_2O_5)$	(+4) H ₄ P ₂ O ₆ (Hypophosphoric acid)
	(+2 , H ₃ PO ₂)	+5 $H_{n+2}P_nO_{3n+1}$ - polyphosphoric acid +5 H_3PO_4 , $H_4P_2O_7$, $H_4P_2O_8$ H_3PO_5 - peroxymonophosphoric acid
S	(+4) H_2SO_3 Sulfurous acid O O H—O—S—S—OH (+3) (+5) Pyrosulfurous acid	(+6) Sulphuric acid (H_2SO_4) $H_2S_2O_7$ - Pyrosulphuric acid $H_2S_{(n+2)}O_6$ - Thionic acids e.g : H—O—S—S—OH Dithionic acid
	$H_2S_2O_4$ H — O — S — S — S — OH dithionous acid	H—O—S—S—S—S—OH $ \begin{array}{c} (+5) & (+5) \\ (-5) & (-5) \\ (-5) & (-5) \\ (-5) & (-5) \\ (-6) & (-6) \\ (-6) & $
X	(+1) H–O–X Hypohalous acid	(+5) Halic acid (HXO ₃)
(X=Cl,Br,I)	e.g. H–O–Cl - Hypochlorous acid H–O–I - Hypoiodous acid (+3) HXO ₂ ; H–O–X=O Halous acid	H—O—X=O (+5) O H—O—Cl=O [Chloric acid] (+7) Perhalic acid (HXO ₄)
	H–O–I=O - Iodous acid	e.g. H—O—Br—O [Perbromic acid]
Others		(+3) H ₃ BO ₃ Orthoboric acid (+3) HBO ₂ - Metaboric acid (+5) H ₃ BiO ₄ Orthobismuthic acid (+5) HBiO ₃ metabismuthic acid (+4) Orthosilicic acid H ₄ SiO ₄ H ₂ SiO ₃ - Metasilicic acid H ₆ Si ₂ O ₇ - Pyrosilicic acid

ALLEN

Naming of salts of oxy acids: The name of salt ends with – "ate" if the name of the oxy acid ends with - ic acid and all prefix remain same eg.:-

 $m H_2SO_4$ $m Na_2SO_4$ - Sodium sulfate $m Sulphuric\ acid$ $m K_2SO_4$ - Potassium sulfate $m BaSO_4$ - Barium sulfate

FeSO₄ - Barrum sulfate FeSO₄ - Ferrous sulfate Al₂(SO₄)₃ - Aluminium sulfate

H₃PO₄ Na₃PO₄ - Sodium orthophosphate

Orthophosphoric acid $K_{3}PO_{4}$ - Potassium orthophosphate

Ca₃(PO₄)₂ - Calcium Orthophosphate AlPO₄ - Aluminium orthophosphate NaPO₃ - Sodium metaphosphate

 $\mathrm{HPO_3}$ NaPO₃ - Sodium metaphosphate meta phosphoric acid KPO₃ - Potassium metaphosphate

Ca(PO₃)₂ - Calcium metaphosphate Al(PO₃)₃ - Aluminium metaphosphate

HCIO₃ - Potassium chlorate chloric acid NaClO₃ - Sodium chlorate

Ca(ClO₃)₂ - Calcium chlorate NaClO₄ - Sodium perchlorate

Perchloric acid KClO₄ - Potassium perchorate NH₄ClO₄ - Ammonium perchlorate

Ca(ClO₄)₂ - Calcium perchlorate

 H_3PO_4 KH_2PO_4 potassium dihydrogen orthophosphate $Ca(H_2PO_4)_2$ calcium dihydrogen orthophosphate

 $(HPO_3)_6 = H_6P_6O_{18}$ $Na_6P_6O_{18}$

 $\begin{tabular}{lll} Hexametaphosphoric acid & Sodium hexametaphosphate \\ HBiO_3 & NaBiO_3. Sodium metabimuthate \\ Metabismuthic acid & KBiO_3. Potassium melabismuthate \\ \end{tabular}$

HBO, NaBO, sodium metaborate

metaboric acid

HC1O₄

H₂SO₅. Sodium peroxysulfate

Peroxysulphuric acid

 $H_{a}P_{2}O_{7}$ Na_aP₂O₇ - Sodium pyrophosphate

Pyrophosphoric acid

If the name of the oxy acid ends with ous acid then the name of the salt ends with "ite"

 $HClO_2$ NaClO₂ sodium chlorite $KClO_2$ potassium chlorite $Ca(ClO_2)_2$ calcium chlorite

 H_3PO_3 Na_2HPO_3 sodium phosphite Phosphorous acid K_2HPO_3 Potassium phosphite (dibasic acid) $Ca(HPO_3)_2$ calcium phosphite

 $\begin{array}{ccc} \text{H}_2\text{SO}_3 & \text{Na}_2\text{SO}_3 \text{ sodium sulfite} \\ \text{sulfurous acid} & \text{K}_2\text{SO}_3 \text{ potassium sulfite} \\ \text{HNO}_2 & \text{NaNO}_2 \text{ sodium nitrite} \\ \text{Nitrous acid} & \text{KNO}_2 \text{ potassium nitrite} \end{array}$

HOC1

Hypochlorous acid

H₃PO,

Hypophosphorous acid

(monobasic acid)

NaOCl sodium hypochlorite

KOBr potassium hypobromite

NaOI sodium hypoiodite

NaH, PO, sodium hypophosphite

Ba(H₂PO₂)₂ Barium hypophosphite

If all the ionisable hydrogens are not removed from the acid to form salt, then the hydrogen word is added to the name of the salt containing acidic hydrogens (H attached with oxygen)

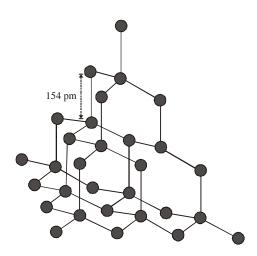
Ex.2 $Ca(HSO_4)_2$ calcium hydrogensulphate

$$\left\{ \begin{array}{c|c} Ca^{2^{+}} & O & \\ & \parallel & \\ Ca^{2^{+}} H - O - S - O \\ & \parallel & \\ O & \end{array} \right\}_{2}$$

Ex.4
$$H_3PO_2$$
 H — O — P

Hypophosphorous acid (monobasic)

$$\begin{cases} NaH_2PO_2 & Na^{\oplus} \overset{O}{O} & \overset{O}{\parallel} \\ & \overset{\square}{H} \rightarrow \text{non-acidic} \end{cases}$$


sodium hypophosphite but not sodium dihydrogen phosphite as H is not acidic.

ALLOTROPES OF CARBON FAMILY

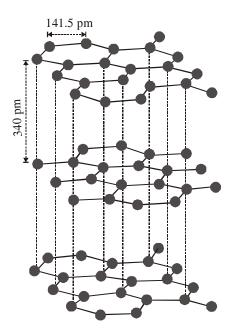
Diamond (kinetically most stable allotrope of carbon, meta stable phase of carbon)

It has a crystalline lattice. In diamond each carbon atom undergoes sp³ hybridisation and linked to four other carbon atoms by using hybridised orbitals in tetrahedral fashion.

The C–C bond length is 154 pm. The structure extends in space and produces a rigid three dimensional network of carbon atoms.

The structure of diamond

In this structure, directional covalent bonds are present throughout the lattice. It is very difficult to break extended covalent bonding and, therefore, diamond is a very hard substance.


It is used as an abrasive for sharpening hard tools, in making dyes and in the manufacture of tungsten filaments for electric light bulbs.

Graphite (Thermodynamically most stable allotrope of carbon)

Graphite has layered structure. Layers are held by van der Waals forces and distance between two layers is 340 pm.

Each layer is composed of planar hexagonal rings of carbon atoms. C—C bond length within the layer is 141.5 pm.

Each carbon atom in hexagonal ring undergoes sp² hybridisation and makes three sigma bonds with three neighbouring carbon atoms. Fourth electron forms a π bond. The electrons are delocalised over the whole sheet. Thus, graphite is lusturous. Electrons are mobile and, therefore, graphite conducts electricity along the sheet.

The structure of graphite

Graphite cleaves easily between the layers and, therefore, it is very soft and slippery. For this reason graphite is used as a dry lubricant in machines running at high temperature, where oil cannot be used as a lubricant.

Fullerenes

Fullerenes are made by the heating of graphite in an electric arc in the presence of inert gases such as helium or argon.

The sooty material formed by condensation of vapourised C_n small molecules consists of mainly C_{60} with smaller quantity of C_{70} and traces of fullerenes consisting of even number of carbon atoms up to 350 or above.

Fullerenes are the only pure form of carbon because they have smooth structure without having 'dangling' bonds. Fullerenes are cage like molecules. ${\rm C}_{60}$ molecule has a shape like soccer ball and called Buckminsterfullerene.

It contains twenty, six- membered rings and twelve, five membered rings.

A six membered ring is fused with six or five membered rings but a five membered ring can only fuse with six membered rings.

All the carbon atoms are equal and they undergo sp^2 hybridisation. Each carbon atom forms three sigma bonds with other three carbon atoms. The remaining electron at each carbon is delocalised in molecular orbitals, which in turn give aromatic character to molecule. However, because of non-planar nature of fullerenes, their aromatic character gets diminished and reactivity increases.

This ball shaped molecule has 60 vertices and each one is occupied by one carbon atom and it also contains both single and double bonds with C–C distances of 143.5 pm and 138.3 pm respectively. Spherical fullerenes are also called *bucky balls* in short.

[The structure of C_{60} , Buckminsterfullerene : Note that molecule has the shape of a soccer ball (football)]

* It is very important to know that graphite is thermodynamically most stable allotrope of carbon and, therefore, ΔH_f of graphite is taken as zero. ΔH_f values of diamond and fullerene, C_{60} are 1.90 and 38.1 kJ mol⁻¹, respectively.

Other forms of elemental carbon like carbon black, coke, and charcoal are all impure forms of graphite or fullerenes. Carbon black is obtained by burning hydrocarbons in a limited supply of air. Charcoal and coke are obtained by heating wood or coal respectively at high temperatures in the absence of air.

Uses of Carbon

Graphite fibres embedded in plastic material form high strength, lightweight composites. The composites are used in products such as tennis rackets, fishing rods, aircrafts and canoes. **Being good conductor, graphite is used for electrodes in batteries and industrial electrolysis.** Crucibles made from graphite are inert to dilute acids and alkalies. Being highly porous, activated charcoal is used in adsorbing poisonous gases; also used in water filters to remove organic contaminators and in airconditioning system to control odour. Carbon black is used as black pigment in black ink and as filler in automobile tyres. Coke is used as a fuel and largely as a reducing agent in metallurgy. Diamond is a precious stone and used in jewellery. It is measured in carats (1 carat = 200 mg).

ALLOTROPES OF OXYGEN FAMILY

Oxygen occurs as two non-metallic forms, dioxygen O_2 and ozone O_3 . Dioxygen O_2 is stable as a diatomic molecule. O_3 molecule is diamagnetic while O_3 is paramagnetic.

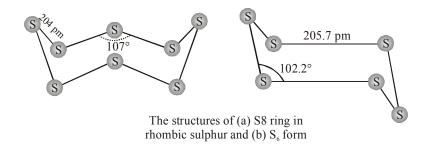
Six allotropes of selenium are known.

Tellurium has only one crystalline form, which is silvery white and semimetallic.

This is similar to grey Se, but has stronger metallic interaction.

Sulphur Allotropic forms:

Sulphur forms numerous allotropes of which the yellow rhombic (α -sulphur) and monoclinic (β -sulphur) forms are the most important. The stable form at room temperature is rhombic sulphur, which transforms to monoclinic sulphur when heated above 369 K.


Rhombic sulphur (α -sulphur) (*Most stable sulphur allotrope at room temperature*)

This allotrope is yellow in colour, m.p. 385.8 K and specific gravity 2.06. Rhombic sulphur crystals are formed on evaporating the solution of roll sulphur in CS_2 . It is insoluble in water but dissolves to some extent in benzene, alcohol and ether. It is readily soluble in CS_2 .

Monoclinic sulphur (β-sulphur)

Its m.p. is 393 K and specific gravity 1.98. It is soluble in CS_2 while water insoluble. This form of sulphur is prepared by melting rhombic sulphur in a dish and cooling, till crust is formed. Two holes are made in the crust and the remaining liquid poured out. On removing the crust, colourless needle shaped crystals of β -sulphur are formed. It is stable above 369 K and transforms into α -sulphur below it. Conversely, α -sulphur is stable below 369 K and transforms into β -sulphur above this. At 369 K, both the forms are stable. This temperature is called transition temperature.

Both rhombic and monoclinic sulphur have S_8 molecules. These S_8 molecules are packed to give different crystal structures. The S_8 ring in both the forms is puckered and has a crown shape. The molecular dimensions are given in the figure.

Several other modifications of sulphur containing 6-20 sulphur atoms per ring have been synthesised in the last two decades. In cyclo- S_6 , the ring adopts the chair form and the molecular dimensions are as shown in figure. At elevated temperatures (~1000 K), S_2 is the dominant species and is paramagnetic just like O_2 .

Note: Engel's sulphur (ϵ -sulphur) is unstable and contains S_6 rings arranged in the chair conformation. It is made by pouring $Na_2S_2O_3$ solution into concentrated HCl and extracting the S with toluene. Plastic sulphur-(χ) is obtained by pouring liquid sulphur into water.

Allotropes of Nitrogen Family:

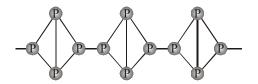
Solid As, Sb and Bi each exist in several allotropic forms. Arsenic vapour contains tetrahedral As_4 molecules. A reactive yellow form of the solid resembles white phosphorus and is thought to contain tetrahedral As_4 units. Sb also has a yellow form. All three elements have much less reactive metallic or α -forms.

PHOSPHORUS ALLOTROPIC FORMS

Phosphorus is found in many allotropic forms, the important ones being white, red and black. White phosphorus is a translucent, white, waxy solid. It is poisonous, insoluble in water but soluble in carbon disulphide and glows in dark (chemiluminescence). It dissolves in boiling NaOH solution in an inert atmosphere giving PH₃.

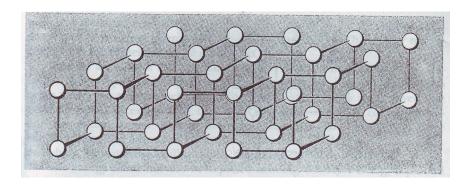
$$P_4 + 3NaOH + 3H_2O \longrightarrow PH_3 + 3NaH_2PO_2$$
(Sodium hypophosphite)

White Phosphorus


White phosphorus is less stable and therefore, more reactive than the other solid phases under normal conditions because of angular strain in the P_4 molecule where the angles are only 60° . It readily catches fire in air to give dense white fumes of P_4O_{10} .

$$P_4 + 5O_2 \rightarrow P_4O_{10}$$

It consists of discrete tetrahedral P₄ molecule as shown in Fig.


Red phosphorus is obtained by heating white phosphorus at 573K in an inert atmosphere for several days. When red phosphorus is heated under high pressure, a series of phases of black phosphorus is formed. Red phosphorus possesses iron grey lustre. It is odourless, nonpoisonous and insoluble in water as well as in carbon disulphide. Chemically, red phosphorus is much less reactive than white phosphorus. It does not glow in the dark.

It is polymeric, consisting of chains of P₄ tetrahedra linked together in the manner as shown in Fig.

Red Phosphorus

Black phosphorus has two forms α -black phosphorus and β -black phosphorus. α -Black phosphorus is formed when red phosphorus is heated in a sealed tube at 803K. It can be sublimed in air and has opaque monoclinic or rhombohedral crystals. It does not oxidise in air. β -Black phosphorus is prepared by heating white phosphorus at 473 K under high pressure. It does not burn in air upto 673 K.

Thermodynamic stability order: Black phosphorus > Red phosphorus > White phosphorus

Reactivity order: Black phosphorus < Red phosphorus < White phosphorus

ALLOTROPIC FORM OF SO,

 \textbf{SO}_{3} have three allotropic forms $\alpha\text{-SO}_{3}$, $\beta\text{-SO}_{3}$ and $\gamma\text{-SO}_{3}$

$$\begin{array}{c} \alpha\text{-SO}_3 \\ \text{Cross linked solid} \end{array}, \qquad \begin{array}{c} O \\ S \\ O \\$$

NOTE:- Si, Ge and Sn have a diamond type of structure, though Sn exists as a metallic form. Pb exists only in the metallic form. Ge is unusual because the liquid expands when it forms the solid. This property is unique to Ga, Ge and Bi.

$$\begin{array}{c} \alpha - Sn & \xrightarrow{13.2^{\circ}C} & \beta - Sn \\ \text{grey tin} & \text{white tin} \\ \text{(Diamond structure)} & \text{(metallic)} \end{array}$$

EXERCISE # 0-1

	Ţ	VALENCY & OCTET RULE		
1.	The maximum covalency is ed	qual to		
	(A) the number of unpaired p-	-electrons		
	(B) the number of paired d-ele	ectrons		
	(C) the number of unpaired s	and p-electrons		
	(D) total number of unpaired	electron in ground state or in ex	cited state	CBO0198
2.	Statement-1: POF ₃ exist but	NOF ₃ does not exist.		
		ve bonds by expanding its octet v	while 'N' cannot ex	pand its octe
	to form five bonds.			
		t-2 is true and statement-2 is CORI	-	
	(B) Statement-1 is true, statement-2 i	is true and statement-2 is NOT the CO	RRECT explanation	for statement-1
	(C) Statement-1 is true, staten	ment-2 is false.		
	(D) Statement-1 is false, state	ement-2 is true.		CBO0199
3.	The types of bond present in I	N_2O_5 are		
	(A) only covalent	(B) only ionic		
	(C) ionic and covalent	(D) covalent & c	oordinate	CBO0005
4.	NH_3 and BF_3 combine readily	y because of the formation of:		
	(A) a covalent bond	(B) a hydrogen b	ond	
	(C) a co-ordinate bond	(D) an ionic bone	d	CBO0200
5.	Which of the following molec	cule does not have co-ordinate be	onds?	
	(A) CH ₃ –NC (B) CO	(C) O ₃	(D) CO_3^{2-}	CBO0006
6.	Which of the following specie	es are hypervalent ?		
	1. AsF ₅ 2. BF ₃ 3. SF ₆ 4.CO	2- 3		
	(A) 1, 2, ,3 (B) 1, 3		(D) 1, 2	CBO0201
	VBT / H	YBRIDISATION / VSEPR THE	ORY	
7.		tion of Xe in cationic part of sol	id XeF ₆ ?	
	(A) sp3d3 (B) sp3d3	` , <u>*</u>	(D) sp^3	CBO0202
8.	Which of the following diagra	am / statement is CORRECT fo	r the hybrid orbita	als?

$$(A)\ s + p_y \longrightarrow z' \longrightarrow z$$

(B) $s + p_y + p_Z \longrightarrow sp^2$ orbitals lie in the xy plane

(C) ns + np^3 + any d^2 — results octahedral geometry of sp^3d^2 hybrid orbitals.

(D) None of these

CBO0203

9. When 2s - 2s, 2p - 2p and 2p - 2s orbitals overlap, the bond strength decreases in the order :

$$(A) \ p-p > s-s > p-s \quad (B) \ p-p > p-s > s-s \quad (C) \ s-s > p-p > p-s \quad (D) \ s-s > p-s > p-p$$

CBO0015

	,				0
10.	Which of the follow	ing has been arranged	in increasing order of	size of the hyb	orid orbitals?
		•	$(C) sp^2 < sp^3 < sp$	-	
					CBO0013
11.	In the context of ca	arbon, which of the fo	ollowing is arranged in	n the CORRE	ECT order of
	electronegativity:				
	$(A) sp > sp^2 > sp^3$	(B) $sp^3 > sp^2 > sp$	(C) $sp^2 > sp > sp^3$	(D) $sp^3 > sp$	$o > sp^2$
					CBO0014
12.	The CORRECT orde	er of increasing s-charac	cter (in percentage) in the	e hybrid orbital	ls of following
	molecules/ ions is:				
	(I) CO_3^{2-}	(II) XeF ₄	(III) I_3^-	(IV) NCl ₃	(V) BeCl ₂
	(A) II < III < IV < I	[< V	(B) $II < IV < III < V$	V < I	
	(C) $III < II < I < V$	< IV	(D) $II < IV < III < I$	< V	CBO0204
13.	Statement-1: The s	species $[I(CN)_2]^-$ is over	erall linear.		
	Statement-2 : I-ator	n and C-atoms are 'sp'	hybridised		
	(A) Statement-1 is true	e, statement-2 is true and	statement-2 is CORREC	T explanation f	for statement-1.
	(B) Statement-1 is true, s	statement-2 is true and state	ment-2 is NOT the CORRI	ECT explanation	for statement-1
	(C) Statement-1 is true	e, statement-2 is false.			
	(D) Statement-1 is fals	se, statement-2 is true.			CBO0205
14.	Statement-1 : C_3O_2	has linear structure.			
	Statement-2: Each	C atom in C_3O_2 is sp-	hybridised.		
	(A) Statement-1 is true	e, statement-2 is true and	statement-2 is CORREC	T explanation f	for statement-1.
	(B) Statement-1 is true, s	statement-2 is true and states	ment-2 is NOT the CORRI	ECT explanation	for statement-1
	(C) Statement-1 is to	rue, statement-2 is fals	e.		
	(D) Statement-1 is f	alse, statement-2 is tru			CBO026
			& BOND LENGTH		
15.			X bond angle is $(X = F)$	H, F or Cl):	
	(A) $H_2O > C1_2O > O$	-	(B) $C1_2O > H_2O > C$	-	
	(C) $OF_2 > C1_2O > H$	-	(D) $OF_2 > H_2O > Cl$	_	CBO0207
16 .			ng N-O bond length: N		O_3^- :-
	(A) $NO_3^- > NO_2^+ > 1$	<i>L</i>	(B) $NO_3^- > NO_2^- > N$	2	
	(C) $NO_2^+ > NO_3^- > NO_3^-$	2	(D) $NO_2^- > NO_3^- > NO_3^-$	NO_2^+	CBO0208
17.	Which has higher bo	ond energy?			
	(A) F_2	(B) Cl ₂	(C) Br ₂	(D) I ₂	CBO0209
18.	Which of the follow	ing species is / are lin	ear ?		
	$(A) H_2S$	(B) NH_3	$(C) CO_2$	(D) SO_2	CBO0210
19.	Which one of the fo	llowing molecules is p	olanar ?		
	(A) NF_3	(B) NCl ₃	(C) BF_3	(D) PH_3	CBO0211
20.			bond length of CO, CO	· -	
	(A) $CO_3^{2-} < CO_2 < C$		(B) $CO_2 < CO_3^{2-} < C$		
	(C) $CO < CO_{2}^{2-} < C$	O	(D) $CO < CO_a < CO$	2-	CBO0212

node06\B0B0·BA\Kota\EE[Advanced]\Lexter\Che\Sheer\Chemical Banding\Eng\02_Ex.p65

21.	C–H bond	distance	is	the	longest	in:

- (A) C₂H₂
- (B) C_2H_4
- $(C) C_2 H_6$
- (D) $C_2H_2Br_2$

CBO0018

The bond angle and hybridization in ether (CH₃OCH₃) is: 22.

- (A) $106^{\circ}51'$, sp³
- (B) $104^{\circ}31'$, sp³
- (C) 110° , sp³
- (D) $109^{\circ}28'$, sp³

CBO0019

23. Which of the following has been arranged in order of decreasing bond length?

(A) P-O > Cl-O > S-O

(B) P-O > S-O > Cl-O

(C) S-O > Cl-O > P-O

(D) Cl-O > S-O > P-O

CBO0020

- 24. Among the following, the **CORRECT** statement is:
 - (A) Between NH₃ and PH₃, NH₃ is a better electron donor because the lone pair of electrons occupies spherical 's' orbital and is less directional
 - (B) Between NH₃ and PH₃, PH₃ is a better electron donor because the lone pair of electrons occupies sp³orbital and is more directional
 - (C) Between NH₃ and PH₃, NH₃ is a better electron donor because the lone pair of electrons occupies sp³ orbital and is more directional
 - (D) Between NH₃ and PH₃, PH₃ is a better electron donor because the lone pair of electrons occupies spherical 's' orbital and is less directional **CBO0022**
- **25.** Which of the following order is **CORRECT** for increasing p-character in orbital used for bonding by central atom
 - $(A) SiH_{4} > CH_{4}$
- (B) $H_2S > H_2O$ (C) $PH_4^+ > PH_3$ (D) $NH_3 > PH_3$

CBO0025

BACK BONDING

26. Boron forms BX₃ type of halides. The **CORRECT** increasing order of Lewis-acid strength of these halides is

- (A) $BF_3 > BCl_3 > BBr_3 > BI_3$
- (B) $BI_3 > BBr_3 > BCl_3 > BF_3$
- (C) $BF_3 > BI_3 > BCl_3 > BBr_3$
- (D) $\mathrm{BF_3} > \mathrm{BCl_3} > \mathrm{BI_3} > \mathrm{BBr_3}$

CBO0213

- 27. Select species which is planar at nitrogen:
 - $(A) (CH_3)_3 N$
- (B) $(SiH_3)_3N$
- (C) NF₃
- (D) NH₃

CBO0214

28. Type of back bonding in (SiH₃)₂O is:

- (A) $p\pi d\pi$
- (B) $p\pi p\pi$
- (C) $d\pi d\pi$
- (D) None of these

CBO0215

MULTICENTERED BOND

- The type of overlap in the bridge bond existing in Al₂(CH₃)₆ is :-**29.**
 - (A) $sp^3-sp^3d-sp^3$
- (B) $sp^3-sp^2-sp^3$
- (C) sp^3-s-sp^3
- (D) $sp^3-sp^3-sp^3$

CB0006

- **30.** Which one of the following statements is **NOT** true regarding diborane?
 - (A) It has two bridging hydrogens and four perpendicular to the rest.
 - (B) When methylated, the product is Me₄B₂H₂
 - (C) The bridging hydrogens are in a plane perpendicular to the rest.
 - (D) All the B-H bond distances are equal.

CB0007

Consider the following statements for diborane:

- (1) Boron is approximately sp³ hybridised
- (2) B-H-B angle is 180°
- (3) There are two terminal B-H bonds for each boron atom
- (4) There are only 12 bonding electrons available

Of these statements:

- (A) 1, 3 and 4 are **CORRECT**
- (B) 1, 2 and 3 are **CORRECT**
- **CB0008**

(C) 2, 3 and 4 are CORRECT

(D) 1, 2 and 4 are CORRECT

SILICATE

- **32.** The number of corners or O-atoms shared per tetrahedron for pyroxene chain silicate is -
 - (A) 3

- (C) 2.5
- (D) 1

CBO0044

- The mineral $Na_2Fe_3^{II}Fe_2^{III}[Si_8O_{22}](OH)_2$ (chrocidolite) is a : **33.**
 - (A) Pyroxene chain silicate

- (B) Sheet silicate
- (C) Amphiboles chain silicate
- (D) 3D-silicate

- The silicate anion in the mineral kinoite is a chain of three SiO_4 tetrahedra that share corners with adjacent tetrahedra. The mineral also contains Ca^{2+} ions, Cu^{2+} ions, and water molecules 34. in a 1:1:1 ratio mineral is represented as :
 - (A) CaCuSi₃O₁₀.H₂O

(B) CaCuSi₃O₁₀.2H₂O

(C) $Ca_2Cu_2Si_3O_{10}.2H_2O$

(D) none of these

CBO0046

ODD ELECTRON SPECIES

- Hybridisation related to NO2 molecule is -**35.**
- (B) sp
- (C) sp³d

CB0009

- In which of the following processes, the magnetic behaviour of the species is changed? **36.**
 - (A) $2\overset{\bullet}{\mathrm{CH}}_{3} \longrightarrow \mathrm{C}_{2}\mathrm{H}_{6}$ (B) $2\mathrm{NO}_{2} \longrightarrow \mathrm{N}_{2}\mathrm{O}_{4}$ (C) $2\mathrm{C}l\mathrm{O}_{3} \longrightarrow \mathrm{C}l_{2}\mathrm{O}_{6}$

- (D) All of these

CB0010

HYDROLYSIS

- **37.** Which of the following statement is **CORRECT**?
 - (A) BCl₃ is not hydrolysed while SiCl₄ can be hydrolysed
 - (B) CCl₄ is hydrolysed under ordinary condition
 - (C) XeF₂ produces on hydrolysis Xe(OH)₂ as the final product
 - (D) Hydrolysis of XeF₂ is a redox reaction

CB0011

38. Statement-1: Between SiCl₄ and CCl₄ only SiCl₄ reacts with water at room temperature.

Statement-2: $SiCl_{4}$ is ionic and CCl_{4} is covalent.

- (A) Statement-1 is true, statement-2 is true and statement-2 is **CORRECT** explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the CORRECT explanation for statement-1
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

CB0012

ode06\B0B0-BA\Kota\EE(Advanced)\Leader\Che\Sheer\Chemical Banding\Eng\02_Ex.p65

MOLECULE DOES NOT EXIST

39.	Which	of	the	following	molecules	do	not	exist.
------------	-------	----	-----	-----------	-----------	----	-----	--------

(A) BF_6^{3-}

(B) NCl₃

(C) NOF₃

(D) XeF_5^-

CBO0027

40. Select non existing species

(A) PH₃

(B) PH

 $(C) [PF_6]$

(D) None of these

CBO0028

INERT PAIR EFFECT

41. Statement-1: Boron does not show univalent nature but unipositive nature of thallium is quite stable.

Statement-2: Inert pair effect predominates in thallium.

- (A) Statement-1 is true, statement-2 is true and statement-2 is **CORRECT** explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the CORRECT explanation for statement-1
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

CB0014

42. **Statement-1:** PbI₄ doesn't exist and converts into PbI₂ and I₂ spontaneously at room temperature but PbCl₄ needs heating to convert into \mbox{PbCl}_2 and $\mbox{Cl}_2.$

Statement-2: Pb²⁺ is more stable than Pb⁴⁺ due to inert pair effect.

- (A) Statement-1 is true, statement-2 is true and statement-2 is **CORRECT** explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the CORRECT explanation for statement-1
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

CB0015

IONIC COMPOUND

- **43.** The dissolution of ionic compounds involves:
 - (A) Evolution of heat

(B) Weakening of attractive forces

(C) Dissociation into ions

(D) All of these

CB0016

- Select CORRECT order out of given options: 44.
 - (A) $BeCO_3 < BaCO_3$: Covelant character
- (B) BeO > SrO : lattice energy
- (C) $Be^{2+} < Li^+$: Hydration energy
- (D) $Be^{2+}(aq.) > Li^{+}(aq.)$: Ionic mobility

CB0017

- 45. The polarizibility of the following compounds is/are
 - (A) $\Gamma > Br^- > Cl^- > F^-$

(B) $\Gamma > Br^{-} > F^{-} > C1^{-}$

(C) Γ < Br⁻ < Cl⁻ < F⁻

(D) $\Gamma < Br^{-} < F^{-} < Cl^{-}$

CB0018

- Which of the following equilibria would have the highest value of K_p at a common temperature? 46.
 - (A) $MgCO_3 \Leftrightarrow MgO + CO_2$
- (B) $CaCO_3 \Leftrightarrow CaO + CO_2$

(C) $SrCO_3 \Leftrightarrow SrO + CO_2$

(D) $BaCO_3 \Leftrightarrow BaO + CO_2$

CB0019

- The solubility of anhydrous AlCl₃ and hydrated AlCl₃ in diethyl ether are S₁ and S₂ respectively. **47.** Then

- (A) $S_1 = S_2$ (B) $S_1 > S_2$ (C) $S_1 < S_2$ (D) $S_1 < S_2$ but not $S_1 = S_2$

CB0021

48.

	Statement-2: Li ⁺ (a	aq.) is largest alkali me	etal cation because of g	greater degree of h	ydration.
	(A) Statement-1 is tru	e, statement-2 is true and	statement-2 is CORRE	CT explanation for s	tatement-1.
	(B) Statement-1 is true,	statement-2 is true and state	ement-2 is NOT the CORF	RECT explanation for s	statement-1
	(C) Statement-1 is tru	ie, statement-2 is false.			
	(D) Statement-1 is fai	lse, statement-2 is true.			CB0022
		MOLECULAR (ORBITAL THEORY		
49.	The bond energy or	der of He ₂ ⁺ and HeH ⁺ i	S		
	(A) $\operatorname{He}_{2}^{+} > \operatorname{HeH}^{+}$	(B) $HeH^{+} = He_{2}^{+}$	(C) $HeH^+ > He_2^+$	(D) Can't be pro	edicted
					CB0024
50.		ing species have more i	number of electrons in l	oonding MO's as co	mpared to
	antibonding MO's :-				
	(A) O_2^-	(B) N_2^+	$(C) C_2$	(D) All of these	CT 04 = 6
					CB0153
51.		of a molecular orbital	from atomic orbitals, pr	obability of electron	density is
	(A) minimum in the	•			
	(B) maximum in the	=			
	(C) zero in the node	-			
	(D) zero on the sur				CB0026
52.		RRECT statement?			
	-	dissociation energy that	-		
	-	ssociation energy than	O_2^+		
	(C) Bond length in				
	=	NO ⁺ is less than in NO			CB0027
53.		ation of MO theory to	the hypothetical molec	ule 'OF' would giv	e its bond
	order as :				
	(A) 2	(B) 1.5	(C) 1.0	(D) 0.5	CB0028
54.		C			
	· · ·	Bond order, Bond le			
	· ·	Bond order, Bond le	_		
	· ·	Bond order, Bond le	_		
	_ · ·	Bond order, Bond le	_	energy increases	CB0029
55.		ving has fractional bon	2		
	(A) O_2^{2+}	(B) O_2^2	(C) F_2^{2-}	(D) H_2^-	CB0030

Statement-1: Among alkali metal cations, Li⁺(aq.) has highest electrical conductance.

Statement-1: H₂ molecule is more stable than He–H molecule. **56.** Statement-2: The antibonding electron in He-H molecule decreases the bond order and there

by the stability.

- (A) Statement-1 is true, statement-2 is true and statement-2 is **CORRECT** explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the CORRECT explanation for statement-1
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

CB0031

CB0030

Ε

57. Statement-1: Super oxide ion is paramagnetic whereas peroxide ion is diamagnetic.

Statement-2: Super oxide ion has one unpaired electron whereas peroxide ion has no unpaired electron.

- (A) Statement-1 is true, statement-2 is true and statement-2 is **CORRECT** explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the CORRECT explanation for statement-1
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

CB0032

58. Statement-1: π_b and π^* orbitals obtained from 2p orbital are lying in the same plane.

Statement-2: Bonding M.O's are formed by constructive interference while antibonding M.O's are formed by destructive interference.

- (A) Statement-1 is true, statement-2 is true and statement-2 is **CORRECT** explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the CORRECT explanation for statement-1
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

CB0033

WEAK FORCES

59. Statement-1: The melting point of noble gases increases as its atomic mass increases.

Statement-2: Instantaneous dipole induced dipole attraction increases with increase in atomic mass of noble gases.

- (A) Statement-1 is true, statement-2 is true and statement-2 is **CORRECT** explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the **CORRECT** explanation for statement-1
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

CB0001

- **60.** Which of the following boiling point order is **CORRECT**:-
 - (A) He > T_2 > D_2

(B) He $< T_{2} < D_{2}$

(C) $T_2 > He > D_2$

(D) He < D, < T,

CB0003

- 61. Which is the INCORRECT match for the energy distance function for following interaction -
 - (A) Debye force: r⁻⁶

(B) Ion-induced dipole interaction: r^{-2}

(C) London force: r⁻⁶

(D) Keesom force : r^{-3}

CB0004

- **62.** Identify the **INCORRECT** order of boiling point in the following pair.
 - $(A) B(OH)_3 < B(OCH_3)_3$

(B) $NF_3 < N(CH_3)_3$

(C) $BF_3 < B(CH_3)_3$

(D) $C_2H_6 < C_2F_6$

CB0005

HYDROGEN BONDING

- **63.** Two ice cubes are pressed over each other and unite to form one cube. Which force is responsible for holding them together:
 - (A) Van der Waal's forces

- (B) Covalent attraction
- (C) Hydrogen bond formation
- (D) Dipole-dipole attraction

CBO0216

Statement-2: In H₂SO₄, S has highest oxidation state.

- (A) Statement-1 is true, statement-2 is true and statement-2 is **CORRECT** explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the CORRECT explanation for statement-1
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

CBO0217

- 65. The volatility of HF is low because of:
 - (A) its low polarizability
 - (B) the weak dispersion interaction between the molecules
 - (C) its small molecular mass
 - (D) Its strong hydrogen bonding

CBO0218

66. Which of the following compounds would have significant intermolecular hydrogen bonding?

- (A) HF, N_2O_4
- (B) HF, CH₄, CH₃OH (C) HF, CH₃OH
- (D) CH₃OH, CH₄

CBO0034

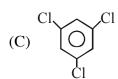
- **67.** The pairs of bases in DNA are held together by:
 - (A) Hydrogen bonds (B) ionic bonds
- (C) Phosphate groups (D) Deoxyribose groups

CBO0219

DIPOLE MOMENT

- **68.** Which of the set of isomers of C₆H₄Cl₂ is having equal dipole moment with C₆H₅Cl and C₆H₆ respectively?
 - (A) ortho and meta

(B) meta and para


(C) ortho and para

(D) para and ortho

CBO0220

Which has maximum dipole moment? **69.**

$$(A) \xrightarrow{Cl} \xrightarrow{Cl} Cl$$

CBO0221

- Which of the following has been arranged in order of decreasing dipole moment? **70.**
 - (A) $CH_3Cl > CH_3F > CH_3Br > CH_3I$
 - (B) $CH_3F > CH_3Cl > CH_3Br > CH_3I$
 - (C) $CH_3Cl > CH_3Br > CH_3I > CH_3F$
 - (D) $CH_3F > CH_3Cl > CH_3I > CH_3Br$

CBO0031

71. Statement-1: The direction of dipole moment in CO is from 'O' to 'C'.

Statement-2: The contribution of co-ordinated π -bond is more compared to electronegativity factor in the overall polarity of the molecule.

- (A) Statement-1 is true, statement-2 is true and statement-2 is **CORRECT** explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the CORRECT explanation for statement-1
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

CBO0222

ode06\B0B0-BA\Kota\EE(Advanced)\Leader\Che\Sheer\Chemical Banding\Eng\02_Ex.p65

MISCELLANEOUS

- 72. In a molecule of phosphorus(V)oxide, there are
 - (A) 4P-P, 10P-O and 4P=O bonds
- (B) 12P-O and 4P=O bonds

(C) 2P-O and 4P=P bonds

(D) 6P-P, 12P-O and 4P=P bonds

- **73.** There is no S–S bond in:
 - (A) $S_2O_4^{2-}$
- (B) $S_2O_5^{2-}$
- (C) $S_2O_3^{2-}$
- (D) $S_2O_7^{2-}$
- **CBO0224**

CBO0223

- 74. The cationic part of solid Cl₂O₆ is having the " _____ " shape.
 - (A) Linear
- (B) Angular
- (C) Tetrahedron
- (D) Undefined

CBO0225

- 75. The CORRECT order of acidic strength of oxy-acids of chlorine is
 - (A) $HClO < HClO_2 < HClO_3 < HClO_4$
- (B) $HClO_4 < HClO_3 < HClO_2 < HClO$
- (C) $\text{HClO} > \text{HClO}_4 > \text{HClO}_3 > \text{HClO}_2$
- (D) $HClO_4 < HClO_2 > HClO_3 > HClO$

CBO0226

- 76. Statement-1: H₃BO₃ in water behaves as monobasic acid
 - **Statement-2:** The ionisation reaction is: $H_3BO_3 + H_2O \rightleftharpoons B(OH)_4^- + H^+$
 - (A) Statement-1 is true, statement-2 is true and statement-2 is **CORRECT** explanation for statement-1.
 - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the CORRECT explanation for statement-1
 - (C) Statement-1 is true, statement-2 is false.
 - (D) Statement-1 is false, statement-2 is true.

CBO0227

- 77. **Statement-1:** White phosphorus is less stable whereas red phosphorus is more stable.
 - **Statement-2:** White phosphorus exist as individual P_4 having more strained geometery while red phosphorus has P_4 tetrahedron structure linked together.
 - (A) Statement-1 is true, statement-2 is true and statement-2 is **CORRECT** explanation for statement-1.
 - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the **CORRECT** explanation for statement-1
 - (C) Statement-1 is true, statement-2 is false.
 - (D) Statement-1 is false, statement-2 is true.

CBO0228

- **78.** Among the species NF₃, NO₃⁻, BF₃, H₃O⁺ and HN₃, identify the isostructural species :
 - (A) (NF_3, NO_3^-) and (BF_3, H_3O^+)
 - (B) (NF_3, HN_3) and (NO_3, BF_3)
 - (C) (NF $_3$, H $_3O^+$) and (NO $_3^-$, BF $_3$)
 - (D) (NF $_3$, H $_3O^+$) and (HN $_3$, BF $_3$)

CBO0229

EXERCISE # 0-2

(CHOOSE THE CORRECT OPTION. ONE OR MORE THAN ONE ARE CORRECT) VALENCY & OCTET

		VALE	NCY & OCTET		
1.	Which of the follow	ring compounds cont	ain both ionic and covalen	t bonds ?	
	(A) NH₄Cl	(B) KCN	(C) CuSO ₄ .5H ₂ O	(D) NaOH	CBO0053
2.	The octet rule is No	OT obeyed in:	. 2		
	$(A) CO_2$	(B) BCl ₃	(C) PCl ₅	(D) SiF ₄	CBO0230
3.	To which of the following	llowing species octe	t rule is NOT applicable	?	
	(A) BrF_5	(B) SF ₆	(C) IF ₇	(D) CO	CBO0055
4.	Which of the follow	wing species contain	coordinate bond ?		
	(A) AlCl ₃	(B) CO	(C) NOF ₃	(D) N_3^-	CBO0231
		VBT / HYBRIDIS	ATION / VSEPR THEOF	RY	
5.	The linear structure	e is assumed by:			
	(A) SnCl ₂	(B) NCO	$(C) CS_2$	(D) NO_2^+	CBO0232
6.	Shape of NH ₃ is ve				
	$(A) SeO_3^{2-}$	(B) CH_3^-	(C) BH_3	(D) CH_3^+	CBO0233
7.			soelectronic with CO ₂ :	_	
	(A) N_3^-	(B) (CNO) ⁻	$(C) (NCN)^{2-}$	(D) NO_2^-	CBO0234
8.	The structure of Xe	•			
	(A) pentagonal bipy		(B) distorted octahe		~~~
•	(C) capped octahed		(D) square pyramid		CBO0235
9.			ontaining one unpaired elec	etron each when	they approach
	each other appropri	=	(0)	(D) 1'	,•
	(A) x-axis	(B) y-axis	(C) z-axis	(D) any dire	
		DOND ANC	LE / BOND LENGTH		CBO0236
10	Which of the fellow				
10.		ving statements are			
		in CO_3^{2-} are equal			
		in HCO ₂ are equal	<u>-</u>	_	
	(C) C-O bond leng	th in HCO ₂ ⁻ is longer	er than C-O bond length	in CO_3^{2-}	
	(D) C-O bond leng	th in HCO_2^- and $C-$	-O bond length in CO_3^{2-} a	re equal.	CBO0237
		BENT'S A	ND DRAGO RULE		
11.	The decreasing value	ues of bond angles	from NH_3 (106°) to SbH_3	(91°) down gro	oup-15 of the
	periodic table is due	e to			
	(1) decreasing lp –	bp repulsion	(2) increasing elect	tronegativity	
	(3) increasing bp –		(4) increasing p-ort		sp ³
	(1) 1111 8 1	-T -T	() I I I B F I I		CBO0238
		BAC	CK BONDING		020020
12.	Molecules in which		ged due to back bonding	w.r.t B/O/N.	
	(A) H ₃ BO ₃	(B) B(OMe) ₃	(C) BF ₃	(D) N(SiH ₃).	CBO0239
13.	3 3	bonding is observed in	3	(-) 1 ((31113))	3
		_		(D) DC!	CD C 02.40
	$(A) N(SiH_3)_3$	(B) \overline{CCl}_3	$(C) S(CH_3)_2$	(D) BCl ₃	CBO0240

MULTICENTERED BOND

14.	No X-X bond e	exists in which of the foll	owing compounds havi	ing general form	of X_2H_6 ?
	$(A) B_2H_6$	(B) C_2H_6	$(C) Al_2H_6$	(D) Si_2H_6	CB0036
15.	Three centre - t	wo electron bonds exist i	n:		
	$(A) B_2H_6$	(B) $Al_2(CH_3)_6$	(C) $BeH_2(s)$	(D) BeCl ₂ (s)	CB0037
16.	Select CORRE	CT statement about B_2H_6			
	(A) Bridging gr	oups are electron-deficien	nt with 12 valence elec	etrons	
	(B) It has 2c -	2e B–H bonds			
	(C) It has 3c -	2e B–H–B bonds			
	(D) All of abov	e are CORRECT stateme	ents		CB0038
		SI	LICATE		
17.	In which of the	following cases the num	ber of corner shared pe	er tetrahedron is '	2' -
	(A) Pyroxene cl	nain silicate	(B) Amphibole ch	ain silicate	
	(C) 5-membered	d cyclic silicate	(D) None of these		CBO0080
		ODD ELEC	CTRON SPECIES		
18.	Select CORRE	CT about NO ₂ :			
	(A) It is an odd	electron species	(B) N-O bond ord	er = 1.5	
	(C) Paramagnet	ic species	(D) Isoelectronic v	with CO ₂	CB0039
19.	Which of the fo	llowing statement is CO	RRECT :-		
	(A) The free ele	ectron of ClO ₃ molecule is	is present in d-orbital of	of Cl-atom	
	(B) The free ele	ectron of $\overset{\bullet}{C}F_3$ is present i	in sp ³ hybrid orbital		
	(C) NO is polar				
	•	ectron of ClO ₂ molecule i	is present in d-orbital of	of Cl-atom	CB0041
		-	OROLYSIS		
20.	Which of the fo	llowing halides cannot b	e hydrolysed ?		
	(A) SeF ₆	(B) SF ₆	(C) CCl ₄	(D) NF ₃	CB0043
		<i>MOLECULE</i>	DOES NOT EXIST		
21.	Which of the fo	ollowing molecules do no	t exist ?		
	$(A) Br_2O$	(B) SF_6	(C) NCl ₅	(D) OF ₄	CBO0067
22.	Which of the fo	ollowing do not exists?			
	$(A) SH_6$	(B) HFO ₄	(C) $\operatorname{SiCl}_6^{-2}$	(D) HClO ₃	CBO0068
23.	Which of the fo	ollowing molecule exist-			
	$(A) SF_6$	(B) IH ₃	(C) SH ₂	(D) PCl ₅	CBO0069
	Ü	3	PAIR EFFECT	3	
24.	Which of the fo	ollowing have an (18 + 2)	electron configuration	1 ?	
	(A) Pb ²⁺	(B) Cd^{2+}	(C) Bi ³⁺	(D) SO_4^{2-}	CB0045
25.	` '	ving stability order is/are	` '	7	
	(A) $Hg > Hg^{2+}$	(B) $Bi^{3+} < Bi^{5+}$			e ³⁺
	(/ o - b	(-) 21	(=) = 0 = 10		CB0046

E

(D) H_2^+

CB0054

	IONIC	COMPOUND		
26.	Choose the CORRECT order for the give	n properties.		
	(A) $MgSO_4 < SrSO_4 < BaSO_4$:	Thermal stabilit	y order
	(B) $BeC_2O_4 < CaC_2O_4 < BaC_2O_4$:	Solubility in wa	ter
	(C) LiCl > NaCl > KCl	:	Melting point or	rder
	(D) $BeF_2 > CaF_2 > SrF_2$:	Covalent charac	ter order
				CB0047
27.	Which of the following order is/are COR	RECT :-		
	(A) MgCO ₃ < BaCO ₃ (Thermal stability)			
	(B) LiF < CsF (Solubility)			
	(C) $\text{Li}_3 \text{N} < \text{K}_3 \text{N}$ (Thermal stability)			
	(D) $MgSO_3 > BaSO_3$ (Solubility)			CB0154
28.	Most ionic compounds have :			
	(A) high melting points and low boiling po	ints		
	(B) high melting points and nondirectional	bonds		
	(C) high solubilities in polar solvents and lo	ow solubilities in r	nonpolar solvents	
	(D) three-dimentional network structures, an	nd are good conduc	tors of electricity in the m	olten state
				CB0049
29.	Choose the CORRECT order for the given			
	(A) NaF $<$ MgF $_2$ $<$ AlF $_3$: covalent charact			
	(B) NaF $<$ MgF $_2$ $<$ AlF $_3$: melting point ord			
	(C) NaF $<$ MgF $_2$ $<$ AlF $_3$: lattice energy or			CD00=0
	(D) NaF > MgF_2 > AlF_3 : order of polarisi			CB0050
	MOLECULAR	ORBITAL THE	ORY	
30.	Which of the following have identical bond	d order ?		
	(A) O_2^{2+} (B) NO^+	(C) CN	$(D) CN^+$	CB0051
31.	Which of the following statement is/are CO	ORRECT ?		
	(A) The peroxide ion has a bond order of 1	l while the oxygen	n molecule has a bond or	der of 2
	(B) The peroxide ion has a weaker bond the	an the dioxygen r	nolecule has.	
	(C) The peroxide ion as well as the dioxyg	en molecules are p	paramagnetic	
	(D) The bond length of the peroxide ion is	greater than that of	of the dioxygen molecule	
				CB0052
32.	Given the species: N ₂ , CO, CN ⁻ and NO ⁺	. Which of the fol	lowing statements are tru	ie for these
	(A) All species are paramagnetic	(B) The spec	ies are isoelectronic	
	(C) All the species have dipole moment	(D) All the s	pecies are linear	CB0053
33.	Which of the following have unpaired ele	ectron(s) ?		

(C) NO

(A) O_2^+

(B) O_2^-

node06\B0B0·BA\Kota\EE(Advanced)\Leader\Che\Sheer\ChemicalBanding\Eng\02_Ex.p65

Which has (have) zero value of dipole moment?

(A) XeF_4

(B) CHCl₃

(C) CO₂

CBO0242

Which of the following have dipole moment? 41.

(A) nitrobenzene

(B) p-chloronitrobenzene

(C) m-dichlorobenzene

(D) o-dichlorobenzene

CBO0243

		MIS	CELLANEOUS		
42.	-		nd two triangular units joi	ned together and sho	ould be written
	as: $Na_2[B_4O_5(O)]$	T 2			
	Consider the CC	ORRECT statements ab	out borax:		
	(A) Each boron	atom has four B-O bon	ds		
	(B) Each boron	atom has three B-O bor	nds		
	(C) Two boron a	atoms have four B-O bo	onds while other two hav	ve three B-O bonds	}
	(D) Each boron	atom has one -OH gro	ups		CBO0244
43.	Rotation around	the bond (between the	underlined atoms) is rest	ricted in:	
	(A) \underline{C}_2H_4	(B) H ₂ O ₂	(C) \underline{C}_2H_2	(D) $\underline{C}_{2}H_{6}$	CB0058
44.	Which of the fol	lowing have a three din	nentional network structu	ıre?	
	(A) SiO ₂	$(B)(BN)_{x}$	(C) P_4 (white)	(D) CCl ₄	CBO0245
45.	Specify the coor	dination geometry arou	nd and hybridisation of I	N and B atoms in a	1:1 complex
	of BF ₃ and NH ₃	-			
	(A) N: tetrahed	Iral sp ³ ; B : tetrahedra	al sp ³		
	(B) N: pyramic	lal sp ³ ; B : pyramidal	sp^3		
	(C) N: pyramic	dal sp ³ ; B : planar sp ²			
	(D) N: pyramic	dal sp ³ ; B: tetrahedra	l sp³ d		CBO0246
46.	Which of the fo	ollowing molecular spe	cies has unpaired electr	on(s) ?	
	$(A) N_2$	(B) F ₂	(C) O_2^-	(D) O_2^{2-}	CBO0247
47.	Among the follo	owing, the paramagnet	ic compound is		
	(A) Na ₂ O ₂	(B) O_3	$(C) N_2O$	(D) KO ₂	CBO0248
48.	Statement-1: I	n water, orthoboric ac	id behaves as a weak m	onobasic acid.	
	Statement-2: I	n water, orthoboric, ac	cid acts as a proton done	or.	
	(A) Statement-1 is	s True, Statement-2 is True	ue; Statement-2 is a CORI	RECT explanation for	or Statement-1.
	(B) Statement-1 is	True, Statement-2 is True;	Statement-2 is NOT a COI	RRECT explanation	for Statement-1.
	(C) Statement-1	is True, Statement-2	is False.		
	(D) Statement-1	is False, Statement-2	is True.		CBO0249
49.	Statement-1: I	Pb ⁺⁴ compounds are str	onger oxidizing agents	than Sn ⁴⁺ compour	nds
		-		-	

Statement-2: The higher oxidation states for the group 14 elements are more stable for the heavier members of the group due to 'inert pair effect'.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a **CORRECT** explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a **CORRECT** explanation for Statement-1.
- (C) Statement-1 is True, Statement-2 is False.
- (D) Statement-1 is False, Statement-2 is True.

CBO0250

50. The nitrogen oxide(s) that contain(s) N-N bond(s) is (are)

- (A) N₂O
- (B) N_2O_3
- $(C) N_2O_4$
- (D) N_2O_5

CBO0251

EXERCISE # S-1

1. The number of corner of O-atom shared per tetrahedron in 2D-silicate is

CB0155

2. Find the number of angles less than 120° in PH_2F_3 .

CB0060

3. Among N_2O , SO_2 , I_3^+ & I_3^- , the number of linear species are :

CBO0252

4. Find the ratio of π -electrons in the C_2 -molecule with that of B_2 molecule according to M.O.T.

CB0062

5. In which of the following silicates structure, the number of corner/oxygen atoms shared per tetrahedron is '2'.

Pyrosilicate, pyroxene chain silicate,

2D-silicate, 3D-silicate, 4-membered cyclic silicate

CBO0102

- 6. The total number of bonding and antibonding electrons in O_2^+ are "....." and "....." respectively.
 - [If the answer is 14 and 7, then represent as 147]

CB0063

7. Find the total number of following molecule(s) which have all bond lengths are same.

$$XeF_4$$
, SF_4 , SH_2 , NO_3^- , SiF_4 , ClF_3 , PF_2Cl_3 , XeO_3F_2

CB0064

8. Among the following total number of planar molecules is / are

$$Cl_2O$$
, $P(CH_3)_3$, $N(CH_3)_3$, ClO_2 , CH_3 , NCl_3

CB0065

9. Calculate the value of "n" in $Zn_nCa_2(Si_3O_{10}).2H_2O$

CBO0101

10. How many compounds give diprotic acid on hydrolysis?

CB0066

EXERCISE # S-2

Comprehension # 1 (1 to 3 Questions)

Boron is the first element of IIIrd group. It forms a number of electron deficient halides and hydrides. Among the hydrides diborane is an important compound.

- 1. Which of the following halide is the strongest Lewis acid?
 - (A) BF₂
- (B) BCl₃
- (C) BBr₂
- (D) BI₃

CB0067

- 2. Which of the following compounds has $2p\pi - 2p\pi$ bond?
 - (A) BF₃
- (B) BCl₃
- (C) BBr₃
- (D) BI₃

CB0067

- In B_2H_6 number of 3c 2e bonds is/are 3.
 - (A) 1
- (B) 2

- (C) 3
- (D) None

CB0067

Comprehension # 2 (4 to 6 Questions)

Molecular orbital theory is based on linear combination of atomic orbitals (LCAO). According to LCAO when respective atomic orbitals of the atoms interact, they undergoes constructive and destructive interference giving two types of molecular orbital i.e. bonding and antibonding molecular orbitals respectively.

- 4. Which of the following species is paramagnetic?
 - (A) NO
- (B) O_2^{2-}
- (C) CN
- (D) CO

CB0068

- **5.** Bond order of Be₂ is:
 - (A) 1
- (B) 2

- (C) 3
- (D) 0

CB0068

- Number of anti bonding electrons in N₂ is: 6.
 - (A) 4
- (B) 10
- (C) 12
- (D) 14

CB0068

Comprehension # 3 (7 to 8 Questions)

Polarisation of anion in ionic compounds play an important role to influnce the various physical and chemical properties of ionic compound.

- 7. Which of the following has highest covalent character.
 - (A) CaCl,
- (B) $ZnCl_{2}$
- (C) KCl
- (D) CuCl

CB0069

- Compound with maximum ionic character is formed from: 8.
- (A) Na and Cl
- (B) Cs and F
- (C) Cs and I
- (D) Na and F

CB0069

MATCHING LIST

9. Match list I with list II and select the **CORRECT** answer:

List I (species)

List II (O-N-O angle)

- $(P) NO_2^+$
- (Q) NO₂
- $(R) NO_{2}^{-}$ $(S) NO_3$

(C) 1

- $(1) 180^{\circ}$
- (2) 134°
- (3) 120°
- (4) 115°
- (5) 109°

P S Q R

4

3

P S Q R

(A) 5 4 3 2 2

- (B) 5 2 4 3
- (D) 1 4 3 2

CB0071

node06\B0B0-BA\Kota\EE(Advanced|\Leader\Che\Sheer\Chemical Bonding\Eng\02_Ex.p65

10. Match list I with list II and select the **CORRECT** answer:

List-I (Molecule / Species)

- (P) NO,
- (Q) ClO,
- (R) ClO₃
- (S) 'CH₃

Code:

- P O R S
- (A) 2 4 1 3
- (C) 1 4 2 3

- **List-II** (Unpaired electron resides in)
- (1) d-orbital
- (2) sp²-orbital
- (3) sp³-orbital
- (4) p-orbital

P Q R S

- (B) 2 1 3 4
- (D) 3 1 2 4

CB0072

11. Match list I with list II and select the **CORRECT** answer:

List-I (Process)

- (P) Clathrate compound of Xe in ice
- (Q) Liquation of Xe gas
- (R) Liquation of HCl gas
- (S) Hydration of Na+

- **List-II** (Operating interaction involved)
- (1) Ion Dipole
- (2) Dipole Dipole
- (3) Dipole Induced dipole
- (4) London forces

Code:

- P Q R S
 (A) 1 3 4 2
- (C) 3 4 2 1

- P Q R S
- (B) 3 4 1 2
- (D) 1 3 2 4

CB0073

MATRIX MATCH

12. Match the column

Column-I

(Process)

- (A) $N_2^+ \longrightarrow N_2$
- (B) $Zn^{2+} \longrightarrow Zn$
- (C) $O_2^{2-} \longrightarrow 2O^{2-}$
- (D) $C_2^{2-} \longrightarrow C_2$

Column-II

(Characteristics)

- (P) Magnetic moment gets changed
- (Q) The process is associated with two electronic change
- (R) Magnetic behaviour gets changed
- (S) Electron(s) associated in the process enter(s) into π_{2p}^* orbital
- (T) Electron(s) associated in the process involve(s) σ_{2p} orbital

CB0076

14.

Answer Q.13 to Q.15 by appropriately matching the information given in the three columns of the following table

Molecular Orbital	Number of nodal plane	Symmetry of Molecular Orbital
(1) $\sigma_{\!s}$ (P) 3 (I) BMO, gerade		
(2) π _p	(Q) 2	(II) ABMO, ungerade
(3) σ _{pz} *	(R) 1	(III) BMO, ungerade
(4) δ*	(S) 0	(IV) ABMO, gerade

	(4) δ*	(S) 0	(IV) ABMO, gerade	
13.	Which of the follow	wing matching is INC	ORRECT.	
	(A)(1), S, I	(B) (2), R, I	(C) (3), P, II	(D) (4), P, II

How many orbitals are occupied with set (1)(S)(I) in F_2

CB0077

- (A) 0 (B) 1 (C) 2 (D) 3 **CB0077**
- 15. If z axis is the molecular axis then **CORRECT** matching for $d_{xy} + d_{xy}$ orbital is 4, P, II for the substraction of wave function.

Which of the following matching is **CORRECT** for the addition of wave function for same combination of orbitals.

(A) P, IV (B) P, III (C) Q, II (D) Q, I **CB0077**

1.	The hybridisation of o	orbitals of N atom in N	10_3^- , 10_2^+ and 10_4^+ are	respectively:- [A	[EEE-2011]
	(1) sp, sp3, sp2	(2) sp2, sp3, sp	(3) sp, sp^2 , sp^3	$(4) \text{ sp}^2, \text{ sp, sp}^3$	CBO0115
2.		the maximum covalen	t character is shown by	y the compound :-	
				[A]	IEEE-2011]
	(1) AlCl ₃	$(2) \text{ MgCl}_2$	(3) FeCl ₂	$(4) SnCl_2$	CB0091
•	Which of the following	ng has maximum numb	per of lone pairs associa	ated with Xe [AIE	EE-2011]
	(1) XeO ₃	(2) XeF ₄	$(3) \text{ XeF}_6$	(4) XeF ₂	CBO0117
•	The number of types	of bonds between two	carbon atoms in calciu	m carbide is :- [A]	[EEE-2011]
	(1) One sigma, two pi	i	(2) One sigma, one	pi	
	(3) Two sigma, one p	i	(4) Two sigma, two	pi	CBO0253
•	The molecule having	smallest bond angle is	:-	[AIEEE-2012]
	(1) PCl ₃	(2) NCl ₃	(3) AsCl ₃	(4) SbCl ₃	CBO0118
•	In which of the follow	ving pairs the two spec	ies are not isostructura	1? [AIEEE-2012]
	(1) AlF_6^{3-} and SF_6	(2) CO_3^{2-} and NO_3^{-}	(3) PCl ₄ ⁺ and SiCl ₄	(4) PF ₅ and B ₁	rF_5
					CBO0119
	The number of S-S b	onds in SO_3 , $S_2O_3^{2-}$, $S_3O_3^{2-}$	$\mathrm{S}_2\mathrm{O}_6{}^{2-}$ and $\mathrm{S}_2\mathrm{O}_8{}^{2-}$ resp	pectively are :-	
				[JEE-M	AINS-2012]
	(1) 1, 0, 1, 0	(2) 0, 1, 1, 0	(3) 1, 0, 0, 1	(4) 0, 1, 0, 1	(On-line)
					CBO0120
•	Dipole moment is sho	own by :-		[JEE-M	AINS-2012]
	(1) trans-2, 3-dichloro	- 2-butene	(2) 1, 2-dichloroben	nzene	(On-line)
	(3) 1, 4-dichlorobenze	ene	(4) trans-1, 2-dinitro	oethene	CBO0254
•	Among the following	species which two hav	ve trigonal bipyramidal	l shape ? [JEE-MA	AINS-2012]
	(I) NI ₃	(II) I_3^-	(III) SO_3^{2-}	(IV) NO_3^-	(On-line)
	(1) II and III	(2) III and IV	(3) I and IV	(4) I and III	CBO0121
0.	Among the following	, the species having the	e smallest bond is :-	[JEE-M	AINS-2012]
	(1) NO	(2) NO+	(3) O ₂	(4) NO-	(On-line)
					CBO0255
1.	Based on lattice energ	y and other considerate	ions, which one of the	following alkali m	etal chloride
	is expected to have t	he highest melting po	int ?	[JEE-M	AINS-2012]
	(1) RbCl	(2) LiCl	(3) KCl	(4) NaCl	(On-line)
_					CB0157
2.	•	non with zero dipole m		_	AINS-2012]
	$(1) \text{ XeO}_3$	$(2) XeO_2$	$(3) XeF_4$	(4) $XeOF_4$	(On-line)
	Among the f-11	the melecule!41. 41	a loveget dimet-	ontio . ITEE A.C.	CBO0123
2	Among the following	g me moiecule with th	ne lowest dipole mom	ent is :- [JEE-ML	A11NO-2012]
3.	(1) CHCl ₃	(2) CH ₂ Cl ₂	(3) CCl ₄	(4) CH ₃ Cl	(On-line)

E

(4) S_2

[**JEE-MAINS-2012**]

(On-line) CBO0125

[AIEEE-2013]

(1) C₂

(1) from sp^3 to sp^3d

(3) from sp^3 to sp^2

14.

15.

				CB0092
16.	Which of the followi	ng is the wrong statem	ent?	[JEE-M-2013]
	(1) ONCl and ONO	are not isoelectronic	(2) O_3 molecule is be	ent
	(3) Ozone is violet-b	lack in solid state	(4) Ozone is diamagn	netic gas CBO0256
17.	In which of the follo	wing pairs of molecule	es/ions, both the species	s are not likely to exist?
	(1) H_2^+, He_2^{2-}	(2) H_2^-, He_2^{2-}	$(3) H_2^{2+}, He_2$	$(4) H_2^-, He_2^{2+}$
	2, 2	2, 2	2 / 2	[JEE-M-2013]
				CB0093
18.	Which of the followi	ing exists as covalent of	rystals in the solid stat	
200	(1) Iodine	(2) Silicon	(3) Sulphur	(4) Phosphorus CBO0257
19.	Stability of the specie	es Lia, Tiand Tit ind	creases in the order of	:- [JEE-M-2013]
	(1) $\text{Li}_2 < \text{Li}_2^+ < \text{Li}_2^-$	(2) $\text{Li}_{2}^{-} < \text{Li}_{2}^{+} < \text{Li}_{2}$	(3) $\text{Li}_2 < \text{Li}_2^- < \text{Li}_2^+$	(4) $\text{Li}_{2}^{-} < \text{Li}_{2} < \text{Li}_{2}^{+}$
				CB0094
20.	Trigonal bipyramidal	geometry is shown by	:	[JEE-MAINS-2013]
	$(1) \text{ XeO}_3 \text{F}_2$	(2) XeOF ₂	$(3) \text{ XeO}_3$	(4) FXeOSO ₂ F (On-line)
				CBO0126
21.	In which of the follow	ing ionization processes	the bond energy has inc	reased and also the magnetic
	behaviour has change	ed from paramagnetic t	o diamagnetic ?	[JEE-MAINS-2013]
	(1) NO \rightarrow NO ⁺	$(2) O_2 \rightarrow O_2^+$	$(3) N_2 \rightarrow N_2^+$	$(4) C_2 \rightarrow C_2^+ \textbf{(On-line)}$
				CB0158
22.	Which one of the fol	lowing molecules is po	olar?	[JEE-MAINS-2013]
	$(1) CF_4$	(2) SbF ₅	$(3) \text{ IF}_5$	(4) XeF_4 (On-line)
				CBO0127
23.			$S_2O_4^{2-}$ and $S_2O_6^{2-}$ increas	ses in the orders:
	$(1) S_2 O_6^{2-} < S_2 O_4^{2-} < $	SO_3^{2-}	$(2) SO_3^{2-} < S_2O_4^{2-} < S_2$	$_{2}O_{6}^{2-}$ [JEE-MAINS-2013] $_{3}^{2-}$ (On-line)
3	$(3) S_2O_4^{2-} < SO_3^{2-} < S$	$O_2O_6^{2-}$	$(4) S_2O_4^{2-} < S_2O_6^{2-} < SO_6^{2-} < SO_6^{2-$	O_3^{2-} (On-line)
				CBO0128
24.				All the molecules viz. H ₂ ,
	Li ₂ and B ₂ have the	same bond order yet th	ey are not equally stab	ole. Their stability order is:
	(1) $\text{Li}_2 > \text{H}_2 > \text{B}_2$		(2) $H_2 > B_2 > Li_2$	[JEE-MAINS-2013]
	(3) $B_2 > H_2 > Li_2$		(4) $\text{Li}_2 > \text{B}_2 > \text{H}_2$	(On-line)
				CB0159
25.	· ·	for alkali metal fluorid		[JEE-MAINS-2013]
	(1) LiF < NaF < KF		(2) LiF > NaF > KF	·
	(3) RbF < KF < NaF	< LiF	(4) LiF < RbF < KF <	< NaF CB0160

The formation of molecular complex BF_3 – NH_3 results in a change in hybridisation of boron :-

(3) O₂

Which one of the following molecules is expected to exhibit diamagnetic behaviour?

(2) N_2

(2) from sp² to dsp²

(4) from sp^2 to sp^3

26. XeO_4 molecule is tetrahedral having :

[JEE-MAINS-2013]

(1) Two $p\pi$ -d π bonds

- (2) Four $p\pi$ - $d\pi$ bonds
- (On-line)

(3) One $p\pi$ - $d\pi$ bond

- (4) Three $p\pi$ -d π bonds
- **CBO0129**
- 27. Bond distance in HF is 9.17×10^{-11} m. Dipole moment of HF is 6.104×10^{-30} Cm. The percent ionic character in HF will be : (electron charge = 1.60×10^{-19} C) [JEE-MAINS-2013]
 - (1) 61.0%
- (2) 38.0%
- (3) 35.5%
- (4) 41.5%
- (On-line)

CBO0130

- **28.** The shape of IF_6^- is:
 - (1) Trigonally distorted octahedron
- (2) Pyramidal

(On-line)

[**JEE-MAINS-2013**]

(3) Octahedral

- (4) Square antiprism
- CBO0131

- **29.** Which has trigonal bipyramidal shape?
- [JEE-MAINS-2013]

- (1) $XeOF_4$
- (2) XeO,
- $(3) XeO_3F_2$
- (4) XeOF₂
- (On-line)

CBO0132

- **30.** The catenation tendency of C, Si and Ge is in the order Ge < Si < C. The bond energies (in kJ mol⁻¹) of C C, Si —Si and Ge—Ge bonds are respectively : [JEE-MAINS-2013]
 - (1) 348, 260, 297
- (2) 348, 297, 260
- (3) 297, 348, 260
- (4) 260, 297, 348

(On-line)

CBO0133

31. In which of the following sets, all the given species are isostructural?

[JEE-MAINS-2013, (On-line)]

(1) BF₃, NF₃, PF₃, AlF₃

(2) PCl₃, AlCl₃, BCl₃, SbCl₃

(3) BF_{4}^{-} , CCl_{4} , NH_{4}^{+} , PCl_{4}^{+}

- (4) CO₂, NO₂, ClO₂, SiO₃
- **CBO0134**
- 32. The internuclear distances in O —O bonds for O_2^+ , O_2^- , O_2^- and O_2^{2-} respectively are :

[JEE-MAINS-2013, (On-line)]

- (1) 1.49 Å, 1.21 Å, 1.12 Å, 1.30 Å
- (2) 1.30 Å, 1.49 Å, 1.12 Å, 1.21 Å
- (3) 1.12 Å, 1.21 Å, 1.30 Å, 1.49 Å
- (4) 1.21 Å, 1.12 Å, 1.49 Å, 1.30 Å
- 33. Which one of the following properties is **not** shown by NO?
- [JEE-M-2014]

- (1) It combines with oxygen to form nitrogen dioxide
- (2) It's bond order is 2.5
- (3) It is diamagnetic in gaseous state
- (4) It is a neutral oxide

CB0095

CB0161

34. For which of the following molecule significant $\mu \neq 0$

[JEE-M-2014]

- (1) Only (3)
- (2) (3) and (4)
- (3) Only (1)
- (4) (1) and (2)

CBO0135

(On-line)

CB0166

35.

	(1) $HClO_4 > HClO_3$	$> HClO_2 > HOCl$		[]	[EE-M-2014]					
	(2) $HClO_2 > HClO_4$	$> HClO_3 > HOCl$								
	(3) $HOCl > HClO_2$	$> HClO_3 > HClO_4$								
	(4) $HClO_4 > HOCl$	$> HClO_2 > HClO_3$			CBO0136					
36.	For the compounds			[JEE-M	IAINS-2014]					
	CH ₃ Cl, CH ₃ Br, CH ₃	I and CH ₃ F,			(On-line)					
	the CORRECT orde	er of increasing C-halo	gen bond length is:							
	(1) CH3F < CH3Br <	$< CH_3Cl < CH_3I$	(2) CH3F < CH3Cl <	< CH ₃ Br < CH ₃	I					
	(3) CH3Cl < CH3Br	$< CH_3F < CH_3I$	$(4) \text{ CH}_3 \text{F} < \text{CH}_3 \text{I} <$	$CH_3Br < CH_3C$	1 CBO0138					
37.	Which of the following	ng has unpaired electro	on(s)?	[JEE-M	IAINS-2014]					
	(1) O_2^-	(2) N_2^{2+}	(3) O_2^{2-}	(4) N ₂	(On-line)					
					CB0162					
38.	Shapes of certain inte	rhalogen compounds ar	e stated below. Which on	e of them is not	CORRECTly					
	stated?			[JEE-N	IAINS-2014]					
	(1) IF ₇ : Pentagonal	bipyramid	(2) BrF ₅ : Trigonal	bipyramid	(On-line)					
	(3) ICl ₃ : Planar din	meric	(4) BrF ₃ : Planar T-	(4) BrF ₃ : Planar T-shaped						
39.	The CORRECT order of bond dissociation energy among N_2 , O_2 , O_2 -is shown in which of the following arrangements? [JEE-MAINS-2014 (On-line)]									
	(2) HCIO ₂ > HCIO ₃ > HCIO ₃ > HOCI (3) HOCI > HCIO ₂ > HCIO ₃ > HCIO ₄ (4) HCIO ₄ > HOCI > HCIO ₂ > HCIO ₃ 6. For the compounds CH ₃ Cl, CH ₃ Br, CH ₃ I and CH ₃ F, the CORRECT order of increasing C-halogen bond length is: (1) CH ₃ F < CH ₃ Br < CH ₃ Cl < CH ₃ I (2) CH ₃ F < CH ₃ Cl < CH ₃ Br < CH ₃ Cl CBO (3) CH ₃ Cl < CH ₃ Br < CH ₃ F < CH ₃ Cl CBO (4) Which of the following has unpaired electron(s)? (1) O ₂ (2) N ₂ ²⁺ (3) O ₂ ²⁻ (4) N ₂ (On CB (3) ICl ₃ : Planar dimeric (4) BrF ₅ : Trigonal bipyramid (3) ICl ₃ : Planar dimeric (4) BrF ₅ : Trigonal bipyramid (7) The CORRECT order of bond dissociation energy among N ₂ , O ₂ , O ₂ -is shown in which of following arrangements? (1) N ₂ > O ₂ > O ₂ (2) O ₂ > O ₂ > N ₂ CB (3) Which of the following molecules has two sigma(σ) and two pi(π) bonds:-[JEE-MAINS-2 CBO (3) Which of the following xenon-OXO compounds may not be obtained by hydrolysis of x fluorides? (1) HCN (2) C ₂ H ₂ Cl ₂ (3) N ₂ F ₂ (4) C ₂ H ₄ (On-CBO (4) Which of the following xenon-OXO compounds may not be obtained by hydrolysis of x fluorides? (1) XeO ₂ F ₂ (2) XeO ₃ (3) XeO ₄ (4) XeOF ₄ (On-CBO (5) Which one of the following molecules is paramagnetic? (1) NO (2) O ₃ (3) N ₂ (4) CO (On-CBO									
	$(1) N_2 > O_2 > O_2^-$	(2) $O_2 > O_2^- > N_2$	(3) $N_2 > O_2^- > O_2$	(4) $O_2^- > O_2$	> N ₂					
					CB0163					
40.	Which of the follow	ing molecules has two	$sigma(\sigma)$ and two $pi(\pi)$	bonds :-[JEE-N	IAINS-2014]					
	(1) HCN	$(2) C_2H_2Cl_2$	$(3) N_2 F_2$	(4) C_2H_4	(On-line)					
					CBO0140					
41.		ving xenon-OXO comp	pounds may not be obta							
		(2) V ₂ O	(2) V ₂ O	_	-					
	(1) $\Lambda e O_2 \Gamma_2$	$(2) \text{ AeO}_3$	(3) AeO ₄	(4) ACOF ₄	(On-line) CB0164					
42.	Which one of the fo	allowing molecules is	naramagnatic?	LIEE V						
74.		C		_	(On-line)					
	(1) 110	$(2) O_3$	(3) 1 1 2	(+) CO	CB0165					
43.	Amonget LiCl PhO	T ReCl and MaCl +	he compounds with the	areatest and th						
73.			ne compounds with the							

(2) LiCl and RbCl

(4) RbCl and BeCl₂

Among the following oxoacids, the CORRECT decreasing order of acid strength is :-

(1) RbCl and MgCl₂

(3) $MgCl_2$ and $BeCl_2$

node06\B0B0-BA\Kota\EE(Advanced|\Leader\Che\Sheet\Chemical Bonding\Eng\02_Ex.p65

44.		wing alkaline earth met	al sulphates has its		
	lattice enthalpy? (1) BaSO ₄	(2) SrSO ₄	(3) CaSO ₄	(4) BeSO ₄	-MAINS-2015] CB0098
45.	· · · · · ·	(2) 5130 ₄ teraction that is deper	· ·	` '	
73.	molecules is :-	iteraction that is deper	ident on the mve		-MAINS-2015]
	(1) London force	(2) Hydrogen bond	(3) ion-ion inte	raction (4) ion-dip	_
	(1) London force	(2) Hydrogen bond	(3) 1011 1011 11110	raction (+) fon dip	CB0099
46.	Which one has the h	ighest boiling point?		LIEE	-MAINS-2015]
	(1) Kr	(2) Xe	(3) He	(4) Ne	CB0100
47.	` '	lowing statements abou	` '	` '	-MAINS-2016]
		avy water sinks in nor		[6	
	· ·	to oxygen during pho			
		th as an acid and as a			CBO0258
	` '	intramolecular hydrog		condensed phase.	
48.		the N atom is in a sta	_	_	
	(1) NO ₂	(2) NO ₂ ⁺	(3) NO_2^-	(4) NO ₃ -	CBO0259
49.	- · · ·	osphorous atoms have	· · · —	, , ,	
		and pyrophosphoric ac			-MAINS-2016]
		and pyrophosphorous ac		Lo	,
		and hypophosphoric aci			
		and hypophosphoric ac			CBO0145
50.		r force is most respons		xenon gas to lique	efy?
	(1) Ionic	•	_	us dipole- induced	•
	(3) Dipole - dipole		(4) Ion - dipole	[JEE-MAINS-2	-
			_		CBO0144
51.	The non-metal that do	es not exhibit positive	oxidation state is	: [JEE-MAINS-2	2016 (On-line)]
	(1) Oxygen		(2) Fluorine		
	(3) Iodine		(4) Chlorine		CBO0260
52.	The group of molecu	les having identical sh	ape is:	[JEE-MAINS-20	16 (On-line)]
	(1) SF_4 , XeF_4 , CCl_4		(2) ClF ₃ , XeOF	2, XeF ₃ +	
	(3) PCl_5 , IF_5 , XeO_2F_2	2	(4) BF ₃ , PCl ₃ , 2	XeO_3	CBO0146
53.	The bond angle H-X	–H is the greatest in th	ne compound:	[JEE-MAINS-20	016 (On-line)]
	(1) NH ₃	$(2) H_2O$	(3) PH ₃	(4) CH ₄	CB0102
54.	Which of the following	ng species is not parai	magnetic :-	[JEE	-MAINS-2017]
	(1) NO	(2) CO	(3) O_2	(4) B_2	CB0103
55.	Which of the following	• •		[JEE-MAINS-2	
	(1) CO	(2) O_2^{2-}	(3) NO+	(4) B2	CB0104
56.	The number of S=O	and S–OH bonds preser	nt in peroxodisulp	phuric acid and pyr	osulphuric acid
	respectively are:			[JEE-MAINS-2	(017 (On-line)]
	(1) (2 and 4) and (2	and 4)	(2) (4 and 2) and	nd (2 and 4)	
	(3) (2 and 2) and (2		(4) (4 and 2) and		CB0106
57.	-	of decreasing number	of π -bonds in the	_	·
	$H_2S_2O_7$ is :-			[JEE-MAINS-2	(017 (On-line)]
	(1) $H_2S_2O_7 > H_2SO_4$	2 3	(2) $H_2SO_3 > H_2$	221	
	(3) $H_2S_2O_7 > H_2SO_3$	$> H_2SO_4$	(4) $H_2SO_4 > H_2$	$_2S_2O_7 > H_2SO_3$	CB0107

58. The increasing order of the boiling points for the following compounds is:-[JEE-MAINS-2017 (On-line)] (I) C_2H_5OH (III) $C_2H_5CH_3$ (IV) C₂H₅OCH₃ (II) C_2H_5C1 (1) (III) < (II) < (I) < (IV)(2) (II) < (III) < (IV) < (I) (3) (IV) < (III) < (I) < (II)(4) (III) < (IV) < (II) < (I)**CB0108 59.** The number of P-OH bonds and the oxidation state of phosphorus atom in pyrophosphoric acid $(H_4P_2O_7)$ respectively are :-[JEE-MAINS-2017 (On-line)] (2) five and five (3) four and five (1) five and four (4) four and four **CB0109 60.** The group having triangular planar structures is :-[JEE-MAINS-2017 (On-line)] (1) $CO_3^{2-}, NO_3^{-}, SO_3$ (2) NCl_3, BCl_3, SO_3 (3) NH_3, SO_3, CO_3^{2-} (4) BF₃,NF₃,CO₃²⁻ **CB0110** Which of the following are Lewis acids? **61.** [JEE-MAINS-2018] (1) AlCl₃ and SiCl₄ (2) PH₃ and SiCl₄ (3) BCl₃ and AlCl₃ (4) PH₃ and BCl₃ **CB0111 62.** According to molecular orbital theory, which of the following will not be a viable molecule? [JEE-MAINS-2018] (3) H_2^{2-} (4) He_2^{2+} **CB0112** (1) He_{2}^{+} (2) H_2^- Which of the following compounds contain(s) no covalent bond(s)? [JEE-MAINS-2018] KCl, PH₃, O₂, B₂H₆, H₂SO₄ (3) KCl, B_2H_6 (1) KCl, H_2SO_4 (2) KC1 (4) KCl, B₂H₆, PH₃ **CB0113** 64. The number of P–O bonds in P_4O_6 is :-[JEE-MAINS-2018 (Online] (3) 9(4) 6 **CBO0154** In XeO_3F_2 , the number of bond pair(s), π -bond(s) are lone pair(s) on Xe atom respectively are :-**65.** [JEE-MAINS-2018 (Online] (3) 5, 2, 0 (1) 4, 2, 2 (2) 4, 4, 0 (4) 5, 3, 0 **CBO0155** In KO₂, the nature of oxygen species and the oxidation state of oxygen atom are, respectively **66.** [JEE-MAINS-2018 (Online] (2) Oxide and -2(1) Superoxide and -1/2(3) Peroxide and -1/2(4) Superoxide and −1 **CB0114** Which of the following best describes the diagram below of a moleuclar orbital? **67.** [JEE-MAINS-2018 (Online]

- (1) An antibonding π orbital
- (2) An antibonding σ orbital

(3) A non-bonding orbital

(4) A bonding π orbital

CB0115

00)== enemieny				
68.	In the molecular orbital orbital is:-	diagram for the molecul	ar ion, N_2^+ , the number		1
	(1) 3	(2) 1	(3) 0	(4) 2	CB0116
69.	The decreasing order	of bond angles in BF ₃ ,	NH_3 , PF_3 and I_3^- is :-	[JEE-MAINS-201	18 (Online]
	(1) $I_3^- > BF_3 > NH_3$	> PF ₃	(2) $BF_3 > NH_3 > PI$	$F_3 > I_3^-$	
	(3) $I_3^- > NH_3 > PF_3 > PF$	> BF ₃	(4) $BF_3 > I_3^- > PF_3$	> NH ₃	CBO0156
70.	H—NN				
	In hydrogen azide (ab	ove) the bond orders of l	bonds (I) and (II) are:-	[JEE-MAINS-20	18 (Online]
	(I)	(II)			
	(1) >2	<2			
	(2) <2	<2			
	(3) <2	>2			
	(4) >2	>2			CBO0261
71.		n partial hydrolysis pro e of Xe are respectively	•	and 'Y' Compounds AINS-2018 (Onlin	
	(1) $XeO_2F_2(+6)$ and 2	$XeO_2(+4)$	(2) $XeOF_4(+6)$ and	$XeO_2F_2(+6)$	
	(3) $XeOF_4(+6)$ and $XeOF_4(+6)$	KeO ₃ (+6)	(4) $XeO_2(+4)$ and X	(eO ₃ (+6)	CB0117
72.	Which of the following	ng is a lewis acid?		[JEE-MAINS-202	18 (Online]
	(1) NaH	(2) NF ₃	(3) PH ₃	(4) $B(CH_3)_3$	CB0118
73.	Among the oxides of bond is/are :-	nitrogen : N_2O_3 , N_2O_4		le(s) having nitrog [JEE-MAINS-20 1	
	(1) N_2O_3 and N_2O_5	(2) N_2O_4 and N_2O_5	(3) N_2O_3 and N_2O_4	(4) Only N ₂ O ₅	
					CBO0159
74.	· .	X' reacts with chlorine acts with NH ₃ to form C	$l_3X \leftarrow NH_3$ adduct; how	- 3	ot dimerize.
	(1) Ga	(2) Al	(3) In	(4) B	CB0119 (Signal Control
75.	Which of the following	ng conversions involve	es change in both sha	pe and hybridisati	on ?
				[JEE-MAINS-201	.8 (Online)
	$(1) BF_3 \rightarrow BF_4^-$	$(2)~\mathrm{H_2O} \rightarrow \mathrm{H_3O}^+$	$(3)~\mathrm{CH_4} \to \mathrm{C_2H_6}$	(4) $NH_3 \rightarrow NH_3$	I ₄ - \(\frac{1}{2}\) 1/2
					CB0119 CB0119 on? 8 (Online] CB0120 CB0120 CB0167
76.	Two pi and half sign	na bonds are present ir	1:	[JEE-MAINS-201	9 (Online) g
	(1) N_2^+	(2) N ₂	(3) O ₂ +	(4) O ₂	CB0167

E

EXERCISE # J-ADVANCED

1.		atomic molecules in Col	umn i with its property	properties in Colu					
	Column I		Column II		[JEE 2009]				
	(A) B_2		(P) Paramagnetic						
	(B) N_2		(Q) undergoes oxid	ation					
	(C) O_2^-		(R) Undergoes redu	action					
	(D) O ₂		(S) Bond order \geq	2					
			(T) Mixing of 's'	and `p' orbitals	CB0133				
2.	In the reaction				[JEE 2009]				
	$2X + B_2H_6$	$\rightarrow [BH_2(X)_2]^+ [BH_4]^-$							
	the amine(s) X is (a	re)							
	$(A) NH_3$	(B) CH_3NH_2	(C) (CH ₃) ₂ NH	(D) $(CH_3)_3N$					
3.	The species having	pyramidal shape is			[JEE 2010]				
	$(A) SO_3$	(B) BrF_3	(C) SiO_3^{2-}	(D) OSF ₂	CB0135				
4.		l's rule is violated, the b	ond order and magnetic	nature of the diato					
	B_2 is				[JEE 2010]				
	(A) 1 and diamagne		(B) 0 and diamagn						
	(C) 1 and paramag		(D) 0 and par	_	CB0136				
5.									
	(A) HNO ₃ , NO, NE	I CL N	(B) HNO ₃ , NO, N	NH Cl	[JEE 2012]				
			3	- '	CBO0262				
	(C) HNO ₃ , NH ₄ Cl,	-	(D) NO, HNO ₃ , N	Π_4 CI, Π_2					
6.	The shape of XeO_2		(D) C 1		[JEE 2012]				
	(A) Trigonal bipyra	amidal	(B) Square planar		CD COACA				
CTIE	(C) tetrahedral		(D) see-saw		CBO0263				
	BJECTIVE :		1		O :-				
7.	The number of water	er molecule(s) directly	bonded to the metal cer	ntre in $CuSO_4.5H_2$					
					[JEE 2009]				
Q	Docad on VCEDD tl	naary tha number of O	O dograo E Dr. E angle	o in DrE io	CBO0178				
8.	Daseu on VSErk u	leory, the number of 9	0 degree F–Br–F angle	S III DIF ₅ IS	[JEE 2010] CBO0179				
9.	The value of n in th	e molecular formula B	$e_n Al_2 Si_6 O_{18}$ is		[JEE 2010]				
			. 2 0 10		CB0137				
10.	The total number of	diprotic acids among t	the following is		[JEE 2010]				
	H_3PO_4	H_2SO_4	H_3PO_3	H_2CO_3	$H_2S_2O_7$				
	H_3BO_3	H_3PO_2	H_2CrO_4	H_2SO_3	,				
		-		-	CB0138				
11.	Among the followi	ng, the number of ele	ments showing only or	ne non-zero oxida	ation state is				
	O, Cl, F, N,	P, Sn, Tl, N	a, Ti		[JEE 2010]				
					CB0139				

The difference in the oxidation numbers of the two types of sulphur atoms in Na₂S₄O₆ is. 12.

[JEE 2011]

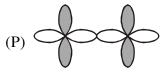
CBO0180

13. The total number of lone-pairs of electrons in melamine is [JEE Adv. 2013]

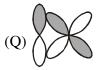
CBO0181

14. Assuming 2s-2p mixing is NOT operative, the paramagnetic species among the following is :

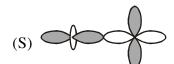
[JEE Adv. 2014]


- (A) Be,
- $(B) B_{\gamma}$
- (C) C₂
- $(D) N_{2}$

CB0140


15. Match the orbital overlap figures shown in List-I with the description given in List-II and select the **CORRECT** answer using the code given below the lists. [JEE Adv. 2014]

List-I


(1) $p - d \pi$ antibonding

(2) $d - d \sigma$ bonding

(3) $p - d \pi$ bonding

(4) $d - d \sigma$ antibonding

Code:

P R S

2 3 (A)

(B)

3 2

(D) 4

CB0141

Among the triatomic molecules / ions, BeCl₂, N₃, N₂O, NO₂, O₃, SCl₂, ICl₂, I₃ and XeF₂ the **16.** total number of linear molecules(s) / ion(s) where the hybridization of the central atoms does [JEE Adv. 2015] not have contribution from the d-orbital(s) is:

(Atomic number : S = 16, Cl = 17, I = 53 and Xe = 54)

CBO0264

The total number of lone pairs of electrons in N_2O_3 is : **17.**

[JEE Adv. 2015]

CBO0265

- **18.** The **CORRECT** statement(s) regarding, (i) HClO, (ii) HClO₂, (iii) HClO₃ and (iv) HClO₄, is(are)
 - (A) The number of Cl=O bonds in (ii) and (iii) together is two

[JEE Adv. 2015]

- (B) The number of lone pairs of electrons on Cl in (ii) and (iii) together is three
- (C) The hybridization of Cl in (iv) is sp³
- (D) Amongst (i) to (iv), the strongest acid is (i)

CBO0266

- 19. When O₂ is adsorbed on a metallic surface, electron transfer occurs from the metal to O₂. The TRUE, statement (s) regarding this adsorption is (are) [JEE Adv. 2015]
 - (A) O₂ is physisorbed
 - (B) heat is released
 - (C) occupancy of π_{2p}^* of O_2 is increased
 - (D) bond length of O2 is increased

CB0143

20. According to Molecular Orbital Theory,

[JEE Adv. 2016]

- (A) C₂²⁻ is expected to be diamagnetic
- (B) O_2^{2+} is expected to have a longer bond length than O_2
- (C) N_2^+ and N_2^- have the same bond order
- (D) He₂ has the same energy as two isolated He atoms

CB0144

- 21. The colour of the X₂ molecules of group 17 elements changes gradually from yellow to violet down the group. This is due to -[JEE Adv. 2017]
 - (A) the physical state of X, at room temperature changes from gas to solid down the group
 - (B) decrease in HOMO-LUMO gap down the group
 - (C) decrease in π^* - σ^* down the group
 - (D) decrease in ionization energy down the group

CB0145

22. Among H_2 , He_2^+ , Li_2 , Be_2 , B_2 , C_2 , N_2 , O_2^- , and F_2 , the number of diamagnetic species is - (Atomic number) : H = 1, He = 2, Li = 3, Be = 4, B = 5, C = 6, N = 7, O = 8, f = 9)

[JEE Adv. 2017]

CB0146

23. The sum of the number of lone pairs of electrons on each central atom in the following species is.

[JEE Adv. 2017]

 $[TeBr_6]^{2-}$, $[BrF_2]^+$, SNF_3 and $[XeF_3]^-$

[Atomic number :
$$N = 7$$
, $F = 9$, $S = 16$, $Br = 35$, $Te = 52$, $Xe = 54$]

CB0147

24. The option(s) with only amphoteric oxides is (are):

[JEE Adv. 2017]

(A) Cr₂O₃, CrO, SnO, PbO

- (B) NO, B₂O₃, PbO, SnO₂
- (C) Cr₂O₃, BeO, SnO, SnO₂
- (D) ZnO, Al₂O₃, PbO, PbO,

CB0148

25. Among the following, the correct statement(s) is are

- [JEE Adv. 2017]
- (A) Al(CH₃)₃ has the three-centre two-electron bonds in its dimeric structure
- (B) AlCl₃ has the three-centre two-electron bonds in its dimeric structure
- (C) BH3 has the three-centre two-electron bonds in its dimeric structure
- (D) The Lewis acidity of BCl₃ is greater than that of AlCl₃

CB0149

node06\B0B0:BA\Kota\EE(Advanced)\Leader\Che\Sheer\Chemical Bonding\Eng\02_Ex.p65

The order of the oxidation state of the phosphorus atom in H₃PO₂, H₃PO₄, H₃PO₃ and H₄P₂O₆ is **26.** [JEE Adv. 2017]

- (A) $H_3PO_4 > H_4P_2O_6 > H_3PO_3 > H_3PO_2$ (B) $H_3PO_3 > H_3PO_2 > H_3PO_4 > H_4P_2O_6$
- (C) $H_3PO_2 > H_3PO_3 > H_4P_2O_6 > H_3PO_4$ (D) $H_3PO_4 > H_3PO_2 > H_3PO_3 > H_4P_2O_6$

CBO0195

- Based on the compounds of group 15 elements, the correct statement(s) is (are) [JEE Adv. 2018] 27.
 - (A) Bi₂O₅ is more basic than N₂O₅
 - (B) NF₃ is more covalent than BiF₃
 - (C) PH₃ boils at lower temperature than NH₃
 - (D) The N-N single bond is stronger than the P-P single bond

CB0150

The total number of compounds having at least one bridging oxo group among the molecules 28. given below is_____. [JEE Adv. 2018]

$$N_2O_3$$
, N_2O_5 , P_4O_6 , P_4O_7 , $H_4P_2O_5$, $H_5P_3O_{10}$, $H_2S_2O_3$, $H_2S_2O_5$

CBO0197

- **29.** Each of the following options contains a set of four molecules. Identify the option(s) where all four molecules possess permanent dipole moment at room temperature. [JEE Adv. 2019]
 - (1) BeCl₂, CO₂, BCl₃, CHCl₃
 - (2) SO₂, C₆H₅Cl, H₂Se, BrF₅
 - (3) BF₃, O₃, SF₆, XeF₆

CB0151

Among B₂H₆, B₃N₃H₆, N₂O, N₂O₄, H₂S₂O₃ and H₂S₂O₈, the total number of molecules containing **30.** covalent bond between two atoms of the same kind is ----[JEE Adv. 2019]

CB0152

ANSWER KEY

EXERCISE # 0-1

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	D	D	D	C	D	В	В	D	В	A
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	A	A	C	A	В	В	В	С	С	D
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	С	С	В	С	В	В	В	A	D	D
Que.	31	32	33	34	35	36	37	38	39	40
Ans.	A	В	C	С	D	D	D	С	A	D
Que.	41	42	43	44	45	46	47	48	49	50
Ans.	A	В	D	В	A	A	В	D	С	D
Que.	51	52	53	54	55	56	57	58	59	60
Ans.	С	С	В	A	D	A	A	В	A	D
Que.	61	62	63	64	65	66	67	68	69	70
Ans.	В	A	С	В	D	С	A	В	A	A
Que.	71	72	73	74	75	76	77	78		
Ans.	A	В	D	В	A	A	A	С		

EXERCISE # 0-2

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	A,B,C,D	в,с	A,B,C	B,C,D	B,C,D	A, B	A, B, C	B, C	B, C	C, D
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	D	A, B, D	A, B	A, C	A, B, C	B, C	A, C	A,B,C	B,C,D	B, C, D
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	C, D	A, B, C	A, C, D	A, C	A, C	A, D	A, B, D	B, C, D	A, B, C	A, B, C
Que.	31	32	33	34	35	36	37	38	39	40
Ans.	A, B, D	B, D	A,B,C,D	A, B	A, B, C	A, B, D	A, B, C	A, B, C	A, C, D	A, C, D
Que.	41	42	43	44	45	46	47	48	49	50
Ans.	A,B,C,D	C, D	A, B, C	A, B	A	С	D	С	C	A,B,C

EXERCISE # S-1

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	3	8	2	2	2	105	4	3	2	4

EXERCISE # S-2

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	D	A	В	A	D	A	В	В	C	В
Que.	11		1	2		13	14	15		
Ans.	С	(A) – P	R,R,T(B)-C	Q(C) - Q(D)) – Q,T	В	С	D		

EXERCISE # J-MAINS

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	4	1	4	1	4	4	2	2	BONUS	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	4	3	3	4	2	1	3	2	2	1
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	3	3	2	1	2	4	1	3	2
Que.	31	32	33	34	35	36	37	38	39	40
Ans.	3	3	3	2	1	2	1	2	1	1
Que.	41	42	43	44	45	46	47	48	49	50
Ans.	3	1	4	4	2	2	4	2	2	2
Que.	51	52	53	54	55	56	57	58	59	60
Ans.	2	2	4	2	4	4	1	4	3	1
Que.	61	62	63	64	65	66	67	68	69	70
Ans.	3	3	2	2	4	1	1	2	1	3
Que.	71	72	73	74	75	76				
Ans.	2	4	3	4	1	1				

EXERCISE # J-ADVANCED

- $A \rightarrow P,Q,R,T \; ; \; (B) \rightarrow Q,R,S,T \; ; \; (C) \rightarrow P,Q,R \; ; \; (D) \rightarrow P,Q,R,S$
- 2. B,C
- 3. D
- 4. \mathbf{A}
- В

- 6. D
- 7. 4
- 8. 0
- 9. 3

- **10.** 6
- Sol. H,SO₄
- H_3PO_3 H_2CO_3 $H_2S_2O_7$ H_2CrO_4 H_2SO_3

- 11. 2
- Sol. F, Na
- 12. 5
- 13. 6
- Sol.
- **14.** \mathbf{C}
- **15.** \mathbf{C}
- **16.** D
 - $\mathsf{BeCl}_2, \mathsf{N}_3^{\scriptscriptstyle -}, \mathsf{N}_2\mathsf{O} \;, \mathsf{NO}_2^{\scriptscriptstyle +}$
- **17.**
- B,C **18.**

- 19. B,C,D
- 20. A,C
- 21. B,C

- 22. 5 or 6
- 23. 6
- 24. C,D
- 25. A,C,D

26. A

- 27. A,B,C
- 28. 5 or 6
- 29. 2,4

30. 4.00